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Abstract

Background: Serratia marcescens is a chitinolytic bacterium that can potentially be used for consolidated
bioprocessing to convert chitin to value-added chemicals. Currently, S. marcescens is poorly characterized and
studies on intracellular metabolic and regulatory mechanisms would expedite development of bioprocessing
applications.

Results: In this study, our goal was to characterize the metabolic profile of S. marcescens to provide insight for
metabolic engineering applications and fundamental biological studies. Hereby, we constructed a constraint-based
genome-scale metabolic model (iSR929) including 929 genes, 1185 reactions and 1164 metabolites based on genomic
annotation of S. marcescens Db11. The model was tested by comparing model predictions with experimental data and
analyzed to identify essential aspects of the metabolic network (e.g. 138 essential genes predicted). The model i[SR929
was refined by integrating RNAseq data of S. marcescens growth on three different carbon sources (glucose, N-
acetylglucosamine, and glycerol). Significant differences in TCA cycle utilization were found for growth on the different
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carbon substrates, For example, for growth on N-acetylglucosamine, S. marcescens exhibits high pentose phosphate
pathway activity and nucleotide synthesis but low activity of the TCA cycle.

Conclusions: Our results show that S. marcescens model i[SR929 can provide reasonable predictions and can be
constrained to fit with experimental values. Thus, our model may be used to guide strain designs for metabolic
engineering to produce chemicals such as 2,3-butanediol, N-acetylneuraminic acid, and n-butanol using S. marcescens.
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Background

With recent advances in high-throughput data and bio-
prospecting, the breadth of novel and interesting bio-
chemistry continues to expand. In terms of the large
amount of data and resources available, one current
challenge is to interpret raw data into knowledge that
can help better understand complex biological systems.
Genome-scale metabolic modeling (GSMM) provides
gene-protein-reaction level specificity and can combine
metabolic network with fundamental genomic and bio-
chemical information. However, there are still a number
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of limitations [1]. For instance, because metabolic path-
way fluxes are underdetermined, which means always
existence of alternative flux states according to different
pathway usage that generate an indistinguishable physio-
logical phenotype. This is an underlying issue with
GSMMs that limits the level of detailed predictions these
models can make when running simulations (presence
of alternate optimal solutions) if not additional data/in-
formation is used. In this study, we investigate the
poorly-characterized chitinolytic bacterium, Serratia
marcescens, and utilize RNAseq data to achieve a better
understanding of its metabolic network.

S. marcescens is unique among enteric bacteria in
many aspects. It secretes extracellular DNase, gelatinase,
lipase, several proteases, a red pigment (prodigiosin),
chitinases and a chitin binding protein. It is believed to
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be one of the most efficient chitin-degrading bacteria in
the environment [2, 3]. S. marcescens Dbl1 contains ten
chitinase-related proteins [4] leading to studies focused
on various facets of the S. marcescens chitinolytic mech-
anisms [5—8]. Due to the high efficiency of processing
chitin, several individual S. marcescens chitinase genes
have been cloned into model bacterial species (e.g.
Escherichia coli) [9-11, 46, 47]. The cloned enzymes
were isolated in good concentrations but failed to show
similar level of chitinolytic activity as is found in S. mar-
cescens. This may be due to the complexity of chitin
degradation systems and synergy between multiple en-
zymes [4, 8, 12, 13]. Hence, it is suggested that the best
way to fully utilize the chitinolytic capabilities of S. mar-
cescens may be developing S. marcescens rather than
moving its chitinases into other systems by heterologous
expression.

The ability to produce chemicals of industrial import-
ance using inexpensive chitinolytic biomass has been a
recent focus [14, 49, 50]. Microbial conversion of chitin
waste into value-added chemicals, a similar concept as
consolidated bioprocessing (CBP), can be socially and
economically beneficial [14-16, 48]. For S. marcescens
Dbll, the sequencing of its genome in 2014 sets up a
milestone towards understanding this industrially applic-
able microbe [17]. The initial developments in the
characterization of S. marcescens are listed in Table 1.
This is a promising development toward making use of
the chitinolytic capabilities of this microbe to reduce the
complex multi-step bioprocess to CBP.

