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Abstract

Background: There is a growing interest in using functional food components as therapy for cardiovascular diseases
such as hypertension. We have previously characterized a tri-peptide IRW (Ile-Arg-Trp) from egg white protein
ovotransferrin; this peptide showed anti-inflammatory, anti-oxidant and angiotensin converting enzyme (ACE)
inhibitor properties in vitro. Given the pathogenic roles played by angiotensin, oxidative stress and inflammation in
the spontaneously hypertensive rat (SHR), we tested the therapeutic potential of IRW in this well-established model
of hypertension.
Methods and Results: 16–17 week old male SHRs were orally administered IRW at either a low dose (3 mg/Kg BW)
or a high dose (15 mg/Kg BW) daily for 18 days. Blood pressure (BP) and heart rate were measured by telemetry.
Animals were sacrificed at the end of the treatment for vascular function studies and measuring markers of
inflammation. IRW treatment attenuated mean BP by ~10 mmHg and ~40 mmHg at the low- and high-dose groups
respectively compared to untreated SHRs. Heart rate was not affected. Reduction in BP was accompanied by the
restoration of diurnal variations in BP, preservation of nitric oxide dependent vasorelaxation, as well as reduction of
plasma angiotensin II, other inflammatory markers and tissue fibrosis.
Conclusion: Our results demonstrate anti-hypertensive effects of IRW in vivo likely mediated through ACE inhibition,
endothelial nitric oxide synthase and anti-inflammatory properties.
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Introduction

Cardiovascular diseases (CVDs) are the single greatest
cause of morbidity and mortality worldwide [1]. Hypertension,
the persistent increase of blood pressure (BP) at or above
140/90 mmHg, is a major predisposing factor for CVDs [2].
Uncontrolled hypertension leads to widespread chronic
damage to the vasculature and contributes to myocardial
infarctions, cerebrovascular insufficiency and chronic renal
disease [3,4]. The aetiology of hypertension is complex,
although important roles for the renin-angiotensin system
(RAS), oxidative stress and inflammation have been identified
[5-7]. Different therapies exist, yet many patients still have
poorly controlled hypertension and remain at increased risk for

its complications [8-10]. In addition, use of anti-hypertensive
drugs is associated with significant adverse effects [11].
Nutraceuticals or food derived therapies have been explored
for many disease conditions as safer alternatives to traditional
pharmacological agents [12,13]. Given the significance of
hypertension to the global burden of CVDs, there is increasing
interest in developing alternative strategies for the
management of hypertension.

In addition to their well-known nutritional role, eggs are a rich
source of numerous bioactive proteins and peptides with anti-
oxidant, anti-microbial and anti-inflammatory properties which
may have potential applications as nutraceuticals and/or
functional foods [14-16]. We have previously identified a tri-
peptide IRW (Ile-Arg-Trp) from enzymatic digestion of the egg
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white protein ovotransferrin with demonstrated angiotensin
converting enzyme (ACE) inhibitory activity in vitro [17]. As
uncontrolled RAS activity contributes to the pathogenesis of
hypertension, this peptide could be of potential therapeutic
interest. Recent work from our group has further characterized
its anti-oxidant and anti-inflammatory effects on cultured
endothelial cells, a site of inflammatory changes that lead to
atherosclerosis and consequently, CVDs [18,19]. However, the
in vivo cardiovascular effects and oral bioavailability of IRW
remain unknown, precluding its further development as a viable
therapeutic option.

The spontaneously hypertensive rat (SHR) is a well-
characterized rodent model for hypertension. SHRs develop
persistent hypertension at an early age (~12-14 weeks) and
remain hypertensive throughout their lives [20,21]. These
animals show increased RAS activity together with increased
oxidative stress in the vasculature and a pronounced pro-
inflammatory phenotype [5,22-24]. Thus, SHRs have been
widely used to study the pathophysiology of hypertension
[22,24–26,26]. Various food derived peptides with known ACE
inhibitory properties in vitro have been used to test for in vivo
antihypertensive effects in SHR with varying degrees of
success [27-29]. Given the anti-oxidant, anti-inflammatory and
ACE inhibitory properties of IRW, we used SHRs to study its
efficacy as a novel anti-hypertensive agent and the potential
mechanisms of its actions.

