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Triple-negative breast cancer (TNBC) accounts for ∼20% of all breast cancer (BC) cases.
The management of TNBC represents a challenge due to its worse prognosis, heterogeneity
and lack of targeted therapy. Moreover, its mechanisms are not fully clear. The aim of the
study is to identify crucial genes between TNBC and non-TNBC for underlying targets for
diagnostic and therapeutic methods of TNBC. The differentially expressed genes (DEGs)
between TNBC and non-TNBC were selected from the Gene Expression Omnibus (GEO)
database after the integrated analysis of two datasets (GSE65194 and GSE76124). Then
Gene ontology (GO) and KEGG analysis were performed by DAVID database, protein–protein
interaction (PPI) of DEGs was constructed by Search Tool for the Retrieval of Reciprocity
Genes (STRING) database. Furthermore, centrality analysis and module analysis were car-
ried out by Cytoscape to analyze the TNBC-related PPI. Subsequently, overall survival (OS)
analysis was performed by GEPIA. Finally, the expressions of these key genes in TNBC and
non-TNBC tissues were tested by qRT-PCR. The results showed that 955 DEGs were ob-
tained, which were mainly enriched in ribosome, ribosomal subunit, and so on. Moreover,
19 candidate genes were focused on by centrality analysis and module analysis. Further-
more, we found the low expressions of ribosomal protein S9 (RPS9), ribosomal protein S14
(RPS14), ribosomal protein S27 (RPS27), ribosomal protein L11 (RPL11) and ribosomal pro-
tein L14 (RPL14) were related to a poor OS in BC patients. Additionally, qRT-PCR results
suggested that these five genes were notably down-regulated in TNBC tissues. In sum-
mary, the present study suggests that ribosomal proteins are related to TNBC, and they
may play an important role in the diagnosis, treatment and prognosis of TNBC.

Introduction
Breast cancer (BC) is the most common malignant disease worldwide and remains a major health problem
among women [1]. Triple-negative BC (TNBC) is a particular subtype of BC, which is diagnosed by lack-
ing the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2), and accounts for approximately 15–20% of all BC [2]. Molecular expression pro-
file, reflecting clinical heterogeneity, has set up five types of breast carcinomas that carry different proper-
ties of prognoses and survivals: Luminal A, Luminal B, Her2(+), normal and triple negative subtypes [3].
TNBC typically behaves more aggressively, worse overall survival (OS) and requires more complicated
treatment approaches compared with non-TNBC [4]. Correct early diagnosis assessment of BC is very
difficult, even though many cancer-related genes and cellular pathways related to BC have appeared [5].
The common treatments of BC are surgery, chemotherapy, radiotherapy and endocrine therapy, such as

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

http://orcid.org/0000-0002-0062-517X
mailto:zhangzheng92@163.com


Bioscience Reports (2021) 41 BSR20200869
https://doi.org/10.1042/BSR20200869

endocrine therapy for hormone receptor-positive patients and trastuzumab for HER2-positive patients, but there
are no valid treatment tactics available to treat TNBC [6]. TNBC patients frequently suffer higher risks of distant
recurrence and distal metastasis, and higher possibility of relapse, causing poor prognosis [7]. Therefore, it is vitally
important to explore potential diagnostic and prognostic biomarkers and therapeutic targets of TNBC.

The fast development of gene microarray technology and bioinformatics analysis based on high-throughput data,
provide new tactics to identify differentially expressed genes (DEGs) and discover therapeutic targets for the initiation
and evolution of BC [8]. Aberrant expression of genes plays an important role in the initiation and progression of
tumors, so mastering the alteration in the characteristics of critical genes promotes to comprehensively understand
TNBC progression and screen related molecular markers [9]. Recently, studies identified low expression of ITSN1 in
BC tissues and cell lines by bioinformatics analysis [5]. Indeed, some researchers found key genes and pathways in
TNBC by integrated bioinformatics analysis between TNBC and non-TNBC [10]. However, the use of bioinformatics
analysis method to find the relevant genes of TNBC has not yet been confirmed.