In studying S. marcescens Dbll, we believe that it
can be developed into a facile chitinolytic system for
consolidated bioprocessing. Recently, we established
molecular tools for genetic engineering this organism
using: 1) an in-frame gene deletion approach based
on endogenous exonucleases by introducing linear
DNA fragments and 2) a shuttle vector that contains
functional replication origin and expression elements
(e.g. promoter and RBS) [4]. These approaches
allowed us to study the function of a chitinase regula-
tor protein (ChiR) by characterizing physiological dif-
ferences in a ChiR overeexpression strain and a ChiR
deletion strain. ChiR is characterized as a positive
regulator protein and is essential for chitinase produc-
tion in S. marcescens. In the same study, the ChiR
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overexpression S. marcescens produced 1.13g/L
2,3-butanediol from 2% crystal chitin. The ability to
convert chitin into biochemicals makes this organism
an interesting candidate for a chitin-based CBP [15,
18, 49]. Thus, our group aims to present a system level
understanding of the metabolic network of S. marcescens
to facilitate future engineering applications.

A reconstructed GSMM can provide a framework to
understand cellular processes and can be used to find
target for focused metabolic engineering to yield prod-
ucts of biotechnological value [19]. The most
widely-used algorithms for design and simulation of
genome-scale constraint-based metabolic models such as
OptKnock [20], OptForce [21], EMiLio [22] are based
on flux distribution and flow through chemically bal-
anced reactions (FBA). Flux balance analysis (FBA) uses
linear algorithm to optimize an objective function:

Maximize : Z
Subject to : Sv =0,
a;<v;<b; for all reactions i,

where, Z is the flux towards objective function, e.g. bio-
mass production and production optimization, S is stoi-
chiometry of the reactions as matrix, v is the reaction
flux vector, a; and b; are the constraints based on the
flux v; of the reaction i [23].

After compiling biochemical information into a draft
model, a second step of model curation can be done by
integrating high-throughput omics data to realize “con-
tent in context” [23]. A variety of applications using in-
corporating omics data with the framework of GSMM
have been reported for many prokaryotic microbes to
more closely match cellular processes [24—26]. In this
study, we aim at understanding metabolite profile of S.
marcescens Db11 and its chitinolytic regulation systems.
Therefore, a genome-scale metabolic model, iSR929,
consisting of 1185 reactions, 1164 metabolites and 929
genes was constructed. The constructed model was ana-
lyzed for 1) accuracy compared to experimental results;
2) prediction of essential genes; 3) metabolic differences
under different carbon growth conditions. We also pro-
posed three potential chemical compounds for metabolic
engineering implementation.

Table 1 Significant milestone for S. marcescens research and characterization

Year Development Citation
1980 Genus Constructed [45]
1991-1999 Physical Characterization [48, 49]
1998 Shrimp/crab chitin degradation study to produce N-acetylglucosamine [5]
2014 Genome sequenced [17]
2017 Development of genetic modification method [4]
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Results

Construction of S. marcescens GSMM

Based upon the genome sequence of S. marcescens Db11
[17] and available physiological evidence, a genome-scale
constraint-based metabolic model for S. marcescens,
hereafter denoted iSR929, was constructed. The reaction
database used for drafting the model includes but is not
limited to sources such as KEGG [27], BiGG [28], rBi-
oNet [29], UniProt [30] and MBRole [31]. i{SR929 con-
tains 1185 reactions representing the function of 929
genes and 1164 metabolites (see Table 2). Metabolic gaps
were identified and addressed guided by a computational
gap-filling algorithm [19, 24, 25, 32, 33]. Among the
1100 gene associated reactions of the total 1185 reac-
tions, there are 795 reactions that are associated with
only one reaction and there are 305 reactions associated
with more than one enzyme, meaning either isozymes or
enzyme complexes. Of the 1164 metabolites, 1099
metabolites are intracellular, 43 metabolites are
extracellular, and 22 metabolites are boundary. We have
added gene-protein-reactions (ChiA, ChiB, ChiC,
SMDB11_1994, Chb, NagZ, SMDBI11_1542, and
SMDBI11_4602) that lead to converting chitin into
N-acetylglucosamine. In addition, we have added ChiB
as a deacetylase that can convert N-acetylglucosamine to
glucosamine, and added NagZ as a glucosamine kinase
that phosphorylates glucosamine to glucosamine-6-P.
Thus, the model can indicate the biotransformation of
chitin to glucosamine, and glucosamine can be a carbon
source that enters into carbon central metabolism. Fur-
thermore, we added chitobiose degradation reactions to
the model based upon the annotation and experimental
evidence (EC 3.2.1.52, SMDB11_0477, SMDBI11_1190
SMDB11_1542 and SMDB11_4602).