Materials and Methods

Animal model and ethics statement
Fourteen to fifteen week old male SHRs (290.0±10.5 g) were

obtained from Charles River (Senneville, QC, Canada). These
animals were kept at the University of Alberta animal facility for
a week for acclimatization. Rats were exposed to a 12:12 hour,
light:dark cycle, in a humidity and temperature-controlled
(23°C) environment. All rats were given standard rat chow
(0.3% NaCl) and water ad libitum. The experimental
procedures were approved by the University of Alberta Animal
Welfare Committee (Protocol # 611/09/10/D) in accordance
with the guidelines issued by the Canada Council on Animal
Care and also adhered to the Guide for the Care and Use of
Laboratory Animals published by the United States National
Institutes of Health.

Experimental Design
Fifteen to sixteen week old animals were surgically implanted

with telemetry transmitters for blood pressure monitoring. A
one week period of recovery was allowed following surgery.
The animals were then randomly assigned to three treatment
groups (n=6): untreated (control), low dose IRW (3 mg/Kg BW)
and high dose IRW (15 mg/Kg BW). The doses were selected
based on previously published in vivo studies on bioactive
peptides [27,28]. IRW was dissolved in 20 mL of Ensure
(Abbott Nutrition, QC, Canada) and administered once per day
for 18 days. Untreated animals were given Ensure alone. BP
was recorded for a 24 h period (10 sec of every 1 min) on days
0 (baseline), 3, 6, 9, 12, 15 and 18 under the conditions
described above. At the end of the recording period, the

animals were sacrificed by decapitation; the blood was
collected in EDTA coated tubes (BD vacutainer, NJ, USA),
tissues were collected for further analysis and the mesenteric
arteries were isolated for vascular function studies.

Anesthesia and surgical procedure
A telemetry transmitter was implanted to measure the blood

pressure (BP) and heart rate (HR) as follows. Anesthesia was
induced using O2 and 3% isoflurane, and was maintained
throughout the surgical procedure by the administration of O2

and 1.5-2% isoflurane. During surgery, body temperature was
maintained at 37°C (Homethermic Blanket, Harvard Apparatus,
Canada). Animals were then chronically instrumented with a
pressure transmitter (PA-C40; Data Sciences International,
Minneapolis, MN, USA) according to the manufacturer’s
manual. When the animal had reached a surgical plane, an
approximately 3-4 cm vertical incision was made on the left
side of the spine just above the hip area. Then using
Metzanbaum scissors a small pocket was created just under
the skin, large enough to fit the transmitter. The transmitter was
placed in the pocket and anchored with 4/0 silk suture. The left
femoral artery was exposed by an approximate 2 cm long
incision on the rat’s left groin area and the cannula
(polyethylene, 0.58 mm ID, 0.97 mm OD) of the telemetry
probe was then inserted into the femoral artery and advanced
up to the aorta. The catheter was then secured at the point of
entry to the vessel by using a 4/0 silk suture. All procedures
were done under a Zeiss dissecting microscope (Carl Zeiss,
Toronto, ON, Canada). After surgery, the rats were caged
individually and allowed to recover for one week. During the
week of recovery, animals were fed with 50 mL of Ensure
(Abbott Nutrition, QC, Canada) to regain post-operative weight,
along with rodent chow and water ad libitum [30]. For pain
management, the rats received one dose (0.05 mg/kg BW) of
buprenorphine (0.3 mg/mL) (Animal Resources Centre, McGill
University, Montreal, QC, Canada) just after the surgery; this
was repeated during the next 2-3 days to a maximum of twice a
day, based on the condition of the individual animal.

Telemetry recording and signal processing
Chronic measurement of mean arterial pressure (MAP) and

HR of the animals were performed in a quiet room with minimal
electrical interference. Each individual rat cage was placed on
top of a receiver (Model RPC-1, ADI instruments, CO, USA)
and the signals were recorded through a pressure output
adaptor (Model R11CPA, ADI instruments) for measurement of
various cardiovascular parameters. Using the data acquisition
software LabChart version 7.3 (ADI instruments), the
experimental data were recorded continuously in real time. An
atmospheric-pressure monitor (Model APR-1, ADI instruments)
was also installed to normalize the pressure values received
from the transmitters; this provided the actual BP values
irrespective of changes in atmospheric pressure. From the
MAP signal, systolic blood pressure (SBP) and diastolic blood
pressure (DBP) were extracted and HR was calculated
between two successive points and expressed in beats per
minute (bpm).