In the current study, we aimed to gain the crucial genes between TNBC and non-TNBC. We identified 955 DEGs
by comparing the genes expression profiles of samples from TNBC and non-TNBC patients and constructed the
TNBC-related protein–protein interaction (PPI) network. Moreover, gene ontology (GO) showed the DEGs enriched
in ribosome, ribosomal subunit, cytosolic ribosome, structural constituent of ribosome, RAGE receptor binding. And
Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis displayed that the significant pathways in-
cluded ribosome, FOXO signaling pathway, HIF-1 signaling pathway. Further, 19 candidate genes with high centrality
values and located at the first module were found by the centrality analysis and module screening in the TNBC-related
PPI network. Interesting, the results of survival analysis displayed ribosomal protein family genes were related to a
poor OS among these candidate genes, including ribosomal protein S9 (RPS9), ribosomal protein S14 (RPS14), ribo-
somal protein S27 (RPS27), ribosomal protein L11 (RPL11) and ribosomal protein L14 (RPL14). Additionally, quan-
titative real-time PCR (qRT-PCR) results showed the expressions of RPS9, RPS14, RPS27, RPL11 and RPL14 were
notably down-regulated in tumor tissues of 16 TNBC patients when compared with those in 21 cases of non-TNBC
patients. The present study might provide further insight into the ribosomal proteins for prognosis and drug discovery
in TNBC.

Materials and methods
Access to public data
Two expression profiling datasets (GSE65194 and GSE76124) were downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), an open platform for storing genetic data. Their screening cri-
teria are as follows: (a) they were updated recently (2019); (b) the sample size of each dataset would be greater than
150; (c) the samples are from the same platform: GPL570 [HG-U133 Plus 2] Affymetrix Human Genome U133 Plus
2.0 Array. The GSE65194 dataset contained 178 arrays. A total of 153 arrays were used to analyze 130 unique BC
samples (41 cases of TNBC; 89 cases of non-TNBC) and 23 technical duplicates. In addition 11 normal breast tis-
sue samples and 14 TNBC cell lines were included. GSE76124 consisted of 198 TNBC tumors (discovery set: n=84;
validation set: n=114).

Screening for DEGs
In order to find out DEGs between in TNBC and non-TNBC breast tissues in the GSE76124 and GSE65194 datasets,
we first removed the normal samples and cell lines, and then left TNBC and non-TNBC cancer samples. Through R
affymetrix package analysis, we obtained the list of DEGs of the two microarray datasets. The list of down-regulated
and up-regulated genes in the microarray data were saved. P<0.05 and |fold change| > 1.5 were used as the cut-off
criteria of DEGs.

GO and KEGG pathway analysis
GO is a bioinformatics tool and used to annotate genes and analyze biological functions of DEGs or key genes. In
addition, GO offers three categories of defined terms, which include biological processes (BP), cellular component
(CC), and molecular function (MF). KEGG, as a sophisticated database resource for the systematic analysis of gene
functions, links genomic information and high-order functional information. DAVID [11] (https://david.ncifcrf.gov/)
was used to perform the GO and KEGG analysis. The species was limited to Homo sapiens and P<0.05 was set as
the cut-off criterion.
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Construction of PPI network
The Search Tool for the Retrieval of Reciprocity Genes (STRING) database [11] (http://string-db.org/), which col-
lects and predicts interaction information from genomic context predictions, high-throughput lab experiments,
co-expression, automated text-mining and previous knowledge from databases, was used to predict the potential
interactions between gene candidates at the protein level. The combined score of medium confidence > 0.4 was used
as the cut-off value in the STRING database. In the PPI network, certain DEGs on the margins and isolated, suggesting
no association with other genes, were removed.

Centrality analysis of PPI network
Centrality analysis which is used to identify the vital nodes in networks is of great significance for understanding the
function of nodes and the nature of networks [12]. Many centrality indices have been proposed to identify the influ-
ential nodes of networks. Typically, we predicted the key genes of the network using the significant graph-theoretic
measures of degree centrality, betweenness centrality and closeness centrality [13]. The scores of three centralities (de-
gree centrality, closeness centrality and betweenness centrality) were calculated by cytoNCA, a plugin of Cytoscape
for network centrality analysis. Then we used R language to describe the distribution of the three parameters and
calculate the correlation among the three key centralities. Finally, the Venn diagram presented the intersections of
the top 30% degree value, top 30% betweenness value and top 30% closeness value.