The breakdown of iSR929 by functional categories is
represented in Fig. 1. Amino acid metabolism was the
largest subsystem with 253 reactions. Experimentally, S.
marcescens appears to have the capacity to synthesize all
20 amino acids [4], and iSR929 reflects this. Other large

Table 2 Overview of genome-scale constraint-based model of
S. marcescens iSR929

Serratia marcescens

Genome size 511 Mb
ORFs 4832
Included genes 929
Reactions associated with only 1 gene 795
Reactions associated with more than 1 gene 305
Reactions with gene associated 1185
Intracellular metabolites 1099
Extracellular metabolites 43
Boundary metabolites 22

Page 3 of 13

groups of reactions include subsystems related to carbo-
hydrate metabolism (glycolysis, pentose phosphate path-
way, pyruvate metabolism, and TCA cycle), cofactor and
vitamin metabolism (nicotinate and nicotinamide metab-
olism, folate biosynthesis, and porphyrin and chlorophyll
metabolism) and nucleotide metabolism (including reac-
tions related to purine and pyrimidine synthesis). The
model also includes reactions relating to the synthesis of
lipids, including fatty acid, glycerophospholipid, and gly-
cerolipid metabolism.

To test the predictions of the iSR929 model, we simu-
lated growth of S. marcescens by applying FBA, assum-
ing minimal media conditions with one of three possible
carbon sources (glucose, N-acetylglucosamine, or gly-
cerol). We then compared model predictions to experi-
mentally observed growth rates and fermentation
product secretion profiles of S. marcescens grown in
batch culture. In addition to the carbon source, the in
silico minimal medium used for simulations contained
water (H20), ammonia (NH4), sulfate (SO4), phosphate
(pi), calcium (Ca2), ferrous iron (Fe3), hydrogen sulfide
(H2S), potassium (K), magnesium (Mg2), pantothenate
(pnto-r), and nicotinate D-ribonucleotide (nmn). In each
of the three simulation conditions (glucose, N-acetylglu-
cosamine, and glycerol), we applied progressively more
experimentally determined constraints associated with
by-product secretion rates to determine how closely the
computational results could match the experimental re-
sults given the possibility of alternate optimal solutions.
Figure 2 shows the simulation results for each growth
condition when exchange rates for the carbon sources,
acetic acid, and succinic acid were constrained to match
experimental observations.

Computational prediction of gene knockout targets

A comprehensive analysis of in silico single gene dele-
tions were conducted with iSR929 using glucose as a
carbon source and the other minimal media components
(as described above), and constraining the glucose up-
take rate to its experimentally observed value for batch
growth (10.53 mmol/gDW/h). Gene essentiality results
are shown in Fig. 1. In the case of growth on glucose, we
found that 138 (14.9%) of S. marcescens genes included
in iSR929 were predicted to be essential. We also exam-
ined which subsystems of iSR929 contained the highest
percentage of essential reactions (‘vulnerable subsys-
tems’). Among the most vulnerable subsystems are
amino acid metabolism, nucleotide metabolism, lipid
metabolism, and metabolism of cofactors and vitamins.

mRNA sequencing of S. marcescens under growth on
different carbon sources

mRNA samples of S. marcescens Dbll were prepared
from cell cultures under four conditions: M9 medium
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Fig. 1 Reactions by functional category with number of reactions in model iSR929. The number of model-predicted essential genes in each
category is shown in blue bar. The percentile of the model-predicted essential genes to its corresponding metabolism category is annotated on

with glucose, M9 medium with N-acetylglucosamine, M9
medium with glycerol, and LB medium. Overall, the aver-
age coverage per gene (4831 genes) (see Additional file 1:
Table S1) implies a high-depth-coverage (generally 250).

Integrating RNASeq data into the GSMM

The integration of RNAseq data of S. marcescens grown
in M9 medium with glucose, N-acetylglucosamine, or
glycerol was conducted using the iSR929 model and a
mixed integer linear programming algorithm approach
[34]. In order to establish a cutoff value of gamma
(lower bound cutoff), we initially categorized gene ex-
pression level into 58 cutoffs based on an exponential of
1.2, and a distribution of gene numbers against each
gene expression level range was then plotted, a represen-
tative figure of M9 glucose condition was shown in Add-
itional file 1: Figure S1. The lower bound is 3.00, which
excludes around 10% of the total number of genomic
genes across all the conditions, and the upper bound is
850.56, shown in Additional file 1: Table S2.