IRW Reduces Blood Pressure in SHRs
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Vascular function
Second order branches of the mesenteric artery were

carefully isolated, cleaned of all surrounding adipose and
connective tissues and placed in ice-cold HEPES-PSS (in
mmol/L: NaCl 142, KCl 4.7, MgSO4 1.17, CaCl2 4.7, K2PO4

1.18, HEPES 10 and glucose 5.5; pH 7.4). Arteries with internal
diameters ranging 150-250 µm and ~2 mm in length were
mounted on two 40 µm tungsten wires (Fine Wire Company,
California, USA) and attached to a wire-myograph (DMT,
Copenhagen, Denmark) to allow isometric tension recordings.
Vessels were normalized through a series of stepwise
increases in diameter to determine their optimal resting
tension, set to 0.8 x IC100 (the internal circumference (IC)
equivalent to 100 mmHg). Following a 30 min equilibration,
mesenteric arteries were exposed to a single dose of
phenylephrine (PE; 10 µmol/L; Sigma Aldrich, Oakville,
Canada) twice, followed by a single dose of methacholine
(MCh; 3 µmol/L; Sigma) to assess the functional integrity of the
endothelium and smooth muscle. A cumulative concentration
response curve to PE (10-8 to 10-4 mol/L) was performed to
determine constrictor responses. To assess endothelial-
dependent relaxation, a cumulative concentration response
curve to MCh (10-10 to 10-4 mol/L) was performed. To study the
role of nitric oxide (NO) in MCh-dependent relaxation, vessels
were studied in presence or absence of the nitric oxide
synthase (NOS) inhibitor Nώ-nitro-L-arginine methyl ester (L-
NAME, 100 µmol/L, Sigma). After L-NAME incubation, the
vessels were pre-constricted (80% of maximum) using PE until
it reached a plateau response. Cumulative doses of MCh were
then added to the bath to assess vascular relaxation. At the
end of the experiment, the vessels were exposed to high K+

buffer to confirm viability.

Plasma biomarker analysis
After animal sacrifice, blood samples were collected and kept

on ice. The samples were centrifuged (10,000xg for 20 min at
4°C) and the plasma was stored at -80°C until analysis. Both
angiotensin II (Ang II) and bradykinin were quantified by
respective ELISA kits (Ang II ELISA, Cayman Chemical, Ann
Arbor, MI, USA; Bradykinin ELISA, Phoenix Pharmaceuticals,
Burlingame, CA, USA) as per the manufactures’ instructions.
Commercially available rat cytokine ELISA strips (Signosis
Sunnyvale, CA) were used for estimation of cytokines/
chemokines in the plasma samples [31].

Endothelial cell culture
Human umbilical vein endothelial cells (HUVECs) were

isolated from human umbilical cords as previously described
[32], [33][34] . Following collection of umbilical cords, the
umbilical vein was first flushed with PBS to remove blood clots
and then HUVECs were isolated out using a type 1
collagenase containing buffer. The cells were grown in a
humidified atmosphere at 37°C with 5% CO2/95% air in M199
medium with phenol red supplemented by 20% FBS as well as
L-Glutamine (Gibco/ Invitrogen, Carlsbad, CA), Penicillin-
Streptomycin (Life Technologies, Carlsbad, CA) and 1%
endothelial cell growth supplement (ECGS, from VWR
International, West Chester, PA). We have previously

confirmed the endothelial nature of these cells by staining for
the endothelium-specific marker, von Willebrand’s factor
(vWF)22. The protocol was approved by the University of
Alberta Ethics Committee and the investigation also conformed
to the principles outlined in the Declaration of Helsinki and also
Title 45, US Code of Federal Regulations, Part 46, Protection
of Human Subjects, Revised November 13, 2001, effective
December 13, 2001. All subjects provided written informed
consent before inclusion into this study. Second passage
HUVECS were grown to confluence and treated with 10% SHR
plasma (untreated or high dose IRW treated) for 4 hours. Cell
lysates were prepared and used for western blotting to
measure leukocyte adhesion molecule expression.