Module analysis of PPI network
MCODE, a plug-in Cytoscape, is applied to screen the modules considered to be the essential part of the network
[14]. And degree cut-off = 2, node density cut-off = 0.1, node score cut-off = 0.2, k-core = 2 and max depth =
100 were regarded as the criteria. The genes in the first ranked Module with high degree, betweenness and closeness
values were selected as candidate genes for further analysis.

Survival analysis of Hub genes
The OS analysis of 19 candidate genes was performed using the online GEPIA survival analysis server (http://gepia.
cancer-pku.cn/) [15], which included 9736 tumor tissues and 8587 normal tissues. The P<0.05 was considered to
indicate statistical significance, and screened out promising hub genes with the prognostic value.

Tissue samples
The samples of 16 TNBC tissues and 21 non-TNBC tissues were collected from the First Affiliated Hospital of
Chongqing Medical University (Chongqing, China) without chemotherapy or radiotherapy before surgical excision
and all patients gave informed consents. Tissue samples were snap-frozen in liquid nitrogen for further analysis. All
samples specimens from the patients were diagnosed with TNBC or non-TNBC by biopsy specimen immunohisto-
chemistry staining. The study has been approved by the Ethics Committee of the Chongqing Medical University, and
was conducted in compliance with the Helsinki Declaration.

RNA isolation and determination of target gene expression using qRT-PCR
To confirm our bioinformatics results, qRT-PCR were conducted on TNBC and non-TNBC tissues. Total RNA was
prepared using TRIzol reagent (TaKaRa, China). The isolated RNA was reverse-transcribed into cDNA using a reverse
transcription kit (TaKaRa, China). The qRT-PCR procedure was performed was as follows: 3 min for 95◦C, 40 cycles
at (95◦C for 15 s, 60◦C for 30 s, 72◦C for 30 s), 65◦C for 5 s, 95◦C for 50 s. Each qRT-PCR was performed in triplicate
on samples. The primers used for the validation are listed in Table 1. The relative quantitative data of mRNAs were
normalized to GAPDH and quantified using the 2−��Ct method (�Ct = Ct target gene − Ct internal control) [16].

Statistical analysis
Statistical analyses were performed in GraphPad Prism 5.0 software. The values of different groups were represented
by the mean +− SD. The comparison of expression levels of TNBC and non-TNBC tumor tissues were analyzed by
unpaired t test. P<0.05 was considered to represent a statistically significant difference.

Results
Identification of DEGs
Generally, 239 patients with TNBC and 89 patients with non-TNBC were incorporated into the present study by
integrating and screening samples of GSE65194 and GSE76124. The fundamental characteristics of the TNBC and
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Table 1 The primer sequence of the five key genes

