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Improved guided image fusion for magnetic resonance and computed tomography imaging is proposed. Existing guided filtering
scheme uses Gaussian filter and two-level weight maps due to which the scheme has limited performance for images having noise.
Different modifications in filter (based on linear minimum mean square error estimator) and weight maps (with different levels)
are proposed to overcome these limitations. Simulation results based on visual and quantitative analysis show the significance of
proposed scheme.

1. Introduction

Medical images from different modalities reflect different
levels of information (tissues, bones, etc.). A single modality
cannot provide comprehensive and accurate information [1,
2]. For instance, structural images obtained from magnetic
resonance (MR) imaging, computed tomography (CT), and
ultrasonography, and so forth, provide high-resolution and
anatomical information [1, 3]. On the other hand, functional
images obtained from position emission tomography (PET),
single-photon emission computed tomography (SPECT), and
functional MR imaging, and so forth, provide low-spatial
resolution and functional information [3, 4]. More precisely,
CT imaging provides better information ondenser tissuewith
less distortion. MR images have more distortion but can pro-
vide information on soft tissue [5, 6]. For blood flow andflood
activity analysis, PET is used which provide low space resolu-
tion. Therefore, combining anatomical and functional medi-
cal images through image fusion to extract muchmore useful
information is desirable [5, 6]. Fusion of CT/MR images
combines anatomical and physiological characteristics of
human body. Similarly fusion of PET/CT is helpful for tumor
activity analysis [7].

Image fusion is performed on pixels, features, and deci-
sion levels [8–10]. Pixel-level methods fuse at each pixel and
hence reserve most of the information [11]. Feature-level
methods extract features from source images (such as edges
or regions) and combine them into a single concatenated
feature vector [12, 13]. Decision-level fusion [11, 14] comprises
sensor information fusion, after the image has been processed
by each sensor and some useful information has been
extracted out of it.

Pixel-level methods include addition, subtraction, divi-
sion,multiplication,minimum,maximum,median, and rank
as well as more complicated operators like Markov random
field and expectation-maximization algorithm [15]. Besides
these, pixel level also includes statistical methods (principal
component analysis (PCA), linear discriminant analysis,
independent component analysis, canonical correlation anal-
ysis, and nonnegative matrix factorization). Multiscale trans-
forms like pyramids and wavelets are also types of pixel-
level fusion [11, 14]. Feature-level methods include feature
based PCA [12, 13], segment fusion [13], edge fusion [13], and
contour fusion [16].They are usually robust to noise andmis-
registration. Weighted decision methods (voting techniques)
[17], classical inference [17], Bayesian inference [17], and
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Dempster-Shafer method [17] are examples of decision-level
fusion methods. These methods are application dependent;
hence, they cannot be used generally [18].

Multiscale decomposition based medical image fusion
decompose the input images into different levels. These
include pyramid decomposition (Laplacian [19], morpholog-
ical [20], and gradient [21]); discrete wavelet transform [22];
stationary wavelet transform [23]; redundant wavelet trans-
form [24]; and dual-tree complex wavelet transform [25].
These schemes produce blocking effects because the decom-
position process is not accompanied by any spatial orienta-
tion selectivity.

To overcome the limitations, multiscale geometric anal-
ysis methods were introduced for medical image fusion.
Curvelet transform based fusion of CT and MR images [26]
does not provide a proper multiresolution representation of
the geometry (as curvelet transform is not built directly in
the discrete domain) [27]. Contourlet transform based fusion
improves the contrast, but shift-invariance is lost due to
subsampling [27, 28]. Nonsubsampled contourlet transform
with a variable weight for fusion of MR and SPECT images
has large computational time and complexity [27, 29].

Recently, guided filter fusion (GFF) [30] is used to
preserve edges and avoid blurring effects in the fused image.
Guided filter is an edge-preserving filter and its computa-
tional time is also independent of filter size. However, the
method provides limited performance for noisy images due
to the use of Gaussian filter and two-level weight maps. An
improved guided image fusion for MR and CT imaging is
proposed to overcome these limitations. Simulation results
based on visual and quantitative analysis show the signifi-
cance of proposed scheme.

2. Preliminaries

In this section, we briefly discuss the methodology of GFF
[30]. The main steps of the GFF method are filtering (to
obtain the two-scale representation), weight maps construc-
tion, and fusion of base and detail layers (using guided
filtering and weighted average method).

Let 𝐹 be the fused image obtained by combining input
images𝐴 and 𝐵 of same sizes (𝑀×𝑁). The base (𝐼

11
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12
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where𝑓 is the average filter.The base and detail layers contain
large- and small-scale variations, respectively. The saliency
images are obtained by convolving 𝐴 and 𝐵 and with a
Laplacian filter ℎ followed by a Gaussian filter 𝑔; that is,
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The fused image 𝐹 is obtained by weighted averaging of
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𝐹 =

2

∑

𝑖
1
=1

2

∑

𝑖
2
=1

𝑊
𝑖
1
𝑖
2

𝐼
𝑖
2
𝑖
1

. (5)

The major limitations of GFF [30] scheme are summa-
rized as follows.