Western blotting
Effect of the IRW treatment on vascular protein expression

was determined using western blotting. Frozen (-80°C) aortas
and mesenteric arteries from the SHR animals were thawed on
ice and homogenized in a protein extraction buffer (20 mmol/L
Tris, 5 mmol/L EDTA, 10 mmol/L Na4P2O7, 100 mmol/L sodium
fluoride and 1% NP-40) containing 1% (v/v) protease inhibitor
cocktail (Sigma). The homogenate was centrifuged at 10,000xg
for 10 min at 4°C. Protein concentration in the supernatants
was determined by bicinchoninic acid (BCA) assay, using
bovine serum albumin as a standard. Samples were stored at
-80°C until western blotting.

Bands for intercellular cell adhesion molecule-1/ICAM-1
(mouse monoclonal antibody, Santa Cruz Biotechnologies,
Santa Cruz, CA, USA), vascular cell adhesion molecule-1/
VCAM-1 (rabbit polyclonal antibody, Santa Cruz
Biotechnologies) and endothelial nitric oxide synthase/ eNOS
(mouse monoclonal antibody, BD Biosciences, San Jose, CA,
USA) were normalized to ß-actin (rabbit polyclonal antibody,
Abcam Inc., Toronto, ON, Canada) or α-tubulin (rabbit
polyclonal antibody, Abcam Inc., Toronto, ON, Canada) and
expressed as fold change compared to untreated samples run
on the same gel. Anti- ß-actin was used at 0.5 µg/mL, anti α-
tubulin was used at 0.4 µg/mL, while eNOS, ICAM-1 and
VCAM-1 antibodies were used at 1 µg/mL. Goat-anti-rabbit and
Donkey-anti-mouse conjugated secondary antibodies (Li-Cor
Biosciences, Linclon, NB, USA) were used to visualize the
bands in a Li-Cor Odyssey BioImager and quantified by
densitometry with corresponding software (Odyssey V3.0, Li-
cor Biosciences).

Immunofluroscence
Kidney and aorta specimens were embedded in Tissue-Tek

O.C.T Compound (Sakura Finetek Europe, Zoeterwoude,
Netherlands) and frozen immediately in liquid nitrogen for
subsequent analysis. 10 µm tissue sections were prepared,
mounted on glass slides at -20 °C and stored at -80 °C. On the
day of the experiments, tissue sections were first fixed in
acetone and incubated with blocking buffer (1% bovine serum
albumin in phosphate-buffer saline) for 30 min. The sections
were then immunostained for 2 h at room temperature with
rabbit polyclonal antibodies against nitrotyrosine (Dilution
1:200; Chemicon, Temecula, CA, USA) or type I collagen
(Dilution 1:200; Novus Biologicals, Littleton, CO, USA).

IRW Reduces Blood Pressure in SHRs
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Incubation with the secondary antibody (Dilution 1: 150; Alexa
Fluor 546 (red), Invitrogen, Burlington, ON, Canada) was done
for 30 min in the dark. Glass cover-slips were mounted with a
Vectashield H-1200 Mounting Kit, containing nuclear stain,
DAPI (Vector Laboratories, Burlington, ON, Canada), and
immediately visualised under an Olympus IX81 fluorescence
microscope (Olympus, Tokyo, Japan). Images were obtained
using SlideBook imaging software (Olympus) and presented at
100x magnification. A control image with secondary antibody
alone was used to detect any nonspecific binding (data not
shown). The images were then quantified by subtracting the
background fluorescence in the control image, so only the
fluorescence from specific immunostaining was visible.

Statistics
All data presented are mean ± SEM of 3-6 animals from

each treatment group. For BP data, one –way ANOVA was
used to determine the effect of IRW (Figure 1) and a two-way
ANOVA was used to determine the interaction between two
factors (IRW dose and circadian rhythm of BP, Figure 2), with a
Bonferroni's post-test to compare among groups. MCh curves
were fitted using nonlinear regression, and Emax values were
compared using one-way ANOVA followed by Bonferroni's
post-test or unpaired t-test as appropriate. ICAM-1, VCAM-1
and eNOS bands, plasma levels of Ang II and bradykinin as
well as quantifications for nitrotyrosine and type I collagen
immunostaining were analysed by unpaired t-tests. Data from
endothelial cell experiments were analyzed by one way
ANOVA with Tukey’s post test. A p value < 0.05 was
considered statistically significant.