Simulations were then run on the S. marcescens model
after transcriptomic data integration for the three
growth conditions (M9 glucose, M9 N-acetlyglucosa-
mine, M9 glycerol) separately, where a reaction flux is
computationally constrained to 1000 if the correspond-
ing gene’s RPKM is over 850.56 and a reaction flux is 0
if the gene’s RPKM is less than 3.00. Raw data of reac-
tion flux can be found in Additional file 1: Table S3 and
a summary of the active metabolic reactions for the
three growth conditions were categorized in different
metabolic pathway modules (Table 3). When growing on
glucose, there were 150 active reactions. Among these

150 reactions, the most highly represented functional
categories were: carbohydrate metabolism (42), amino
acid metabolism (38), lipid metabolism (12), cofactor
metabolism (12), and nucleic acid metabolism (6). When
growing on N-acetylglucosamine, there were 132 active
reactions. Among these 132 active reactions, the major-
ity of the reactions were: carbohydrate metabolism (39),
amino acid metabolism (28), lipid metabolism (6), cofac-
tor metabolism (9), and nucleic acid metabolism (10).
When growing on glycerol, there were 146 active reac-
tions. Among these 146 active reactions, the functional
categories were: carbohydrate metabolism (44), amino
acid metabolism (41), lipid metabolism (6), cofactor me-
tabolism (8), and nucleic acid metabolism (7).

The main active pathways for the metabolism of glu-
cose as a sole carbon source were shown in Fig. 3a. After
transport, glucose input is routed through glycolysis and
pentose phosphate pathway to yield pyruvate. Then, the
main flux goes to the TCA cycle, butanoate metabolism
(yielding 2,3-butanediol), amino acid synthesis, lipopro-
tein synthesis, and pyruvate metabolism (yielding etha-
nol, formate, lactate, and acetate).

The main active pathway for the metabolism of
N-acetylglucosamine as a sole carbon source was shown
in Fig. 3b. For the metabolism of N-acetylglucosamine,
S. marcescens is believed to phosphorylate transported
N-acetylglucosamine by a membrane type II phospho-
transferase (SMDB11_0473). The SMDBI11_0473 gene
expression level in the N-acetylglucosamine condition
(RPKM 967.20) was 12.09- and 5.13-fold than those
under glucose (RPKM 80.23) and glycerol (RPKM
188.36) conditions, respectively, supporting that
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Fig. 2 Comparison of model predictions to experimental values. S. marcescens iSR929 was used to simulate growth in multiple conditions. Actual
and predicted flux rates are shown, and predicted fermentation product production rates are shown as ranges as determined by flux variability
analysis. For each simulation, the boundary fluxes for growth rate, sugar uptake, acetic acid, 2,3-butanediol, succinic acid, ethanol were
constrained to match the measured fluxes during a glucose, b N-acetylglucosamine, ¢ glycerol conditions

N-acetylgluosamine is likely phosphorylated intracellular.
The carbon flows through glycolysis metabolism from
fructose-6P to regenerate glucose-6P. The glucose-6P
flows to the pentose phosphate pathway to yield pyru-
vate. Then, the majority of the carbon flux was distrib-
uted into purine and pyrimidine metabolism, butanoate
metabolism (secreted 2,3-butanediol as an end-product),
pyruvate metabolism (yielding ethanol, formate, lactate,

and acetate as end-products), amino acid synthesis, and
lipoprotein synthesis.

The main active pathways for the metabolism of glycerol
as a sole carbon source were shown in Fig. 3c. Glycerol me-
tabolism is thought to be converted to pyruvate by three
steps: a membrane facilitator protein (SMDB11_4021), an
ATP-dependent glycerol kinase (SMDB11_4022), and a
glycerol-3-phosphate dehydrogenase (SMDB11_3886) [35].
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Table 3 Numbers of active metabolic reactions in iSR929 by running simulation based on the transcriptomic data
Glucose N-acetylglucosamine Glycerol
Carbohydrate metabolism
Butanoate metabolism 4 4 2
Citrate cycle (TCA cycle) 13 0 10
Glycolysis / Gluconeogenesis 7 10 9
Glyoxylate and dicarboxylate metabolism 3 2 1
Pentose and glucuronate interconversions 0 2 2
Pentose phosphate pathway 6 14 1
Propanoate metabolism 1 0 1
Pyruvate metabolism 6 5 6
Amino sugar and nucleotide sugar metabolism 2 2 2
Amino acid metabolism
Alanine, aspartate and glutamate metabolism 4 3 5
Arginine and proline metabolism 9 10 23
beta-Alanine metabolism 0 0 2
Glutathione metabolism 2 2 0
Taurine and hypotaurine metabolism 2 2 2
Valine, leucine and isoleucine biosynthesis 5 2 2
Glycine, serine and threonine metabolism 16 9 7
Nucleic acid metabolism
Purine metabolism 6 1 6
Pyrimidine metabolism 0 9 1
Lipid metabolism
Fatty acid degradation 2 0 0
Glycerophospholipid metabolism 8 4 4
Alpha-Linolenic acid metabolism 2 2 2
Energy metabolism
Oxidative phosphorylation 3 3 4
Nitrogen metabolism 0 0 1
Metabolism of cofactors and vitamins
Pantothenate and CoA biosynthesis 3 1 0
Riboflavin metabolism 2 2 2
One carbon pool by folate 6 6 6
Biosynthesis of other secondary metabolites
Monobactam biosynthesis 2 2 2
Streptomycin biosynthesis 2 2 2
Xenobiotics metabolism
Benzoate degradation 1 0 0
Nitrotoluene degradation 2 2 2
Transportation 31 31 29
Total 150 132 146
The SMDBI11 4021 expression level in the glycerol 71.28) condition. The gene expression level of

