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We propose a deep learning-based vehicle pose estimation method based on a

monocular camera called FPN PoseEstimateNet. The FPN PoseEstimateNet

consists of a feature extractor and a pose calculate network. The feature

extractor is based on Siamese network and a feature pyramid network (FPN)

is adopted to deal with feature scales. Through the feature extractor, a

correlation matrix between the input images is obtained for feature

matching. With the time interval as the label, the feature extractor can be

trained independently of the pose calculate network. On the basis of the

correlation matrix and the standard matrix, the vehicle pose changes can be

predicted by the pose calculate network. Results show that the network runs at

a speed of 6 FPS, and the parameter size is 101.6 M. In different sequences, the

angle error is within 8.26° and the maximum translation error is within 31.55 m.
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1 Introduction

The pose of an object is a critical indicator of the state of the object. For dynamic

objects, their poses are constantly changing and it is more difficult to estimate than static

objects (Ding et al., 2018; He et al., 2020; Tao et al., 2021). For vehicles, the process of

changing pose represents the interaction between the vehicle and the environment, which

is very important for the vehicle to perceive the environment. Intelligent algorithms have

been applied to various fields, and have made a series of amazing achievements (Chen

et al., 2021a; Chen et al. 2021b; Chen et al. 2022a; Li et al., 2022; Sun et al., 2022), especially

deep learning (Hao et al., 2021; Huang et al., 2022; Sun et al., 2020; Jiang et al., 2021; Yun

et al., 2022; Zhao et al., 2022). However, there are still many issues, such as high cost of

obtaining and labeling high quality data, which limits the potential of supervised learning

(Sünderhauf et al., 2018; Chen et al., 2022b; Chen et al., 2022c). Some deep learning

methods are completely data-driven, abandoning traditional frameworks and lacking of

OPEN ACCESS

EDITED BY

Tinggui Chen,
Zhejiang Gongshang University, China

REVIEWED BY

Xiaoffi Ji,
Shenyang Aerospace University, China
Zhao Jiong,
Xijing University, China
Ting Wang,
Shandong University of Science and
Technology, China

*CORRESPONDENCE

Bo Tao,
taoboq@wust.edu.cn
Baojia Chen,
cbjia@163.com

SPECIALTY SECTION

This article was submitted to Bionics
and Biomimetics,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 20 May 2022
ACCEPTED 08 August 2022
PUBLISHED 02 September 2022

CITATION

Zhao H, Tao B, Huang L and Chen B
(2022), A siamese network-based
approach for vehicle pose estimation.
Front. Bioeng. Biotechnol. 10:948726.
doi: 10.3389/fbioe.2022.948726

COPYRIGHT

© 2022 Zhao, Tao, Huang and Chen.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 02 September 2022
DOI 10.3389/fbioe.2022.948726

https://www.frontiersin.org/articles/10.3389/fbioe.2022.948726/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.948726/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.948726/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.948726&domain=pdf&date_stamp=2022-09-02
mailto:taoboq@wust.edu.cn
mailto:cbjia@163.com
https://doi.org/10.3389/fbioe.2022.948726
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.948726


analyticity to analyze the results effectively. And the pose change

is a relative change, it often requires multiple images in the

calculation, which further increases the burden of hardware (Tao

et al., 2022a; Tao et al., 2022b).

We propose a Siamese network (Yu et al., 2019; Chicco et el.,

2021) based vehicle pose estimation network called FPN

PoseEstimateNet, which uses two images as input and

constructs a feature extractor by combining the Siamese

network with the correlation module. A correlation matrix is

used for pose calculation. Instead of using an end-to-end neural

network, this paper relies on the traditional framework, uses a

neural network instead of the feature extraction component, and

uses contrast loss and regression loss constraints to train the

network.

The FPN PoseEstimateNet is a high speed and lightweight

network, and its pose estimation accuracy is comparable to that

of most networks. In addition, this network can decouple the

pose estimation process into feature extraction for matching and

pose calculation, thus enhancing the interpretation ability of

vehicle pose estimation. The main contributions of this paper are

as follows.

1) We proposed a Siamese network based feature extraction

matching method.

2) We proposed a lightweight vehicle pose estimation network.

2 Related work

In recent years, deep learning has developed rapidly in the

field of computer vision, and the convolutional neural network

(CNN) represented by AlexNet (Krizhevsky et al., 2012) is an

early representative. As the research progresses, more and more

neural networks with excellent performance have been proposed,

such as VGG (Sengupta et al., 2019; Mateen et al., 2019;

Tammina et al., 2019), ResNet (He et al., 2016; Targ et al.,

2016; Theckedath et al., 2020) and Inception (Szegedy et al., 2015;

Szegedy et al., 2016; Szegedy et al., 2017; Ioffe et al., 2015). The

commonly used deep learning pose estimation algorithms can be

divided into two categories: supervised learning and

unsupervised learning.

In supervised learning, Konda et al. (2015) considers the pose

estimation as a classification problem. Costante et al. (2016) uses

FIGURE 1
Overview of FPN PoseEstimateNet.

FIGURE 2
Overview of feature extraction.

TABLE 1 Architecture of feature extractor of the FPN
PoseEstimateNet.