Results

IRW treatment attenuates BP in SHRs
The SHRs demonstrated already established hypertension at

the beginning of the study (day 0). IRW treatment caused
attenuation of BP as early as day 3 (Figure 1A). After 18 days
of IRW treatment, SBP was significantly decreased in both low
and high dose groups to 191.4±2.0 mmHg and 172.1±4.7
mmHg respectively, compared to the untreated group (Figure
1A). Similar effects were observed in MAP and DBP with high
dose IRW treatment (Figure 1B and C). Although the same
trends were observed in the low dose group, they failed to
reach significance. Despite the changes in BP, no changes
were observed in HR (Figure 1D).

IRW treatment restores circadian rhythm of BP
Circadian variations or nocturnal dipping in blood pressure

(MAP, SBP and DBP) were measured during the treatment
period. The mean BP during each 12 h light cycle (light/dark)
was calculated. The circadian variation of BP was disturbed in
the untreated animals, there being little difference in blood
pressure during the light and dark cycles. After treatment with
both low and high doses of IRW, the impaired circadian
variation in MAP, SBP and DBP were restored. Indeed, the
animals in both low and high dose IRW treatment groups had

the circadian variations in MAP, SBP and DBP restored (Figure
2A, B, C and D).

IRW restores NO sensitive vasorelaxation
Vascular responses to phenylephrine (PE) constriction in the

mesenteric arteries were unaffected in the IRW treatment
groups compared to the untreated SHRs (Data not shown). As
illustrated in Figure 3A, vasodilation to MCh was significantly
enhanced at high dose IRW. MCh mediated vasodilation is
multifactorial, involving multiple vascular pathways such as NO,
prostaglandins and endothelial derived hyperpolarizing factor
(EDHF) [35]. While incubation with the NOS inhibitor L-NAME
did not alter vasodilation in the untreated and low dose IRW
groups, vasorelaxation in the high dose animals was
significantly decreased (Figure 3B, C and D), suggesting
restoration of NO dependent vasorelaxation after IRW
treatment. Given that clearly defined changes were only
observed in the high dose group, all further experiments were
performed only in the untreated and high dose IRW treated
groups.

IRW appears to inhibit ACE-I in vivo
The effect of high dose IRW on the SBP, MAP and DBP of

SHR was associated with concomitant changes in circulating
levels of Ang II and bradykinin. IRW treatment decreased Ang
II levels from 35.3±5.4 pg/mL in the untreated group to
14.2±2.1 pg/mL in the high dose treated group (Figure 4A). The
treatment also increased the circulating levels of bradykinin (a
molecule metabolized by ACE) which increased from 1.5±0.2
ng/mL in the untreated group to 3.0±0.6 ng/mL in the high dose
treated group (Figure 4B). These results suggest that IRW can
act as an ACE inhibitor and thus decrease the production of
Ang II as well as inhibit the degradation of bradykinin

IRW ameliorates inflammation
High dose IRW treatment significantly decreased the

expression of inflammatory biomarkers in plasma such as
interleukin-6 (IL-6) and monocyte chemoattractant protein-1
(MCP-1), compared to the untreated animals (Figure 5A and
B). Similarly, high dose IRW also decreased the expression of
inflammatory adhesion molecules, namely, ICAM-1 and
VCAM-1 in mesenteric arteries (Figure 5C and D).

Plasma from both untreated and high dose IRW treated
SHRs upregulated the expression of leukocyte adhesion
molecules such as ICAM-1 and VCAM-1 in cultured human
endothelial cells. However the effects with untreated plasma
were much higher than that observed in the IRW treated group,
suggesting at least a partial amelioration of the pro-
inflammatory phenotype (Figure 6A and B).