growth condition (RPKM 1772.81) was 89.5- and
70.8-fold higher than those of glucose and N-acetyl-
glucosamine condition. The SMDBI11_4022 expression
level in the glycerol condition (RPKM 4535.25) was
76.6- and 63.6-fold higher than those of glucose
(RPKM 59.20) and N-acetylglucosamine (RPKM

SMDBI11_3886 in the glycerol condition (RPKM
1683.89) was 59.9- and 54.7-fold higher than those of
glucose (RPKM 28.10) and N-acetylglucosamine
(RPKM 30.78) condition. The main active flux goes to
glycolysis, pentose phosphate pathway, amino acid
synthesis, and pyruvate metabolism.
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S. marcescens exhibits low activity in TCA cycle with N-
acetylglucosamine as a sole carbon source

According to model simulation results, we have exam-
ined metabolic fluxes differences in the carbon central
metabolism, namely, glycolysis, pentose phosphate path-
way, and TCA cycles, shown in Additional file 1: Figure
S2A, S2B, and Fig. 4, respectively. The main metabolic
differences among the three carbon sources are found in
the TCA cycle. When glucose is the sole carbon source,
the TCA cycle is fully active; under glycerol condition, the
TCA cycle is partially active (R00361_smac, R01082_smac,
R02164_smac, R00405_smac, R02570_smac, and
R00621_smac); while under N-acetylglucosamine condi-
tion, the TCA cycle is not active. The gene expression
level of the TCA cycle pathway under N-acetylglucosa-
mine, glucose or glycerol condition were mapped in Fig.
4a. In general, the mRNA level of the genes in the TCA
cycle support the model prediction results: compared to
mRNA level of the TCA cycle genes under N-acetylgluco-
samine condition, those corresponding genes under glu-
cose or glycerol condition are generally higher. In
particular, the SMDBI11_0505 gene, which encodes a citric
acid synthase that converts acetyl-CoA to citric acid, may

play the key role in determining the model prediction
since under glucose or glycerol condition, the
SMDB11_0505 mRNA level are both above the high
threshold, while under N-acetylglucosamine condition,
the SMDBI11_0505 mRNA level is below the high
threshold.

To test for differences in TCA cycle flux, measure-
ment of intracellular citric acid and isocitric acid levels
can be used as indicators of TCA cycle activity [36]. Ex-
perimental measurement of intracellular citric acid and
isocitric acid concentrations for growth on N-acetylglu-
cosamine were lower than those for growth on glucose
or glycerol, providing some support for the predicted
lower TCA cycle flux results (Fig. 4b and c). Addition-
ally, when N-acetylglucosamine is the sole carbon
source, S. marcescens appears to utilize intermediates
(e.g. oxaloacetate, fumarate, and 2-oxoglutarate) as pre-
cursors for amino acids synthesis, and synthesis of nu-
cleotides (e.g. purine and pyrimidine) comes from the
ribose-5P generated from the pentose phosphate path-
ways since N-acetylglucosamine is an ideal carbon
source for amino-sugar and nucleotides synthesis (e.g.
C:N ratio 8:1).
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Cofactor metabolism and energy ATP metabolism
Based on metabolic flux analysis predicted by the
model, the common consumption/re-generation of
NADH under the three carbon source conditions are
supported in the amino acid metabolism, butanoate
metabolism and pentose phosphate metabolism; the
common consumption/re-generation of NADPH
under the three carbon source conditions are sup-
ported from the glycolysis and gluconeogenesis me-
tabolism, one carbon pool by folate, and transport;
common pathways associated with ATP consumption
and generation under the three-carbon source condi-
tions are supported from amino acid metabolism,
one carbon pool by folate, pyruvate metabolism and
transportation of molecules, shown in Additional file
1: Table S4.