Feature extraction

Input [128,380,3]

Conv [7,7,64,] ReLU stride 2 BN

Conv [55,128] ReLU stride 1 BN

Conv [55,256] ReLU stride 2 BN

Conv [33,512] ReLU stride 2 BN

Conv [33,512] ReLU stride 1 BN

Conv [33,512] ReLU stride 2 BN

Conv [33,512] ReLU stride 1 BN

ZerosPadding [2,1]

Conv [3,31024] ReLU stride 2 BN

ZerosPadding [1,1]

Conv [33,512] ReLU stride 1 BN

ZerosPadding [1,1]

Conv [33,512] ReLU stride 2 BN

ZerosPadding [1,1]

Conv [33,512] ReLU stride 1 BN

ZerosPadding

Conv [11,256] ReLU stride 1

Concatenate

MaxPool [2,2]
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CNN for feature extraction and then for pose estimation.

DeepVO (Wang et al., 2017; Lee et al., 2021; Wang et al.,

2022) is an end-to-end pose estimation network, which uses a

deep recurrent convolutional neural network (RCNN) to input a

sequence of images and output the corresponding pose directly,

without relying on any module in the traditional pose estimation

frameworks. On the other hand, it implicitly models the time and

data association models through recurrent neural network

(RNN). On the basis of DeepVO, many improvements have

been made. Some scholars have integrated curriculum learning

and geometric constrains (Saputra et al., 2019a). Saputra et al.

(2019b) introduces the mechanism of memory model for

enhancing the feature extraction.

In supervised learning, it becomes more and more difficult to

label all data. Compared with supervised learning, unsupervised

learning has the advantage of using more data and better

generalization performance in unfamiliar scenes. The

SFMLearner (Klodt et al., 2018; Li et al., 2018; Zhang et al.,

2020; Liu et al., 2021; An et al., 2022; Shao et al., 2022)

algorithm is a typical unsupervised learning method, which

consists of single view depth estimation and multi-view pose

estimation. It uses synthetic view as the supervised information

for depth and pose estimation. Then, the pixels in the source image

are projected to the target image, and the pixel differences are

found for the corresponding pixel. However, SfmLearner still has

the problems of scale uncertainty and inability to adapt to the

moving objects in the scene. Li et al. (2018) proposed to solve the

scale uncertainty problem by using the acquired image pairs of

binocular camera for learning and the monocular camera for pose

estimation. Bian et al. (2019) tried to solve the scale problem by re-

projecting the input image into three-dimensional (3D) space to

determine the scale and then perform pose estimation. For the

problem of scene transformation, GeoNet (Yin et al., 2018) solves

the motion problem in static scenes by treating static scenes and

object motion as different tasks and learning independently.

Ganvo (Almalioglu et al., 2019) uses GAN (Generative

Adversarial Network) to generate depth maps directly and uses

a temporal recurrent network for pose estimation. Li et al. (2019)

directly use the generator in GAN to generate a more realistic

depth map and pose.

3 Methods

The FPN PoseEstimateNet algorithm is shown in Figure 1.

Two adjacent images are processed through the feature extractor

to obtain a correlation matrix φ. The correlation matrix φ is then

used in the pose calculate network to predict vehicle pose.

3.1 Feature extraction

The feature extractor adopts Siamese network, shown in

Figure 2. The Siamese network is a multiple input single

FIGURE 3
Feature pyramid network for multi scale features fusion.

FIGURE 4
Correlation matrix φ.
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output network. Each input has a corresponding feature

extractor, and all feature extractors share the same weights.

The structure of the Siamese network ensures that the inputs

are mapped to the same feature space. The output is the

correlation matrix φ, and is constrained by the standard

matrix ζ and constrative loss.

In feature extraction, multi-scale features are fused by using a

FPN. The architecture of the feature extractor is shown in

Table 1. Figure 3 shows the multi-scale features fusion. The

red part shows the base features. The blue part is the features at

different scales. The orange part is the features in the fusion

process. For the features at different scales, 1 × 1 convolution

kernel is applied to reduce the channel dimension. Multi-scale

feature fusion is applied by using upsampling and concatenation

as the input to the correlation module. In feature extraction, the

small-scale features can retain more underlying basic

information and extract more detailed information, while the

large-scale features can better represent semantic information.

The concatenation of features can preserve the detailed and

semantic information.

3.2 Correlation matrix and standard matrix

The patches in the features are encoded into a one-

dimensional (1D) feature vector according to Eq. 1. In Eq. 1,

w represents the width of the features, x, y represents the

coordinates of patches in the features, and z represents the

patch position in new coordinates. Therefore, z represents the

spatial information of the patches in the features.

z � x + (y × w) (1)

The input image pairs imaget and imaget+i pass through the

feature extractor to obtain a set of feature vectors, It and It+i. The
correlation module processes It and It+i to obtain a correlation

matrix φ. The correlation matrix φ(x,y) denotes the correlation

FIGURE 5
Standard matrix ζ.

FIGURE 6
Contrast loss function.

FIGURE 7
Pose calculate network. Conv for convolution module.
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between the x-th patch in It and the y-th patch in It+i, shown in

Figure 4.