Gene symbol Primer category Primer sequence

RPS9 Forward primer GAAATCTCGTCTCGACCAAGAG

Reverse primer GGTCCTTCTCATCAAGCGTCA

RPS14 Forward primer CCATGTCACTGATCTTTCTGGC

Reverse primer TCATCTCGGTCTGCCTTTACC

RPS27 Forward primer ATGCCTCTCGCAAAGGATCTC

Reverse primer TGAAGTAGGAATTGGGGCTCT

RPL11 Forward primer AAAGGTGCGGGAGTATGAGTT

Reverse primer TCCAGGCCGTAGATACCAATG

RPL14 Forward primer GACCTTGCACTCAAGTGAGGA

Reverse primer CTTGTCGGACATACTTCTGGTG

GAPDH Forward primer ACAACTTTGGTATCGTGGAAGG

Reverse primer GCCATCACGCCACAGTTTC

Table 2 Clinical characteristics of the TNBC and non-TNBC patients

Characteristic All tumors TNBC Non-TNBC Chi-square P-value
n % n % n %

Age (years) 322 233 89

<50 126 39.13 93 39.91 33 37.08 0.217 0.641

≥50 196 60.87 140 60.09 56 62.92

Missing 6 6 0

Menopausal status 297 208 89

Premenopausal 129 43.43 88 42.31 41 46.07 0.359 0.549

Postmenopausal 168 56.57 120 57.69 48 53.93

Missing 31 31 0

Body mass index 294 206 88

Underweight (<18.5) 7 2.38 3 1.46 4 4.55 22.313 0.000

Normal (18.5–24.9) 115 39.12 65 31.55 50 56.82

Overweight (25–29.9) 94 31.97 72 34.95 22 25.00

Obese (≥30) 78 26.53 66 32.04 12 13.64

Missing 34 33 1

Tumor size (cm) 312 232 80

<2 81 25.96 44 18.97 37 46.25 23.052 0.000

2–5 203 65.06 165 71.12 38 47.50

>5 28 8.97 23 9.91 5 6.25

Missing 16 7 9

Metastases 276 187 89

No metastases 246 89.13 173 92.51 73 82.02 6.85 0.009

Metastases found 30 10.87 14 7.49 16 17.98

Unknown 52 52 0

non-TNBC were summarized in Table 2. The results displayed TNBC was positively correlated with body mass index
(P<0.0001), tumor size (P<0.0001) and metastases (P<0.001), but not with other clinical pathological parameters
including age and menopausal status.

Through R affymetrix package process, we integrated the two microarray datasets and obtained 23506 genes. Fur-
ther study, we identified 955 DEGs between TNBC and non-TNBC groups on the basis of |fold change| > 1.5 and
P-value <0.05. Among these DEGs, 587 genes were up-regulated and 368 genes were down-regulated (Figure 1).

Enrichment function analysis of GO and KEGG pathways
To gain in-depth and comprehensive biological characteristics of these DEGs, GO functional annotation and KEGG
signaling pathway enrichment analysis were performed through online analytical tool DAVID. The results of the GO
analysis demonstrated that DEGs significantly enriched in ‘pattern specification process’, ‘nuclear speck’, ‘ubiquitin
like-protein transferase active’ (Figure 2A), ‘ribosome’, ‘ribosomal subunit’, ‘large ribosomal subunit’, ‘cytosolic ribo-
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Figure 1. Volcano plot demonstrating the differential expression of all genes

Red points mean up-regulated genes screened on the basis |log2 fold change| ≥ 0.585 and P-value <0.05. Green points mean

down-regulated genes screened on the basis |log2 fold change| ≥ 0.585 and P-value <0.05. Black points represent genes with no

difference in expression.

some’, ‘mitochondrial ribosome’ and ‘structural constituent of ribosome’ (Figure 2B). In addition, KEGG pathway
enrichment analysis indicated that significant pathways of DEGs included ‘Hippo signaling pathway’, ‘mTOR signal-
ing pathway’, ‘Wnt signaling pathway’ (Figure 2C), ‘Ribosome’ and ‘Neuroactive ligand-receptor interaction’ (Figure
2D). Both GO and KEGG results showed the DEGs were enriched in ribosomal related terms or pathways. These
results suggest that ribosome-related genes may play an important role in the occurrence and development of TNBC.

Construction of the TNBC-related PPI network
To explore the functions of these DEGs, the TNBC-related PPI network was constructed by an online analysis tool
STRING. Each gene was assigned a degree representing the number of neighboring nodes in the network and average
node degree was 10.3. A total of 841 nodes and 4338 edges were screened from the network, as shown in Supplemen-
tary Figure S1.