(1) The Gaussian filter from (2) is not suitable for Rician
noise removal. Thus, the algorithm has limited per-
formance for noisy images. Hence filter of (2) needs
to be modified to incorporate noise effects.

(2) The weight maps 𝑃
1
and 𝑃
2
from (3) can be improved

by defining more levels. The main issue with binary
assignment (0 and 1) is that when the saliency values
are approximately equal, the effect of one value is
totally discarded, which results in degraded fused
image.

3. Proposed Methodology

The proposed scheme follows the methodology of GFF [30]
with necessary modifications to incorporate the above listed
limitations. This section first discusses the modification pro-
posed due to noise artifacts and then the improved weight
maps are presented.

3.1. Improved Saliency Maps. The acquired medical images
are usually of low quality (due to artifacts), which degrade
the performance (both in terms of human visualization and
quantitative analysis).

Beside other artifacts, MR images often contain Rician
Noise (RN) which causes randomfluctuations in the data and
reduces image contrast [31]. RN is generated when real and
imaginary parts of MR data are corrupted with zero-mean,
equal variance uncorrelated Gaussian noise [32]. RN is a
nonzeromean noise. Note that the noise distribution tends to
Rayleigh distribution in low intensity regions and to a
Gaussian distribution in regions of high intensity of the
magnitude image [31, 32].

Let �̇� = 𝐴 + 𝑁
𝑅
be image obtained using MR imaging

containing Rician noise 𝑁
𝑅
. The CT image 𝐵 has higher

spatial resolution and negligible noise level [33, 34].
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The source images are first decomposed into base ̇𝐼
11
and

𝐼
12
and detail ̇𝐼
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and 𝐼
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layers following (1):
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] . (6)

̇𝐼
11
and ̇𝐼
21
have an added noise term compared to (1). Linear

minimum mean square error estimator (LMMSE) is used
instead of Gaussian filter for minimizing RN, consequently
improving fused image quality.

The saliency maps ̇𝑆
1
and ̇𝑆

2
are thus computed by

applying the LMMSE based filter 𝑞 and following (2):
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The main purpose of 𝑞 is to make the extra term𝑁
𝑅
∗ ℎ as in

̇𝑆
1
small as possible while enhancing the image details.

3.2. Improved Weight Maps. The saliency maps are linked
with detail information in the image. The main issue with 0
and 1 weight assignments arises in GFF [30] when different
images have approximately equal saliency values. In such
cases, one value is totally discarded. For noisy MR images,
the saliency value may be higher at a pixel due to noise; in
that case it will assign value 1 (which is not desirable). An
appropriate solution is to define a range of values for weight
maps construction.

Let Δ
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These values are selected empirically and may be further
adjusted to improve results. Figures 1(a) and 1(b) show CT
and noisyMR images, respectively. Figures 1(c)–1(f) show the
results of applying different weights. The information in the
upper portion of the fused image increases as more levels are
added to the weight maps.

The weight maps are passed through guided filter to
obtain �̇�
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, and �̇�

22
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LMMSE based filter reduces the Rician noise and the
more levels of weight maps ensure that more information
is transferred to the fused image. The incorporation of the
LMMSE based filter and a range of weight map values makes
the proposed method suitable for noisy images.

4. Results and Analysis

The proposed method is tested on several pairs of source
(MR and CT) images. For quantitative evaluation, different
measures including mutual information (MI) [35] measure
𝜁MI, structural similarity (SSIM) [36] measure 𝜁SSIM, Xydeas
and Petrović’s [37] measure 𝜁XP, Zhao et al.’s [38] measure
𝜁Z, Piella and Heijmans’s [39] measures 𝜁PH

1

and 𝜁PH
2

, and
visual information fidelity fusion (VIFF) [40]metric 𝜁VIFF are
considered.

4.1. MI Measure. MI is a statistical measure which provides
the degree of dependencies in different images. Large value
of MI implies better quality and vice versa [11, 33, 35]:
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where𝐻
𝐴
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𝐵
, and𝐻

𝐹
are the entropies of𝐴,𝐵, and𝐹 images,

respectively.𝑃
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𝐴
,

𝑃
𝐵
, and 𝑃
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4.2. SSIM [36] Measure. SSIM [36] measure is defined as
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where 𝑤 is a sliding window and 𝜆(𝑤) is
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where 𝜎
𝐴
𝑤

and 𝜎
𝐵
𝑤

are the variance of images 𝐴 and 𝐵, res-
pectively.



4 The Scientific World Journal

(a) (b) (c)

(d) (e) (f)

Figure 1: Weight maps comparison: (a) CT image, (b) noisy MR image, (c) fused image with 3 weight maps, (d) fused image with 4 weight
maps, (e) fused image with 5 weight maps, and (f) fused image with 6 weight maps.