We use the distance of the corresponding patches in the high-

dimensional feature space as the correlation criteria. The smaller

the distance is, the higher the correlation of the corresponding

patches is. The smaller the difference is, the greater the similarity

is. The distance between corresponding patches can be calculated

by Eq. 2.

distance(It(x), It+i(y)) � It(x) − It+i(y) (2)

Because It and It+i are in high-dimensional feature space,

there will be a large bias in using the Euclidean distance. It is

necessary to make non-linear transformation of the Euclidean

distance. Moreover, the Euclidean distance is in (−∞, +∞), and

the range of the interval is too large, which easily leads to

instability in the training. The Gaussian function is used to

limit the distance in (0, 1], shown in Eq. 3, where x denotes

the distance between the corresponding patches, i.e. distance (It
(x), It+i (y)), and σ denotes the variance. Gaussian function can

reduce the sample variance, which meets the requirement that

the stronger the correlation is, the larger the value is. And the φ is

normalized by rows.

Gaussian(x) � exp( − ( x
2σ)

2) (3)

The correlation matrix φ can be obtained by using the

correlation module. However, the variation of the weight in

the Siamese network has a large impact on φ. A standard

matrix ζ is used to evaluate the variation of φ. The standard

marix ζ is defined as the correlation matrix of the same inputs.

Under ideal conditions, the distance between identical patches is

zero, and the distance is infinite for non-identical patches. The

standard matrix ζ is shown in Figure 5. The X and Y axes

represent the positions of the patches in It+i and It, respectively.
By comparing the difference between the φ and the ζ in log

space, a comparison difference is generated. By using the

similarity label and difference, the feature extractor can better

identify the differences in patches. Thus, the pose changes

between imaget and imaget+i can be described by the

difference, which is the result between φ and ζ. The

logarithmic distance is used to measure the correlation φ and

ζ, shown in Eq. 4.

difference � log(ζ/φ) (4)

The weighted mean of difference is used as the distance to

define the pose changes, as shown in Eq. 5, where differenceii
denotes elements on the diagonal and differenceij denotes the

other elements. Since ζ is a constant matrix, the difference

represents the change in φ at the corresponding position. λij is

the corresponding weight factor, expressed as the sum of the

relative two-dimensional coordinate offset of the i-th element of

It and the j-th element of It+i, in the features. And 1 is added to all
offset to prevent learning from occurring if the offset is 0.

distance � 1
k2

∑k

i�1λiidifferenceii +∑k

i�1∑k

j ≠ i
λijdifferenceij

(5)
For the distance, a contrast loss is used for training. The

contrast loss is shown in Figure 6. For positive samples, as shown

by the red line, the loss value increases as distance increases. For

negative samples, as shown by the blue line, the loss value

decreases as distance increases until it reaches margin.

The contrast loss is shown in Eq. 6, where, y is the label, the

only values are 0 and 1. And 0 means that the input image pairs

are identical, 1 means that they are different, margin represents

the boundary, and margin is taken as 1. The positive label means

that the difference is small and the value of distance is decreased.

The negative label means that the difference is large and the value

of distance is increased. Therefore, the value of distance in the

TABLE 2 Pose calculate network of FPN PoseEstimateNet.

Pose calculate network

Input [32,32,1]

Conv [3,3,512] ReLU stride 2

Conv [3,3,256] ReLU stride 2

ChannelAttention1 [1,1,32] ReLU

ChannelAttention2 [1,1,256] Sigmoid

SpatialAttention1 [33 128] ReLU stride2

SpatialAttention2 [3,3,1] Sigmoid

Conv [33,128] ReLU

Conv [1,1,3]

FIGURE 8
Channel attention module.
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case of a label of 1 also reflects the degree of difference, the greater

the degree of difference the greater the value of distance, the

smaller the degree of difference the smaller the value of distance,

until it reaches the difference boundary margin, when the

distance exceeds margin no longer increases, preventing

overfit. The presence of the comparison function allows the

network to represent the change of pose.

Contrastive � y × max(0, margin − distance)2
+ (1 − y) × distance2 (6)

3.3 Pose calculate network

The correlation matrix φ represents the matching

relationship of the input images. A pose calculate network is

designed to process φ and recover the poses from φ. The basic

structure of the pose calculate network is shown in Figure 7.

As the φ can reflect the translation and rotation of the vehicle,

the pose calculate network uses multiple convolution layers to

extract features from the structure. In the process of pose

estimation, the channel attention module and the spatial

attention module are used to improve the training speed and

accuracy.

The network structure of the pose calculate network is shown

in Table 2. In Table 2, ChannelAttention1 and

ChannelAttention2 are convolution layers in the channel

attention network, SpatialAttention1 and SpatialAttention2 are

convolution layers in the spatial attention network, and the

channel attention network are connected to the backbone

network through parallel connection, and the parameter size

of the pose calculate network is 5.9 M.

The channel attention mechanism, which is used to construct

correlations between channels by performing dimensionality

reduction in channel dimensions, enables weighting of critical

channels. The channel attention mechanism is a simple and

FIGURE 9
Spatial attention.

FIGURE 10
Spatial attention in translation and rotation movement.
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effective module that can be embedded in any part of the

network. It can reduce the redundancy of channels, enhance

channels that are important to the task and weakening channel

dimensions that have less impact on the task. The channel

attention module is shown in Figure 8.