When growing S. marcescens under N-acetylglucosamine
as a sole carbon source, NAD+/NADH tends to be a main
cofactor compared to NADP/NADPH. It is worth noting

that under N-acetylglucosamine as a sole carbon source
condition, additional NADH cylces can be achieved in the
pyrimidine metabolism, and pentose and glucuronate
interventions by a nucleotide phosphorylase and a
3-dehydro-L-gulonate 2-dehydrogenase. This is in agree-
ment with the observance shown in the carbon metabolism
map that nucleotide metabolism and pentose phosphate
pathways are highly active when using N-acetylglucosa-
mine. Particular ATP consumption and generation
pathways in S. marcescens under N-acetylglucosamine con-
dition include glycine, serine and threonine metabolism
and pyrimidine metabolism.

Discussion

Metabolic engineering applications of S. marcescens using
the model iSR929

S. marcescens possesses interesting native metabolic cap-
abilities (active chitinolytic system and native production
of 2,3-butanediol) and can potentially be engineered for
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biochemical production. Based on the aforementioned
experimental observations and computational simulation
results, we selected three chemical compounds
(2,3-butanediol, n#-butanol, and N-acetylneuraminic acid)
as potential production targets and illustrate pathway
designs for the production of each.

S. marcescens Dbll is a native 2,3-butanediol produ-
cer. Direct production of 2,3-butanediol from crystal
chitin by S. marcescens Db11 have been experimentally
validated and the model iSR929 shows 2,3-butanediol
production across all growth conditions [4]. The pro-
posed pathways for production of 2,3-butanediol and the
corresponding annotated genes are shown in Fig. 5a. Un-
like other reported S. marcescens 2,3-butanediol producers
[37, 38], S. marcescens Db11 harbors only two 2,3-butane-
diol dehydrogenases (meso and (2S,3S)) and relatively
small amount of (2S,3S)-2,3-butanediol dehydrogenase
was expressed compared to the meso-2,3-butanediol de-
hydrogenase, indicating meso-2,3-butanediol is the major
product.

The second target of interest is a biofuel chemical,
n-butanol. The iSR929 incorporates most of the reac-
tions present in the butanoate metabolism as inferred
from genomic and biochemical data. Besides the
2,3-butanediol synthetic pathway, two active reactions
(R01171 and R01975) were found under glucose growth
conditions and one active reaction (R01171) was ob-
served under glycerol growth conditions. One consider-
ation of the computational simulation is that butanoate
is a product of a secondary pathway and S. marcescens
may not overproduce genes associated with this pathway
during normal exponential growth. Thus, it is not neces-
sarily surprising that growth simulations of a wild-type
strain with no genetic manipulation may not show flux
through the butanoate metabolism pathways. The pro-
posed n-butanol synthetic pathway and associated gene
expression levels in S. marcescens Dbll are shown in
Fig. 5b. The annotated pathway for n-butanol produc-
tion is partially complete but is missing the enzyme re-
quired for the last reaction (EC 1.2.1.10 alcohol
dehydrogenase). A bifunctional alcohol dehydrogenase
(AdhE2) from Clostridium acetobutylicum is reported
with highest activity of alcohol production [39] and can
be an appropriate enzyme candidate for heterologous ex-
pression in S. marcescens. Addition of an alcohol de-
hydrogenase would theoretically enable production of
n-butanol, but it is also likely that additional pathway
optimization would be necessary to improve flux
through the necessary reactions as expression of the
remaining endogenous butanoate genes is relatively low
(e.g. SMDB11_4664 acetoacetate-CoA transferase).

The third chemical target of interest is N-acetylneurami-
nic acid which is not natively produced by S. marcescens
Dbll. Compared to glucose-based N-acetylneuraminic
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acid synthesis (demonstrated in E. coli [40]), use of
N-acetylglucsaomine/chitin as a carbon source has the fol-
lowing advantages: 1) it requires only two steps for
N-acetylneuraminic acid synthesis from N-acetylglucosa-
mine compared to glucose and 2) no additional nitrogen
source is needed [15, 41]. Growth of S. marcescens on
N-acetylglucosamine ~ showed  that the enzyme
(SMDB11_0473) associated with uptake of N-acetylgluco-
samine is highly active (RPKM 967.20). After transport,
SMDB11_0473 (N-acetylglucosamine transferase) is a re-
versible N-acetylglucosamine transferase that can generate
intracellular N-acetylglucosamine [40], shown in Fig. 5c.
Intracellular N-acetylglucosamine can be converted to
N-acetylneuraminic acid by additional two biochemical re-
actions (N-acetylmannosamine 2-epimerase and N-acetyl-
neuraminic acid synthase) [40]. Further overproduction of
N-acetylneuraminic acid may require carefully balance the
heterologous pathways since heterologous expression may
generate metabolic burden [42].