Centrality analysis of the PPI network
To study the features of the molecules in the TNBC-related PPI network, centrality analysis was performed using
three topological parameters (degree, betweenness and centrality) in cytoNCA. Degree centrality is the most direct
measure of the centrality of a node in network analysis. Betweenness centrality is an indicator of the importance of a
node based on the number of shortest paths through a node. Closeness centrality reflects the proximity of a node to
other nodes in the network. Our results showed that the density distributions of degree and betweenness displayed
the long-tailed distribution [17], while closeness displayed fat-tailed distribution [18] (Figure 3A–C). The long-tailed
distribution of degree and betweenness indicated that the parameter values of the vast majority of genes were small,
and only a few genes had fairly large parameter values. The fat-tailed distribution of closeness indicated that the
parameter values of the most genes were generally high. As known, in a PPI network, the greater the centrality value
is, the more important the gene is. Therefore, 147 DEGs with high topological features (top 30% of each parameter)
were obtained chosen for further study (Figure 3D).

Module analysis of the PPI network
To further explore the characteristics of the molecules based on the PPI network, modules analysis was utilized by
MCODE in Cytoscape software. The results showed 23 modules in the PPI network. The first-ranked module which
was the most significant module was filtered from the PPI network, and it included 34 nodes and 499 edges with
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Figure 2. GO and KEGG enrichment analysis of the PPI network

(A) Top 20 significantly enriched GO annotations of up-regulated DEGs, including three groups (molecular function, biological pro-

cess and cellular component), P<0.05. (B) Top 20 significantly enriched GO annotations of down-regulated DEGs, P<0.05. (C) Top

20 functional pathways of up-regulated DEGs through KEGG analysis, P<0.05. (D) Top 20 functional pathways of down-regulated

DEGs through KEGG analysis, P<0.05.

a highest score of 30.242 (Figure 3E). Ultimately, 19 candidate genes (MAGOHB, RPL18, SSR4, EIF5B, SRP72,
RPS6, RPS27A, UPF1, RPL32, RPS5, SEC61G, RPS9, RPL11, RPS27, EIF4B, RPL14, EIF4E, RPS14 and RPL29)
in the network were focused on because of their high centrality values and the location of the first ranked module.
Interestingly, 11 genes were ribosome-related genes among these 19 genes, pointing that ribosomal gene may play an
important role in TNBC.

OS analysis of candidate genes
OS is often considered the best outcome endpoint in clinical trials of cancer. The prognostic value of 19 candidate
genes in the PPI network was evaluated by using the online GEPIA survival analysis. OS for TNBC patients was
obtained in the accordance with the low or high expression of the 19 candidate genes. Based on the screen cri-
teria P<0.05, we obtained five key genes such as RPS9 (P=0.047), RPS14 (P=0.049), RPS27 (P=0.021), RPL11
(P=0.0088), RPL14 (P=0.0025). As it is shown in Figure 4, a low expression of RPS9, RPS14, RPS27, RPL11 or
RPL14 was associated with poor prognosis in the BC, suggesting they could help develop an interesting therapeutic
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Figure 3. Centrality analysis and module analysis of the PPI network acquired through cytoNCA and MCODE plugins of

Cytoscape

(A) A density diagram of degree centrality. (B) A density diagram of betweenness centrality. (C) A density diagram of closeness

centrality. (D) The intersection of the top 30% molecules in each centrality (degree, betweenness, closeness) was detected by

Venny2.1. Results showed 147 key DEGs were chosen for further study because of their high degree, betweenness and closeness.

(E) The most significant module was obtained from the PPI network which contained 34 nodes and 49 edges.

approach against TNBC. Apparently, the results showed they all belonged to the ribosomal protein family, suggesting
ribosome proteins may be closely related to the progress, prognosis and treatment of TNBC. Since these five key genes
have the potential significance as prognosis biomarkers for TNBC, we selected them for further study.

Validation of key genes by real-time qPCR
To validate the key genes participating in the pathogenesis of TNBC, we performed qRT-PCR to detect the expression
of five key genes in 16 TNBC tissues and 21 non-TNBC tissues. Our results showed the expressions of RPS9, RPS14,
RPS27, RPL11 and RPL14 were significantly decreased in TNBC tissues when compared those in non-TNBC group
(Figure 5). Moreover, the down-regulated expression results of these genes were verified to be consistent with the
microarray results. These results suggest ribosomal proteins may participate in the development of TNBC and serve
as the potential biomarker.