4.3. Xydeas and Petrović’s [37] Measure. Xydeas and Petrović
[37] proposed a metric to evaluate the amount of edge
information, transferred from input images to fused image.
It is calculated as

𝜁XP =
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−1

,

(14)

where𝑄𝐴𝐹 and𝑄𝐵𝐹 are the product of edge strength and ori-
entation preservation values at location (𝑚, 𝑛), respectively.
The weights 𝜏𝐴(𝑚, 𝑛) and 𝜏𝐵(𝑚, 𝑛) reflect the importance of
𝑄
𝐴𝐹
(𝑚, 𝑛) and 𝑄𝐵𝐹(𝑚, 𝑛), respectively.

4.4. Zhao et al.’s [38] Metric. Zhao et al. [38] used the phase
congruency (provides an absolute measure of image feature)
to define an evaluation metric. The larger value of the metric
describes a better fusion result. The metric 𝜁Z is defined as
the geometric product of phase congruency, maximum and
minimummoments, respectively.

4.5. Piella and Heijmans’s [39] Metric. Piella and Heijmans’s
[39] metrics 𝜁
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(a) (b) (c) (d)

Figure 2: (a) CT image, (b) noisy MR image, (c) GFF [30] fused image, and (d) proposed fused image.

[t!]
(a) (b) (c) (d)

Figure 3: (a) CT image, (b) noisy MR image, (c) GFF [30] fused image, and (d) proposed fused image.

(a) (b) (c) (d)

Figure 4: (a) CT image, (b) noisy MR image, (c) GFF [30] fused image, and (d) proposed fused image.

where 𝜎
𝐴
𝑤

and 𝜎
𝐵
𝑤

are the variance of images𝐴 and 𝐵within
the window 𝑤, respectively.

4.6. VIFF [40] Metric. VIFF [40] is a multiresolution image
fusion metric used to assess fusion performance objectively.
It has four stages. (1) Source and fused images are filtered and
divided into blocks. (2) Visual information is evaluated with
and without distortion information in each block. (3) The
VIFF of each subband is calculated and the overall quality
measure is determined by weighing (of VIFF at different
subbands).

Figure 2 shows a pair of CT and MR images. It can be
seen that the CT image (Figure 2(a)) provides clear bones
information but no soft tissues information, while in contrast
to CT image theMR image in Figure 2(b) provides soft tissues

information. The fused image must contain both the infor-
mation of bones and soft tissues. The fused image obtained
using proposed scheme in Figure 2(d) shows better results as
compared to fused image obtained byGFF [30] in Figure 2(c).

Figure 3 shows the images of a patient suffering from
cerebral toxoplasmosis [41]. A more comprehensive infor-
mation consisting of both the CT and MR images is the
requirement in clinical diagnosis. The improvement in fused
image using proposed scheme can be observed in Figure 3(d)
compared to image obtained by GFF [30] in Figure 3(c).

Figure 4 shows a pair of CT and MR images of a
woman suffering fromhypertensive encephalopathy [41].The
improvement in fused image using proposed scheme can be
observed in Figure 4(d) compared to image obtained by GFF
[30] in Figure 4(c).
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Table 1: Quantitative analysis of GFF [30] and proposed schemes.

Quantitative
measures

Example 1 Example 2 Example 3 Example 4
GFF [30] Proposed GFF [30] Proposed GFF [30] Proposed GFF [30] Proposed

𝜁MI 0.2958 0.2965 0.4803 0.5198 0.4164 0.4759 0.4994 0.5526
𝜁SSIM 0.3288 0.3540 0.3474 0.3519 0.3130 0.3139 0.2920 0.2940
𝜁XP 0.4034 0.5055 0.4638 0.4678 0.4473 0.4901 0.4498 0.4653
𝜁Z 0.1600 0.1617 0.3489 0.3091 0.2061 0.2193 0.3002 0.2855
𝜁
𝑃1

0.4139 0.4864 0.2730 0.3431 0.2643 0.3247 0.2729 0.3339
𝜁
𝑃2

0.4539 0.7469 0.5188 0.6387 0.6098 0.7453 0.5268 0.6717
𝜁VIFF 0.2561 0.3985 0.1553 0.2968 0.1852 0.3009 0.1842 0.3487

(a) (b) (c) (d)

Figure 5: (a) CT image, (b) noisy MR image, (c) GFF [30] fused image, and (d) proposed fused image.

Figure 5 shows a pair of images containing acute stroke
disease [41]. The improvement in quality of fused image
obtained using proposed scheme can be observed in
Figure 5(d) compared to Figure 5(c) (image obtained by GFF
[30]).

Table 1 shows that proposed scheme provides better
quantitative results in terms of 𝜁MI, 𝜁SSIM, 𝜁XP, 𝜁Z, 𝜁𝑃

1

, 𝜁
𝑃
2

, and
𝜁VIFF as compared to GFF [30] scheme.

5. Conclusions

An improved guided image fusion for MR and CT imaging
is proposed. Different modifications in filter (LMMSE based)
andweightsmaps (with different levels) are proposed to over-
come the limitations of GFF scheme. Simulation results based
on visual and quantitative analysis show the significance of
proposed scheme.
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