IRW restores vascular eNOS expression
High dose IRW treatment significantly increased the

expression of eNOS in the mesenteric arteries (Figure 7A),
compared to the untreated animals. Similar effects were also
observed in aortic lysates (Figure 7B). These results suggest
that IRW enhanced the expression of eNOS in the vasculature,

IRW Reduces Blood Pressure in SHRs
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which could potentially explain the increase in NO-mediated
vasorelaxation

IRW ameliorates oxidative/nitrosative stress and
fibrosis in vivo

High dose IRW treatment reduced oxidative/nitrosative
stress in SHRs as demonstrated by a significant decrease in
nitrotyrosine staining in aortas and kidneys of IRW treated
animals (Figure 8A and B). In addition, IRW treatment also

reduced immunostaining for type I collagen in both aortas and
kidneys, suggesting decreased tissue fibrosis (Figure 8C and
D).

Discussion

The major findings of this study are: (i) Egg derived bioactive
tri-peptide IRW significantly attenuated established
hypertension in adult male SHRs, (ii) IRW treatment increased

Figure 1.  IRW administration lowers BP in SHRs.  (A, B and C) SBP, DBP and MAP (mmHg) values from SHRs left untreated
(Untr) or treated with a low dose (3mg/Kg BW) or high dose (15mg/Kg BW) of IRW over period of 18 days. BP values for each time
point represent the mean BP recorded over a 24 hr period. (D) Heart rate (bpm) of SHRs in the 3 treatment groups over a period of
18 days. Data represented as mean ± SEM from n=6 animals per treatment group. * and *** indicate P<0.05 and P<0.001
respectively, as compared to the untreated group. ‘ns’ indicates not significant compared to the untreated group.
doi: 10.1371/journal.pone.0082829.g001
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Figure 2.  IRW treatment restores the circadian rhythms of BP in SHRs.  (A, B and C) SBP, DBP and MAP (mmHg) values from
SHRs left untreated or treated with a low dose (3mg/Kg BW) or high dose (15mg/Kg BW) of IRW were recorded during light and
dark cycles over a period of 18 days. (D) 2way ANOVA to demonstrate the effects of IRW (low and high dose) on circadian rhythm
in MAP. Data represented as mean ± SEM from n=6 animals per treatment group.
doi: 10.1371/journal.pone.0082829.g002
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eNOS expression and increased NO-mediated vasorelaxation,
(iii) IRW treatment attenuated plasma Ang II levels and
ameliorated markers of inflammation, oxidative/nitrosative
stress and fibrosis in SHR animals.

Data from this study may provide a natural health option for
treating hypertensive complications leading to CVDs.
Occurrence of CVDs is often linked to diet. This has led to an
increased interest in using bioactive foods as a strategy to
reduce the risk of CVDs. Thus, several active compounds have
been identified in the past two decades from different food
components and with various cardio-protective benefits
[13,36,37]. Specifically, food derived peptides with blood
pressure lowering (ACE inhibitory), cholesterol lowering, anti-
thrombotic and anti-oxidant activities have been proven
beneficial against CVDs [13,38,39]. Moreover, some of these
peptides exhibit multiple bioactive functionalities [15]. Therefore
food derived bioactive peptides, irrespective of their plant or

animal origin, may exert regulatory functions on human health
beyond their nutritional value. In addition to being an
economically and nutritionally important food commodity, egg is
a well-known source of many bioactive peptides [36,40-42].
IRW, a positively charged bioactive tri-peptide with ACE
inhibitory activity, was previously identified and characterized
from egg white protein ovotransferrin [17]. IRW also exhibits
anti-inflammatory and anti-oxidant properties in cultured
endothelial cells [18,19]. Hence the next logical step was to test
the in vivo efficacy of IRW in an animal model of hypertension.

SHR is a well-established model of human essential
hypertension. Various studies performed to determine the anti-
hypertensive effects of food derived bioactive peptides have
used SHR animals as a model system [20,26]. The
development of high blood pressure in these animals is similar
to that in human subjects. Hypertension appears at 12-14
weeks of age in SHRs and they develop established

Figure 3.  IRW treatment restores the nitric oxide contribution to vasodilatation in mesenteric arteries of SHRs.  (A) IRW at
the high dose (15mg/Kg BW) but not at the low dose (3mg/Kg BW) significantly increased maximal vasorelaxation in response to
MCh. (B, C and D) Addition of L-NAME (100 µM) prior to MCh treatment attenuated vasorelaxation in the high dose (D) but not in
the low dose (C) or the untreated (B) groups. Data represented as mean ± SEM from n=6 animals per treatment group. * indicates
P<0.05 compared to the untreated group.
doi: 10.1371/journal.pone.0082829.g003
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hypertension by early adulthood [21]. Along with elevated BP,
studies have shown that SHR animals have blunted diurnal
(light-dark cycle) variations of BP compared to normotensive
rats [43,44]. The underlying pathological mechanisms include
increased activity of the renin-angiotensin system (RAS) as
well as increases in vascular inflammation and oxidative stress
[22,24,25]. Hence SHR is a suitable model to study the in vivo
efficacy of IRW.