Discussion
BC, the most common malignancy in women, exhibits significant heterogeneity [19]. Due to the absence of druggable
molecular targets, the treatment of TNBC is very limited compared with the treatment of non-TNBC subtypes. How-
ever, the molecular mechanisms of TNBC remain poorly understood. The identification of biomarkers associated
with TNBC tumorigenesis and progression are urgently required. Recently, microarray technology and bioinformat-
ics analysis has enabled researchers to explore genetic alterations, and have been a useful approach to identify novel
biomarkers in several diseases, such as adrenocortical carcinoma [20]. Additionally, high-throughput technology is
increasingly advanced and widespread. Simultaneously, with the development of numerous public databases, like
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Figure 4. OS analysis of five key genes in BC patients using GEPIA

(A) OS analysis of RPS9 in BC patients. The results showed the patients with low expression of RPS9 were related to a poor

prognosis. (B) OS analysis of RPS14 in BC patients. The results showed the patients with low expression of RPS14 were related

to a poor prognosis. (C) OS analysis of RPS27 in BC patients. The results showed the patients with low expression of RPS27 were

related to a poor prognosis. (D) OS analysis of RPL11 in BC patients. The results showed the patients with low expression of RPL11

were related to a poor prognosis. (E) OS analysis of RPL14 in BC patients. The results showed the patients with low expression of

RPL14 were related to a poor prognosis. P<0.05 was considered to indicate a statistically significant difference.

the GEO, transcriptomic and genomic research get great convenience from these public databases. Thus, based on
these public platforms, we used bioinformatics analysis to explore the transcriptional differences between TNBC and
non-TNBC to better understand BC and provide new clues of targeted therapy for TNBC.

In our study, by the analysis of two gene expression profiles of GSE65194 and GSE76124, we identified 955 DEGs
in TNBC compared with non-TNBC (P<0.05, FC > 1.5), including 587 up-regulated genes and 368 down-regulated
genes. Moreover, GO enrichment analysis revealed that DEGs significantly enriched in ribosome, ribosomal subunit
and cytosolic ribosome. The KEGG pathway database contains information on systematic analysis of gene functions,
linking genomics with functional information. Also, the result of KEGG showed that the genes were mainly enriched
in ribosome and FOXO signaling pathway. This result arouses us enormous interest. Both GO terms and KEGG path-
ways displayed the ribosomal related, suggesting ribosomal related genes may play roles in TNBC. About ribosome,
controlled changes in ribosome heterogeneity would up- or down-regulate particular genetic networks [21]. It has
been reported that when ribosomal protein is deleted or reduced, the ribosome biogenesis process is blocked [22] and
ribosome biogenesis has recently emerged as an effective target in cancer therapy [23,24]. For instance, RPL10a/uL1
is required for translation of mRNAs that promote cell survival, while genes that contribute to cell death are depleted
from RPL10a/uL1 containing ribosomes, suggesting that tuning the levels of RPL10a/uL1 could shift the balance
between cell survival and death [25]. Some researchers revealed a series of eukaryotic-specific antibiotics that are
specific to cytosolic ribosome, uncovering promising cancer targets for human ribosomes [26]. Therefore, the data
suggest that the identified DEGs which enriched in ribosomal terms or pathways may participant in the development
of TNBC and contribute to TNBC treatment.
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Figure 5. Validation of five key genes through qRT-PCR

(A) The relative mRNA expression of RPS9 was lower in TNBC tissues than that in non-TNBC tissues. (B) The relative mRNA

expression of RPS14 was lower in TNBC tissues than that in non-TNBC tissues. (C) The relative mRNA expression of RPS27 was

lower in TNBC tissues than that in non-TNBC tissues. (D) The relative mRNA expression of RPL11 was lower in TNBC tissues than

that in non-TNBC tissues. (E) The relative mRNA expression of RPL14 was lower in TNBC tissues than that in non-TNBC tissues (*

means P<0.05, ** means P<0.01, *** means P<0.001).