The input to the channel attention module is the features u,

which is a feature vector with channel dimension C, lengthH and

width W. First, u is squeezing in the spatial dimension, keeping

the channel dimension C, and squeezing the spatial dimensions

W and H to 1 and 1, respectively, so as to obtain a 1 × 1 × C

vector, which is called the squeezing part. Then, the squeezed

vector is fed into the Multiple Perception Machine (MLP) to

recover the channel dimension and output a 1 × 1 × C vector,

which is called excitation. Finally, outputs of excitation are fused

by elementwise addition. The fusion result is activated with a

nonlinear activation function to obtain a 1 × 1 × C channel

attention vector w.
The squeeze process is implemented by global pooling. The

squeeze process is actually a squeeze of the spatial domain,

reducing the effect of spatial location on the channel

dimension, and obtaining the complete information of the

channel domain. Both Global Average Pooling (GAP) and

Global Max Pooling (GMP) are used, shown in Figure 8. The

excitation is an Auto Encoder using MLP to extract features from

important channels in the channel domain. The Auto Encoder is

implemented using a 1 × 1 convolution kernel. In the Auto

Encoder, the dimensions of the input and output layers are the

same, and the dimension of the intermediate hidden layers must

FIGURE 11
Correlation matrix φ in translation (left) and rotation (right).

FIGURE 12
Trend of distance over time interval.
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be smaller than that of the input and output layers to achieve

dimensionality reduction and eliminate redundant channels in

the input layer.

In translation and rotation, the response of elements near

diagonal is stronger. Therefore, elements near diagonal contain

more information. The special spatial structure of the diagonal

has an important influence on the final result of pose estimation.

We use a spatial attention mechanism to weight the elements at

different locations in space to strengthen the influence of

diagonal elements on pose estimation and weaken the

influence of non-diagonal elements.

The implementation of the spatial attention mechanism is

shown in Figure 9. Two W × H × 1 features with the same

spatial resolution as the input u are generated by using

maximum pooling and average pooling in dimensions,

respectively. Subsequently, features are concatenated in the

dimension to obtain a W × H × 2 feature. Next, the new

feature is convolved to reduce its channel dimension to

1 dimension. Finally, the results are activated by the

activation function, and a W’ × H’ × 1 feature is output as

weights, which can be directly used in output of the pose

calculate network u′. The results of spatial attention are

shown in Figure 10.

The output of spatial attention is not directly applied to the

input u, but to the pose estimation u′, so that the input includes

both the initial u and the pose estimation u′. The average and

mean results of average pooling are fused by channel dimension

concatenation, followed by convolution and activation function

to obtain the weights w, which are finally weighted by the pose

estimation u′.

4 Experiment

The hardware consists of Xeon E5 CPU, Nvidia GeForce

RTX 2080Ti GPU and 32G of memory capacity. The software

platform uses Windows, programming using Python 3.8.6, deep

learning framework by Google’s open source framework

Tensorflow 2.2.0 and Keras.

Sequences of colour video images from visual odometry

under the Open Data KITTI are used as experimental data,

with an image size of 1280 × 640 and a total of 11 sequences.

Each sequence ranges from 500 to 5,000 m in length. All

inputs are used as image pairs for the time interval i is 1.

The datasets with different sequences are randomly

sampled for the input data to ensure a uniform

distribution of the training. The FPN PoseEstimateNet was

trained with batch size of 4 and a learning rate of 0.0001,

using the 00 sequence as the training set, which consists of

FIGURE 13
FPN PoseEstimateNet train and valid curves.

TABLE 3 Prediction accuracy of different series.

Serials FPN PoseEstimateNet FlowNet

ATE (m) ARE (°) ATE(m) ARE (°)

00 9.41 4.87 5.43 4.62

03 12.07 1.38 18.05 8.82

05 8.96 4.26 7.92 3.54

07 21.55 5.92 23.61 4.11

TABLE 4 Inference speed and parameters for different networks.

FPN PoseEstimateNet FlowNet

Inference speed (FPS) 6 2

Parameter size (M) 101.6 581
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512 image pairs randomly sampled from the 00 sequence for

1 epoch.

Themethod consists of two different stages: the feature extractor

and the pose calculate network. The method has two different types

of labels: similarity label and pose label. The similarity labels are

coded using 0 and 1, 0 for similarity and 1 for dissimilarity. In the

experiments, image pairs with time interval i< 5 are positive samples

and those with time interval i > 10 are negative samples. The ratio of

positive to negative sample is 1:1. As all the pose labels provided in

the KITTI dataset are a coordinate matrix with the coordinates of

frame 0 as the origin, the pose represented is the absolute pose at the

origin of the coordinates of frame 0. The predicted pose is a relative

pose between two frames. So the original labels provided by the

KITTI dataset need to be transformed from absolute to relative pose.

3 degrees of freedom (DoF) of the vehicle are used for the pose labels.