Figure 4.  IRW treatment attenuates plasma Ang II levels
through possible ACE inhibitory effects.  (A) Plasma Ang II
(pg/mL) levels from untreated and high dose (15mg/Kg BW)
IRW treated SHRs are shown. (B) Plasma bradykinin (ng/mL)
levels from untreated and high dose (15mg/Kg BW) IRW
treated SHRs. Data represented as mean ± SEM from n=6
animals per treatment group. * and ** indicate P<0.05 and
P<0.01 respectively, as compared to the untreated group.
doi: 10.1371/journal.pone.0082829.g004

While IRW treatment significantly reduced the elevated BP in
SHRs, no significant change was observed in HR, suggesting
that IRW treatment did not affect the cardiac functions in this
study. This is beneficial from a therapeutic point of view since
the preservation of normal cardiac responses would
presumably minimize the risk of side-effects such arrhythmias
and related complications. IRW also restored the attenuated
circadian variation in BP which is characteristically observed in
SHR. Given that loss of “nocturnal dipping” can contribute to
clinical events like myocardial ischemia, acute myocardial
infarct and sudden cardiac death [45-47], the restoration of
impaired nocturnal dipping in blood pressure by IRW may help
to prevent target organ damage in hypertension.

IRW appears to act through multiple pathways leading to
lowered BP in SHRs. It is known that loss of vascular eNOS
activity causes endothelial dysfunction and contributes to the
pathogenesis of hypertension and atherosclerosis [48,49]. In
our study, no significant difference in vascular relaxation has
been observed after L-NAME treatment in the mesenteric arties
of untreated SHRs, suggesting that SHRs may have impaired
NO dependent vasorelaxation. Indeed, a study by Bagnost et
al. has demonstrated the loss of NO dependent vasorelaxation
in SHRs compare to their wild type (WKY) controls [50]. We
also found that IRW upregulated eNOS and enhanced NO
mediated vasorelaxation in SHRs, suggesting the rectification
of endothelial dysfunction as seen in the untreated animals.
Based on our previous study we postulated that IRW would
also exhibit ACE inhibitory activity in vivo [17]. Indeed IRW
treatment reduced the plasma Ang II levels with a
corresponding increase in bradykinin, suggesting an ACE
inhibitory effect.

We have previously demonstrated that IRW reduces TNF-
induced upregulation of MCP-1, ICAM-1 and VCAM-1 in an
endothelial cell culture system [18,19]. A similar effect was
observed in vivo in the current study; IRW decreased levels of
the inflammatory cytokines/chemokines IL-6 and MCP-1. This
phenomenon was accompanied by decreases in expression of
inflammatory adhesion molecules (ICAM-1 and VCAM-1) in
vascular tissues, suggesting generalized anti-inflammatory
effects of IRW in vivo. In addition, plasma from IRW treated
SHRs induced lower levels of ICAM-1 and VCAM-1 expression
in cultured endothelial cells, further supporting a reduction in
proinflammatory properties. Given that SHRs have increased
circulating levels of pro-inflammatory cytokines which may
contribute to the endothelial dysfunction and upregulate
leukocyte adhesion molecules in the vasculature, we propose
that controlling the inflammatory pathways with IRW could
potentially ameliorate the vascular pathologies.