To explore the molecular mechanism of TNBC, we constructed the TNBC-related PPI network. We screened 841
nodes and 4338 edges from the network. Moreover, we performed centrality analysis and acquired 147 DEGs with
high topological features. As known, centrality analysis was a criteria of screening hub genes to identify DEGs in
lung cancer [27]. To deeply explore the molecular features of TNBC, we detected 23 functional modules by module
analysis. Importantly, the first ranked module was found including 34 nodes and 499 edges. According to previous
studies, modules analysis have been widely used to identify the key genes in many cancers such as renal carcinoma
[9], TNBC [28] and gastric adenocarcinoma [29]. Thus, these suggest that the genes in the first-ranked module may
be the significant molecules of the network. Comprehensively considering centrality analysis and module analysis, we
found 19 candidate genes in the first-ranked module with high degree, betweenness and closeness. These candidate
genes acted as important molecules in the network. Therefore, it suggests that these 19 candidate molecules may be
the important molecules in the TNBC compared with non-TNBC.

Survival analysis is important indicators for assessing the prognosis of diseases, especially in cancer research. Our
results indicated that TNBC patients with the low expression genes of RPS9, RPS14, RPS27, RPL11 or RPL14 were
significantly worse in survival and prognosis of BC. Furthermore, real-time PCR was used to confirm the expression
of these five genes in 16 TNBC samples and 21 non-TNBC samples. Our real-time PCR results showed that RPS9,
RPS14, RPS27, RPL11 and RPL14 were all down-regulated in TNBC samples compared with non-TNBC samples.
Our findings suggested that these five genes were the most important differently expressed genes between TNBC and
non-TNBC. RPS9, RPS14, RPS27, RPL11 and RPL14 all belong to the ribosomal protein family. Combined with the
results of GO and KEGG analysis, these results imply that ribosomal protein family genes may participate in TNBC.

It is well known, ribosomal protein family are the cornerstone of ribosome biogenesis and are involved in ribosome
assembly. Indeed, ribosomal proteins are typically small (50–150 amino acid residues) and basic proteins with high
isoelectric points [30]. Ribosomal proteins play seminal roles in the function and structure of ribosomes or in the
initiation, elongation, or termination phases of protein translation. In our results, RPS9, RPS14 and RPS27 are com-
ponents of the 40S subunit, while RPL11 and RPL14 are components of the 60S subunit. Studies had shown that RPS9
expression was associated with OS and extramedullary infiltration in myeloma [31]. RPS9 promoted osteosarcoma
tumor growth by activating MAPK signaling pathway [32]. Based on bioinformatics analysis, RPS14 was identified
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as hub gene of bladder carcinoma [33]. Overexpression of RPS14 can inhibit Rb phosphorylation and induce cell
cycle arrest and aging, which may be related to cancer treatment [34]. Also, low expression of RPS27 is associated
with poor clinical prognosis in melanoma [35]. RPL11, affecting osteosarcoma malignant phenotype, may be a new
prognostic markers of osteosarcoma survival [36]. Furthermore, deletion of RPL11 blocked p53 activation to induce
colon cancer cell apoptosis [37]. In addition, RPL14 was a diagnostic markers of glioblastoma and could be used as
therapeutic targets [38]. Moreover, researches have shown that RPL14 promoted cervical cancer cell migration, in-
vasion and EMT, which were related to cervical cancer prognosis [39]. Eminently, previous researches had indicated
that RPS9, RPS14, RPL11were down-regulated in BC and the low expression of RPS9, RPS14, RPL11 linked to worse
OS in BC patients [40]. Therefore, these molecules may be used as potential effective candidates for early diagnosis or
prognosis of TNBC. Importantly, research on ribosomal proteins may be a significant new direction for the diagnosis,
prognosis and treatment of TNBC.

In future researches, we will further validate the reliable biomarkers for TNBC by more functional search and more
samples. Our final attempts are to find the reliable biomarkers for clinical examination and point new direction of
therapy.

Conclusion
We showed that ribosomal protein family genes RPS9, RPS14, RPS27, RPL11 and RPL14 are key DEGs which are
associated with poor outcome in TNBC compared with non-TNBC. These genes may be potential diagnostic and
prognostic biomarker and to some extent be helpful for targeted therapy of TNBC.
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