If the absolute pose of the nth frame is represented as Tn, the

absolute pose matrix of the nth+ 1 frame is represented as Tn+1, and

the relative pose of the 2 frames is represented asTr, the relative pose

transformation is shown in Eq. 7. The Tr is constructed by the

rotation matrix R � ⎡⎢⎢⎢⎢⎢⎣Rr1 Rr2 Rr3

Rr4 Rr5 Rr6

Rr7 Rr8 Rr9

⎤⎥⎥⎥⎥⎥⎦ and the translation

matrix T � ⎡⎢⎢⎢⎢⎢⎣ xr

yr

zr

⎤⎥⎥⎥⎥⎥⎦.
Tr � T−1

n Tn+1 (7)

Tr � [R T
0 1

]
During the pose calculation, the rotation matrix R can be

used to represent the rotation around different axes, and the

translation matrix T can be used to represent the translation

along different directions. However, there are some redundancy

in the rotation matrix R and the orthogonality constraint is

difficult to realize in deep learning. The rotation needs to be

convert into Eulerian angle suitable for deep learning. The

conversion of rotation matrix R is shown in Eqs 8, 9, 10.

FIGURE 14
Results of estimated pose. (A) Estimated poses of 00 sequences. (B) Estimated poses of 03 sequences. (C) Estimated poses of 05 sequences. (D)
Estimated poses of 07 sequences.
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α � arctan( − Rr7/ ��������
R2
r1 + R2

r4

√ ) (8)
β � arctan(Rr4/Rr1) (9)
γ � arctan(Rr8/Rr9) (10)

The KITTI dataset uses the right hand coordinate system,

and the vehicle movement direction is z axis. In most cases, the

translation in z axis is much larger than that in the other

directions. Similarly, the rotation in the zoy plane will be

much larger than that in the other planes.

The correlation matrix φ for FPN PoseEstimateNet is shown

in Figure 11. It is close to a diagonal matrix. The elements on the

diagonal in the translation and rotation movement have

essentially trend.

The difference in distance of rotation and translation for

different time intervals is shown in Figure 12. As the time interval

increases, the difference of rotation and translation increases,

indicating that the feature extractor is able to perform similarity

analysis. At the same time, the distance under rotation variation

increases significantly in a short period of time, and then tends to

stability; the distance under translation variation increases

significantly in a shorter period of time, and then still

increases slowly and stable off gradually. Figure 12 shows that

the method is good at identifying differences for translation

changes in any length of time, while it is good at identifying

differences for rotation changes in shorter periods of time, but

poor at identifying differences for longer periods of time.

The training process is shown in Figure 13. In the early

50 epochs, the validation curve is close to the training curve.

Then, the validation loss is larger than the training loss. The

training loss decreases rapidly and converges gradually.

Due to the variation of different sequences and the

difference of vehicle speed, there is an obvious jitter in the

validation curve.

Because the FPN PoseEstimateNet lacks a back-end

optimisation, the method is used for short distance for pose

estimation. Absolute Pose Error (APE) is used as the evaluation

criterion. The APE includes Absolute Transpose Error (ATE)

and Absolute Rotate Error (ARE). The smaller the error, the

closer the predicted pose is to the truth. The data used in the

experiments are 200 consecutive images.

The results show that the prediction results are quite different

for different sequences, shown in Table 3. On the one hand, this is

because only the 00 sequence is used as the training set, so it has

certain limitations in generalization. On the other hand, the

performance is limited by the network size.

As shown in Table 4, FlowNet uses a fully connected layer

with weight of 581M, which can improve the accuracy and reduce

the inference speed. The parameter of FPN PoseEstimateNet is

only 101.6M, but it can accelerate the inference.

Figure 14 shows the performance of the FPN PoseEstimateNet

on different sequences. Because the pose transformation is in xoz

plane during movement, Figure 14 shows only the estimated

curves of translation and rotation in xoz plane. The top is the

translation in the x axis, the middle is the rotation, and the bottom

is the translation in the z axis. The solid line is the prediction and

the dashed line is the truth. It can be seen that FPN

PoseEstimateNet successfully predicts the trend of pose changes

in all sequences. However, when the rotation was started and

stopped, there will be errors in the predicted rotation. In these

moments, the translation error will also increase, and the

translation is usually larger than the truth. The FPN

PoseEstimateNet has a small error for fast rotations in a short time.

5 Conclusion

We propose a novel approach for vehicle pose estimation

using a monocular camera. This method combines deep learning

with traditional pose estimation algorithms through the Siamese

network. The network runs at a speed of 6 FPS, and the

parameter size is 101.6 M. In different sequences, the angle

error is within 8.26° and the maximum translation error is

within 31.55 m. However, the error in predicted pose will

accumulate and has a significant impact on the long-term

pose estimation. In order to optimize the global trajectory, a

correction process must be adopted. On the other hand, the pose

estimation of the vehicle is 3 DoF, which includes translation and

rotation in the driving plane, while the translation and rotation in

other directions are ignored. However, for the movement of

unmanned aerial vehicles (UAVs) and other objects, pose

estimation of 6 DoF is needed.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: http://www.cvlibs.net/datasets/kitti/raw_

data.php.

Author contributions

BT provided research ideas and plans; HZ and LH wrote

programs and conducted experiments; BC proposed suggestions

for improving the experimental methods. All authors contributed

to the writing and editing of the article and approved the

submitted version.