Conclusion

In this study, we constructed a genome-scale metabolic
model, iSR929, for the chitinolytic bacterium Serratia
marcescens. The model contains 929 genes, 1185 reac-
tions and 1164 metabolites. Initial experimental testing
showed that the iSR929 model is able to reasonably pre-
dict quantitative phenotypes for S. marcescens. Integrat-
ing transcriptomic data for growth on different carbon
sources (e.g. glucose, N-acetylglucosamine and glycerol)
to the model provides insight into metabolic difference
that are condition-dependent including different
utilization of the TCA cycle for growth on N-acetylglu-
cosamine. Three biochemical targets (2,3-butanediol,
n-butanol, and N-acetylneuraminic acid) were proposed
as potential metabolic engineering implementation tar-
gets and pathway activities were given. Overall, our re-
sults provide insight into the metabolic function of S.
marcescens and reveal potential targets for engineering
S. marcescens for biochemical production.

Methods

Microbial growth

Serratia marcescens Dbl1 was purchased from the Cae-
norhabditis Genetics Center (Twin City, USA http://
www.cbs.umn.edu/CGC) [43]. The S. marcescens strain
was grown in M9 medium or LB medium supplemented
with various carbon sources. Carbon sources in the M9
medium were used at the following concentrations: glu-
cose, 5g/L; N-acetylglucosamine, 5g/L; glycerol 5%. S.
marcescens pre-cultures were grown in LB medium at
30°C and 250 rpm overnight. 2.5% seed culture was in-
oculated at 50 mL M9 minimum medium with a 250 mL
Erlenmeyer flask at 30 °C, initial pH 7.5, and 220 rpm for
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growth experiments. Stock cultures of S. marcescens
were maintained at — 80 °C in 26% (v/v) glycerol.

Construction of the model iSR929

The core S. marcescens GSMM is a compile of meta-
bolic reactions occurring in S. marcescens, compiled
based on biochemical information from genome an-
notations [17] and experimental evidence. A draft

model of initial biochemical reactions was con-
structed based on gene reading frames that encode
enzymes with predicted functions in the genomic an-
notations available from IMG, UniProt, and KEGG
[27, 30, 44]. Specifically, Enzyme Commission (EC)
numbers of annotated S. marcescens genes were
adapted to select reactions from a set of database
reactions.
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Flux balance analysis (FBA)

The FBA simulations were run using in-house python
scripts based on the linear programming algorithm ac-
cording to previous publications [19, 24, 25, 32, 33].

To this end, no Serratia biomass equation is available;
therefore, we modified E. coli biomass equation by includ-
ing components that are essential for Serratia growth [51—
53]. Detailed biomass equation can be found as follows:

0.05 5mthf + 5.0E-5 accoa + 0.488 ala_L
-+ 0.0010 amp + 0.281 arg_L + 0.229 asn_L
+0.229 asp_L + 45.7318 atp + 1.29E-4 clpn_SM
+ 6.0E-6 coa + 0.126 ctp + 0.087 cys_L
+ 0.0247 datp + 0.0254 dctp + 0.0254 dgtp
+ 0.0247 dttp + 1.0E-5 fad + 0.25 gln_L
+0.25 glu_L + 0.582 gly + 0.154 glycogen
+ 0.203 gtp + 45.5608 h20 + 0.09 his_L
+ 0.276 ile_L + 0.428 leu_L + 0.0084 lps_SM
+0.326 lys_L + 0.146 met_L + 0.00215 nad
+ 5.0E-5 nadh + 1.3E-4 nadp + 4.0E-4 nadph
+ 0.001935 pe_SM + 0.0276 peptido_SM
+ 4.64E-4 pg_SM + 0.176 phe_L + 0.21 pro_L
+ 5.2E-5 ps_SM + 0.035 ptrc + 0.205 ser_L
-+ 0.0070 spmd + 3.0E-6 succoa + 0.241 thr_L
+0.054 trp_L + 0.131 tyr_L + 0.0030 udpg
+ 0.136 utp + 0.402 val_ L-—
> 45.5608 adp + 45.56035 h + 45.5628 pi

+ 0.7302 ppi + Biomass

Gap analysis

FBA-GAP was used to fill metabolic gaps where reac-
tions are missing in the initial reconstructed model. The
gap-filling was conducted according to methods de-
scribed previously [19, 24, 25].