Increased oxidative stress contributes to the pathology of
hypertension [51]. Reactive oxygen species (ROS) such as
superoxide can interact with NO to generate peroxynitrite (-
ONOO), a highly reactive species that contributes to oxidative /
nitrosative stress [52]. Peroxynitrite leads to tyrosine nitration of
various proteins and contributes to a pro-inflammatory
phenotype. Studies have demonstrated that reductions in ROS
and –ONOO levels in SHRs can reduce blood pressure,
suggesting a role for these species on the pathology [53,54].
Our study showed that high dose IRW could reduce
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Figure 5.  IRW treatment attenuates inflammatory markers in SHRs.  (A and B) Relative changes in plasma IL-6 and MCP-1
levels in untreated and high dose (15mg/Kg BW) IRW treated SHRs. (C and D) ICAM-1 and VCAM-1 expression, normalized to ß
actin in mesenteric artery lysates from untreated and high dose (15mg/Kg BW) IRW treated animals. Data represented as mean ±
SEM from n= 4-6 animals per treatment group. *, ** and *** indicate P<0.05, P<0.01 and P<0.001 respectively, as compared to the
untreated group.
doi: 10.1371/journal.pone.0082829.g005
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nitrotyrosine levels in both aorta and kidneys, suggesting an
anti-oxidant effect of IRW on these tissues. These findings are
in accordance with our previous study showing anti-oxidant
effects of IRW on the human endothelium [19]. Inflammatory
and oxidative processes can also lead to increased fibrosis and
consequent remodeling in various tissues. SHR animals are
prone to fibrotic changes in renal and aortic tissues, which may
further contribute to the complications of hypertension [55].
IRW treatment significantly attenuated type I collagen levels
both in kidney and aorta, suggesting a reduction in
hypertension induced tissue remodeling.

The biological activity of orally administered peptides is
highly dependent on their ability to reach the target site without
being degraded and/or inactivated by intestinal or plasma
peptidases. A previous study on milk derived bioactive
tripeptides has shown evidence for oral absorption without
degradation [56]. Our previous study in cells has shown the
importance of integrity of IRW in exerting anti-inflammatory and
antioxidant activities [19] ; the current study has now
conclusively demonstrated the in vivo efficacy of IRW, further
supporting its oral bioavailability. This finding on oral
bioavailability of IRW is in accordance with our previous
findings using an intestinal epithelial cell culture system where

Figure 6.  IRW treatment reduces the inflammatory potential of SHR plasma.  (A and B) Confluent HUVEC monolayers were
treated with 10% plasma from untreated or high dose IRW treated SHRs for 4 hours. Cells were lysed and immunoblotted for
ICAM-1 and VCAM-1 levels. Data from 3-4 different experiments are summarized as mean ± SEM. A representative set of images
are shown. *** indicates P<0.001 as compared to the No plasma group.
doi: 10.1371/journal.pone.0082829.g006
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the peptide was observed to cross the epithelial barrier [57],
although metabolism of IRW in vivo has not been studied yet.

In this study, we used only male animals and had a limited
study period of 18 days. Future studies may incorporate
animals of both sexes, a longer treatment period and
observation of the effects of treatment withdrawal on BP
regulation to avoid the limitations of the present study. Future
studies could also involve elucidation of the molecular
mechanisms underlying the anti-inflammatory and NO
generating effects observed in vivo.

In summary, the in vivo anti-hypertensive effects of orally
given IRW appear to be mediated through several different
pathways, such as, increased NO mediated vasodilation,
regulating RAS through ACE inhibition and reducing vascular
inflammation. Additionally, IRW could restore the disturbed
circadian variations of blood pressure in these animals. These
findings might support the use of egg derived peptide as a
functional food or nutraceutical ingredient with potential
applications in the prevention and management of
hypertension.

Figure 7.  IRW treatment restores eNOS expression in SHR vasculature.  Expression of eNOS, normalized to ß actin in
mesenteric artery (A) and aortic (B) lysates from untreated and high dose (15mg/Kg BW) IRW treated animals. Data represented as
mean ± SEM from n=6 animals per treatment group. * indicates P<0.05 compared to the untreated group.
doi: 10.1371/journal.pone.0082829.g007
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Figure 8.  IRW treatment attenuates tissue nitrotyrosine and fibrosis in SHRs.  (A and B) Immunostaining for nitrotyrosine in
aortic and kidney sections from untreated and high dose (15mg/Kg BW) IRW treated SHRs. (C and D) Immunostaining for type I
collagen in aortic and kidney sections from untreated and high dose (15mg/Kg BW) IRW treated SHRs. Data represented as mean
± SEM from n= 3-4 animals per treatment group. * and *** indicate P<0.05 and P<0.001 respectively, as compared to the untreated
group.
doi: 10.1371/journal.pone.0082829.g008
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