Funding

This project is supported by the National Natural Science

Foundation of China (Nos. 51505349, 71501148, 52075530,

51575407, and 51975324), Hubei Provincial Department of

Education (D20201106), and the Open Fund of Hubei Key

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Zhao et al. 10.3389/fbioe.2022.948726

http://www.cvlibs.net/datasets/kitti/raw_data.php
http://www.cvlibs.net/datasets/kitti/raw_data.php
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.948726


Laboratory of Hydroelectric Machinery Design andamp;

Maintenance in China Three Gorges University (2021KJX13).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Almalioglu, Y., Saputra, M. R., Gusmão, P. P., Markham, A., and Trigoni, A.
(2019). Ganvo: Unsupervised deep monocular visual odometry and depth
estimation with generative adversarial networks. 2019 International Conference
on Robotics and Automation (ICRA), 20-24 May 2019 Montreal, Canada, 5474-
5480. 10.1109/ICRA.2019.8793512

An, Y., Shi, J., Gu, D., and Liu, Q. (2022). Visual-LiDAR SLAM based on
unsupervised multi-channel deep neural networks. Cogn. Comput. 14,
1496–1508. doi:10.1007/s12559-022-10010-w

Bian, J., Li, Z., Wang, N., Zhan, H., Shen, C., Cheng, M. M., et al. (2019).
Unsupervised scale-consistent depth and ego-motion learning from monocular
video. Advances in neural information processing systems, 32.

Chen, T., Jin, Y., Yang, J., and Cong, G. (2022a). Identifying emergence process of
group panic buying behavior under the covid-19 pandemic. J. Retail. Consumer
Serv. 67, 102970. doi:10.1016/j.jretconser.2022.102970

Chen, T., Peng, L., Yang, J., Cong, G., and Li, G. (2021a). Evolutionary game of
multi-subjects in live streaming and governance strategies based on social
preference theory during the COVID-19 pandemic. Mathematics 9, 2743.
doi:10.3390/math9212743

Chen, T., Qiu, Y., Wang, B., and Yang, J. (2022b). Analysis of effects on the dual
circulation promotion policy for cross-border E-commerce B2B export trade based
on system dynamics during COVID-19. Systems 10, 13. doi:10.3390/
systems10010013

Chen, T., Rong, J., Yang, J., and Cong, G. (2022c). Modeling rumor diffusion
process with the consideration of individual heterogeneity: Take the imported food
safety issue as an example during the COVID-19 pandemic. Front. Public Health 10,
781691. doi:10.3389/fpubh.2022.781691

Chen, T., Yin, X., Yang, J., Cong, G., and Li, G. (2021b). Modeling multi-
dimensional public opinion process based on complex network dynamics model in
the context of derived topics. Axioms 10, 270. doi:10.3390/axioms10040270

Chicco, D. (2021). Siamese neural networks: An overview. Methods Mol. Biol.
2190, 73–94. doi:10.1007/978-1-0716-0826-5_3

Costante, G., Mancini, M., Valigi, P., and Ciarfuglia, T. A. (2016). Exploring
representation learning with CNNs for frame-to-frame ego-motion estimation.
IEEE Robot. Autom. Lett. 1, 18–25. doi:10.1109/LRA.2015.2505717

Ding, W., Li, S., Zhang, G., Lei, X., and Qian, H. (2018). Vehicle pose and shape
estimation through multiple monocular vision. 2018 IEEE International
Conference on Robotics and Biomimetics (ROBIO), 12-15, 2018, Kuala
Lumpur, 709–715. doi:10.1109/ROBIO.2018.8665155

Hao, Z., Wang, Z., Bai, D., Tao, B., Tong, X., and Chen, B. (2021). Intelligent
detection of steel defects based on improved split attention networks. Front. Bioeng.
Biotechnol. 9, 810876. doi:10.3389/fbioe.2021.810876

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition,
26 Jun 2016 – 1 Jul 2016, Caesars Palace (CVPR), 770-778. 10.1109/cvpr.2016.90

He, Z., Feng, W., Zhao, X., and Lv, Y. (2020). 6D pose estimation of objects:
Recent technologies and challenges. Appl. Sci. 11, 228. doi:10.3390/app11010228

Huang, L., Chen, C., Yun, J., Sun, Y., Tian, J., Hao, Z., et al. (2022). Multi-scale
feature fusion convolutional neural network for indoor small target detection.
Front. Neurorobot. 16, 881021. doi:10.3389/fnbot.2022.881021

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. Maryland: ICML.