Essentiality

Constraint-based models can be used to analyze in silico
gene essentiality through running FBA [45]. Briefly,
using the GPR relationships, the effect of an in silico
gene knockout on reaction activities is assessed by as-
suming a gene is deleted or non-functional. If a gene is
in silico deleted, that reaction is constrained to “zero”
flux to simulate the effect of the gene deletion. Then,
the model with the new constraint is analyzed by FBA,
maximizing flux using the growth objective for batch
growth on glucose. If the maximum flux of the biomass
reaction is “zero”, the deleted gene is determined as an
essential gene. On the contrary, if the maximum flux of
the biomass reaction is over “zero”, the deleted gene is
determined as a non-essential gene. The process is re-
peated for the next cycle to analyze another gene by re-
setting all the constraints back to default values. The
essentiality analysis was conducted using M9 minimal
medium with glucose as carbon source.
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mRNA sequencing

The total RNA of S. marcescens Dbll was extracted
from cells harvested during mid-log phase. A QIAGEN
(Venlo, Netherlands) RNeasy Mini kit along with the
proper RNA protect reagent was used. Then, the mRNA
was isolated, enriched, and reverse transcribed into
c¢DNA. The sequencing of cDNA was conducted using
paired-end reads using Illumina Hiseq 2500 (San Diego,
CA). The detailed information of the RNASeq data can
be found in a previous publication [49]. In addition, the
completed gene transcriptional levels of S. marcescens
are listed in Additional file 1: Table S1.

Measurement of cell density

The measurement of S. marcescens culture density was
generally quantified at OD600 using a Biomate3 UV/VIS
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA).

Quantification of secreted metabolites

The concentration of N-acetylglucosamine, glucose, gly-
cerol and all metabolic end-products (acetic acid, succinic
acid, 2,3-butanediol, and ethanol) were analyzed by HPLC
described in details in our previous publication [49].

Integration of RNASeq data with genome-scale
reconstruction

The integration of RNASeq data with the i{SR929 model
was analyzed using a mixed integer linear programming
algorithm approach [34], In brief, gene expression states
were determined according to a gene expression value
(g) vs. an arbitrary threshold value (y), shown as follows:

-1 g=0
Gene expressionstate = ¢ 0 0 < g<y
1 y<g

Where g is the relative expression level as determined
by RNAseq (e.g. RPKM) and y is the threshold value that
was manually set. The resulting gene states were then
integrated into iSR929 using the gene-protein-reaction
(GPR) relationships to generate lists of reactions pre-
dicted to be high or low fluxes [34].

Determination of intracellular citric acid and isocitric acid
concentration

Intracellular levels of citric acid and isocitric acid were
evaluated using a citrate assay kit (Sigma-Aldrich, St.
Louis, MO) and an isocitric acid kit (BioVision, Milpitas,
CA), respectively. In brief, S. marcescens cell growth was
stopped at 2.5h (OD600 about 0.4) and cells were col-
lected by centrifuging at 4°C, 15,000 rpm, and 10 min.
Cell pellets were lysed using a commercial detergent
BugBuster (Millipore Sigma, Temecula, CA). Citric acid
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and isocitric acid assays were conducted according to
the manual’s instruction. 10 pL supernatant samples
were added in a total volume of 100 pL reaction. Citric
acid and isocitric acid concentrations were determined
at 570nm and 450nm by a VERSAmax microplate
reader (Molecular Devices, Sunnyvale, CA), respectively.

Additional files

Additional file 1: Table S1. Average RPKM values of S. marcescens
gene expression level at three different growth conditions. Table S2.
Number of genes excluded/included after the lower/upper bound cutoff.
Table S3. S.marcescens iSR929 reaction flux values after running Ruppin
algorithm. Table S4. NAD+/NADH associated reactions under three
carbon source conditions. Figure S1. Representative figure of gene
expression level distribution under M9 glucose medium growth
condition. Figure S2. Relative gene expression levels of reactions in the
metabolic map of (A) Glycolysis (B) Pentose Phosphate Pathway of S.
marcescens. (ZIP 898 kb)

Additional file 2: Model file. (TXT 116 kb)

Additional file 3: Biomass objective function file. (TXT 1 kb)
Additional file 4: Exchange file. (TXT 2 kb)

Additional file 5: GPR file. (TXT 199 kb)
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