Jiang, D., Li, G., Sun, Y., Hu, J., Yun, J., and Liu, Y. (2021). Manipulator grabbing
position detection with information fusion of color image and depth image using

deep learning. J. Ambient. Intell. Humaniz. Comput. 12, 10809–10822. doi:10.1007/
s12652-020-02843-w

Klodt, M., and Vedaldi, A. (2018). Supervising the new with the old: Learning
SFM from SFM. ECCV, 713–728. doi:10.1007/978-3-030-01249-6_43

Konda, K. R., and Memisevic, R. (2015). Learning visual odometry with a
convolutional network. VISAPP. doi:10.5220/0005299304860490

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification
with deep convolutional neural networks. Commun. ACM 60, 84–90. doi:10.1145/
3065386

Lee, G. Y., Yong, K., Xu, H., and Duong, V. N. (2021). Effective CNN-based image
dehazing for UAV deep visual odometry. J. Vis. 21, 2193. doi:10.1167/jov.21.9.2193

Li, G., Xiao, F., Zhang, X., Tao, B., and Jiang, G. (2022). An inverse kinematics
method for robots after geometric parameters compensation. Mech. Mach. Theory
174, 104903. doi:10.1016/j.mechmachtheory.2022.104903

Li, R., Wang, S., Long, Z., and Gu, D. (2018). UnDeepVO: Monocular visual
odometry through unsupervised deep learning. 2018 IEEE International
Conference on Robotics and Automation (ICRA), Brisbane Convention,
7286–7291. doi:10.1109/ICRA.2018.8461251

Li, S., Xue, F., Wang, X., Yan, Z., and Zha, H. (2019). Sequential adversarial
learning for self-supervised deep visual odometry. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2851–2860. doi:10.1109/ICCV.2019.
00294

Liu, M., Wang, S., Guo, Y., He, Y., and Xue, H. (2021). Pano-SfMLearner: Self-
Supervised multi-task learning of depth and semantics in panoramic videos. IEEE
Signal Process. Lett. 28, 832–836. doi:10.1109/LSP.2021.3073627

Mateen, M., Wen, J., NasrullahSong, S., and Huang, Z. (2019). Fundus image
classification using VGG-19 architecture with PCA and SVD. Symmetry 11, 1.
doi:10.3390/sym11010001

Saputra, M. R., Gusmão, P. P., Almalioglu, Y., Markham, A., and Trigoni, A.
(2019b). Distilling knowledge from a deep pose regressor network. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), 263–272. doi:10.1109/
ICCV.2019.00035

Saputra, M. R., Gusmão, P. P., Wang, S., Markham, A., and Trigoni, A.
(2019a). Learning monocular visual odometry through geometry-aware
curriculum learning. 2019 International Conference on Robotics and
Automation (ICRA), 20-24 May 2019, Montreal, Canada, 3549–3555.
doi:10.1109/ICRA.2019.8793581

Sengupta, A., Ye, Y., Wang, R. Y., Liu, C., and Roy, K. (2019c). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi:10.3389/fnins.2019.00095

Shao, S., Pei, Z., Chen, W., Zhu, W., Wu, X., Sun, D., et al. (2022). Self-supervised
monocular depth and ego-motion estimation in endoscopy: Appearance flow to the
rescue. Med. image Anal. 77, 102338. doi:10.1016/j.media.2021.102338

Sun, Y., Weng, Y., Luo, B., Li, G., Tao, B., Jiang, D., et al. (2020). Gesture
recognition algorithm based on multi-scale feature fusion in RGB-D images. IET
image Process. 14, 3662–3668. doi:10.1049/iet-ipr.2020.0148

Sun, Y., Zhao, Z., Jiang, D., Tong, X., Tao, B., Jiang, G., et al. (2022). Low-
illumination image enhancement algorithm based on improved multi-scale retinex
and ABC algorithm optimization. Front. Bioeng. Biotechnol. 10, 865820. doi:10.
3389/fbioe.2022.865820

Sünderhauf, N., Brock, O., Scheirer, W. J., Hadsell, R., Fox, D., Leitner, J., et al.
(2018). The limits and potentials of deep learning for robotics. Int. J. Robotics Res.
37, 405–420. doi:10.1177/0278364918770733

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Zhao et al. 10.3389/fbioe.2022.948726

https://doi.org/10.1007/s12559-022-10010-w
https://doi.org/10.1016/j.jretconser.2022.102970
https://doi.org/10.3390/math9212743
https://doi.org/10.3390/systems10010013
https://doi.org/10.3390/systems10010013
https://doi.org/10.3389/fpubh.2022.781691
https://doi.org/10.3390/axioms10040270
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1109/LRA.2015.2505717
https://doi.org/10.1109/ROBIO.2018.8665155
https://doi.org/10.3389/fbioe.2021.810876
https://doi.org/10.3390/app11010228
https://doi.org/10.3389/fnbot.2022.881021
https://doi.org/10.1007/s12652-020-02843-w
https://doi.org/10.1007/s12652-020-02843-w
https://doi.org/10.1007/978-3-030-01249-6_43
https://doi.org/10.5220/0005299304860490
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1167/jov.21.9.2193
https://doi.org/10.1016/j.mechmachtheory.2022.104903
https://doi.org/10.1109/ICRA.2018.8461251
https://doi.org/10.1109/ICCV.2019.00294
https://doi.org/10.1109/ICCV.2019.00294
https://doi.org/10.1109/LSP.2021.3073627
https://doi.org/10.3390/sym11010001
https://doi.org/10.1109/ICCV.2019.00035
https://doi.org/10.1109/ICCV.2019.00035
https://doi.org/10.1109/ICRA.2019.8793581
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1016/j.media.2021.102338
https://doi.org/10.1049/iet-ipr.2020.0148
https://doi.org/10.3389/fbioe.2022.865820
https://doi.org/10.3389/fbioe.2022.865820
https://doi.org/10.1177/0278364918770733
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.948726


Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4,
inception-ResNet and the impact of residual connections on learning. AAAI 31.
doi:10.1609/aaai.v31i1.11231

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., et al. (2015).
Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 12 2015, Boston, MA, USA, 1–9. doi:10.1109/
CVPR.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1 Jul 2016, Caesars Palace, 2818–2826.
doi:10.1109/CVPR.2016.308

Tammina, S. (2019). Transfer learning using VGG-16 with deep convolutional
neural network for classifying images. Int. J. Sci. Res. Publ. (IJSRP). 9 (10),
p9420–150. doi:10.29322/ijsrp.9.10.2019.p9420

Tao, B., Chen, X., Tong, X., Jiang, D., and Chen, B. (2022a). Self-supervised
monocular depth estimation based on channel attention. Photonics 9 (6), 434.
doi:10.3390/photonics9060434

Tao, B., Huang, L., Zhao, H., Li, G., and Tong, X. (2021). A time sequence images
matching method based on the siamese network. Sensors (Basel, Switz. 21 (17),
5900. doi:10.3390/s21175900

Tao, B., Shen, Y., Tong, X., Jiang, D., and Chen, B. (2022b). Depth estimation
using feature pyramid U-net and polarized self-attention for road scenes. Photonics
9 (7), 468. doi:10.3390/photonics9070468

Targ, S., Almeida, D., and Lyman, K. (2016). Resnet in resnet: Generalizing
residual architectures, 08029. ArXiv, abs/1603.

Theckedath, D., and Sedamkar, R. R. (2020). Detecting affect states using VGG16,
ResNet50 and SE-ResNet50 networks. SN Comput. Sci. 1, 79. doi:10.1007/s42979-
020-0114-9

Wang, K., Ma, S., Chen, J., Ren, F., and Lu, J. (2022). Approaches, challenges, and
applications for deep visual odometry: Toward complicated and emerging areas.
IEEE Trans. Cogn. Dev. Syst. 14, 35–49. doi:10.1109/tcds.2020.3038898

Wang, S., Clark, R., Wen, H., and Trigoni, A. (2017). DeepVO: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks. 2017 IEEE
International Conference on Robotics and Automation (ICRA), June 3, 2017,
Singapore. 2043–2050. doi:10.1109/ICRA.2017.7989236

Wu, Z., Shen, C., and Hengel, A. V. (2019).Wider or deeper: Revisiting the ResNet
model for visual recognition, 10080. ArXiv, abs/1611. doi:10.1016/J.PATCOG.2019.
01.006

Yin, Z., and Shi, J. (2018). GeoNet: Unsupervised learning of dense depth, optical
flow and camera pose. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, June 23 2018, Salt Lake City, UT, USA 1983–1992. doi:10.
1109/CVPR.2018.00212

Yu, H. H., Liu, J., Sun, H., Wang, Z., and Zhang, H. (2019). GetNet: Get target area
for image pairing. 2019 International Conference on Image and Vision Computing
New Zealand (IVCNZ), 2-4 December, 2019, Dunedin, New Zealand, 1–6. doi:10.
1109/IVCNZ48456.2019.8960995

Yun, J., Jiang, D., Sun, Y., Huang, L., Tao, B., Jiang, G., et al. (2022). Grasping pose
detection for loose stacked object based on convolutional neural network withmultiple
self-powered sensors information. IEEE Sens. J., 1. doi:10.1109/jsen.2022.3190560

Zhang, Z., Lathuilière, S., Ricci, E., Sebe, N., Yan, Y., and Yang, J. (2020). Online
depth learning against forgetting in monocular videos. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 19 2020, Seattle, WA,
USA, 4493–4502. doi:10.1109/cvpr42600.2020.00455

Zhao, H., Tao, B., Ma, R., and Chen, B. (2022). Manipulator trajectory tracking
based on adaptive sliding mode control. Concurrency Comput. Pract. Exp., e7051.
doi:10.1002/cpe.7051

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Zhao et al. 10.3389/fbioe.2022.948726

https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.29322/ijsrp.9.10.2019.p9420
https://doi.org/10.3390/photonics9060434
https://doi.org/10.3390/s21175900
https://doi.org/10.3390/photonics9070468
https://doi.org/10.1007/s42979-020-0114-9
https://doi.org/10.1007/s42979-020-0114-9
https://doi.org/10.1109/tcds.2020.3038898
https://doi.org/10.1109/ICRA.2017.7989236
https://doi.org/10.1016/J.PATCOG.2019.01.006
https://doi.org/10.1016/J.PATCOG.2019.01.006
https://doi.org/10.1109/CVPR.2018.00212
https://doi.org/10.1109/CVPR.2018.00212
https://doi.org/10.1109/IVCNZ48456.2019.8960995
https://doi.org/10.1109/IVCNZ48456.2019.8960995
https://doi.org/10.1109/jsen.2022.3190560
https://doi.org/10.1109/cvpr42600.2020.00455
https://doi.org/10.1002/cpe.7051
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.948726

	A siamese network-based approach for vehicle pose estimation
	1 Introduction
	2 Related work
	3 Methods
	3.1 Feature extraction
	3.2 Correlation matrix and standard matrix
	3.3 Pose calculate network

	4 Experiment
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


