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Objective: The aim of our research is to enhance the calibration of machine learning models for glaucoma
classification through a specialized loss function named Confidence-Calibrated Label Smoothing (CC-LS) loss.
This approach is specifically designed to refine model calibration without compromising accuracy by integrating
label smoothing and confidence penalty techniques, tailored to the specifics of glaucoma detection.

Design: This study focuses on the development and evaluation of a calibrated deep learning model.
Participants: The study employs fundus images from both external datasetsdthe Online Retinal Fundus

Image Database for Glaucoma Analysis and Research (482 normal, 168 glaucoma) and the Retinal Fundus
Glaucoma Challenge (720 normal, 80 glaucoma)dand an extensive internal dataset (4639 images per category),
aiming to bolster the model’s generalizability. The model’s clinical performance is validated using a compre-
hensive test set (47 913 normal, 1629 glaucoma) from the internal dataset.

Methods: The CC-LS loss function seamlessly integrates label smoothing, which tempers extreme pre-
dictions to avoid overfitting, with confidence-based penalties. These penalties deter the model from expressing
undue confidence in incorrect classifications. Our study aims at training models using the CC-LS and comparing
their performance with those trained using conventional loss functions.

Main Outcome Measures: The model’s precision is evaluated using metrics like the Brier score, sensitivity,
specificity, and the false positive rate, alongside qualitative heatmap analyses for a holistic accuracy assessment.

Results: Preliminary findings reveal that models employing the CC-LS mechanism exhibit superior calibra-
tion metrics, as evidenced by a Brier score of 0.098, along with notable accuracy measures: sensitivity of 81%,
specificity of 80%, and weighted accuracy of 80%. Importantly, these enhancements in calibration are achieved
without sacrificing classification accuracy.

Conclusions: The CC-LS loss function presents a significant advancement in the pursuit of deploying ma-
chine learning models for glaucoma diagnosis. By improving calibration, the CC-LS ensures that clinicians can
interpret and trust the predictive probabilities, making artificial intelligence-driven diagnostic tools more clinically
viable. From a clinical standpoint, this heightened trust and interpretability can potentially lead to more timely and
appropriate interventions, thereby optimizing patient outcomes and safety.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100555 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Glaucoma, often described as the "silent thief of sight,"
stands as a predominant cause of irreversible vision
impairment across the globe. As of now, a staggering 80
million individuals grapple with this condition. Disturb-
ingly, projections suggest that by 2040, this number could
surge to an estimated 111 million,1 underscoring the
escalating clinical and public health challenges associated
with glaucoma.

In the realm of ophthalmology, early and precise detec-
tion of glaucoma remains pivotal. Traditional diagnostic
methods, encompassing intraocular pressure measurements,
visual field testing, and optic nerve head evaluation, offer
valuable insights. However, they come with inherent
limitations-subjectivity in interpretation, variability in mea-
surements, and sometimes late-stage detection.
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Enter the realm of machine learning in medical diag-
nosticsda promise of a paradigm shift. In ophthalmic im-
aging, sophisticated algorithms can dissect intricate patterns
in retinal photographs or OCT scans, with some models
even rivaling human experts in their diagnostic accuracy.
However, the journey of machine learning in clinical di-
agnostics doesn’t culminate at accuracy. The actual clinical
setting demands something more nuanced: calibration.

In the specialized field of medical image classification,
neural network-based models are gaining significant traction
as vital tools for diagnostic evaluations.2 Given the life-
critical nature of medical diagnoses, it becomes imperative
that these models go beyond mere predictive accuracy to
exhibit a robust degree of calibration in their outputs.
Calibration,3 in this intricate context, signifies the model’s
1https://doi.org/10.1016/j.xops.2024.100555
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capability to align its outputted probability scores with the
actual confidence or uncertainty inherent in its predictions.
For example, diagnostic images that elicit low-confidence
scores from the model are optimally routed for subsequent
examination by medical professionals.4

While much of the recent scholarly and engineering en-
deavors have concentrated on enhancing the precision of
predictive models, the issue of model calibration has
somewhat fallen by the wayside. Despite advancements in
predictive accuracy, a growing body of literature indicates
that the calibration quality of contemporary neural networks
often leaves much to be desired.5 For instance, multiple
studies have pointed out that as these models grow larger
and become more precise, they often suffer from
calibration issues.6

Recognizing the pressing need for calibrated models in
glaucoma classification, our study introduces the "Confi-
dence-Calibrated Label Smoothing" (CC-LS) loss function.
Traditional loss functions, while optimizing for accuracy,
can inadvertently produce models exuding excessive confi-
dence in their predictions, a trait particularly risky in med-
ical settings. The CC-LS loss function is innovatively
crafted to mitigate this. It melds label smoothing, which
curbs extreme predictions to ensure robustness against
overfitting, with confidence-based penalties that penalize
undue certainty, especially in erroneous predictions.

By championing both accuracy and calibration, the pro-
posed loss function aspires to redefine standards for training
machine learning models in medical diagnostics, particu-
larly for glaucoma classification. Through this paper, we
delve deep into its mechanics, and potential impact in this
specialized domain.

The main contributions of the work are listed below:

� Domain-Specific Calibration Enhancements: The
approach has been tailored to meet the specific chal-
lenges of the domain, introducing a unique integration
of label smoothing loss and confidence penalty tech-
niques. Optimized specifically for the application, this
combination not only addresses the unique character-
istics and challenges but also significantly enhances
model performance and reliability. The methodology
demonstrates notable improvements over traditional
calibration methods, effectively boosting both cali-
bration accuracy and overall performance.

� Empirical Validation: Presenting extensive empirical
evidence showcasing that our method not only im-
proves calibration but also maintains or enhances
model performance across various metrics. This
empirical validation underlines the practical benefits
and novelty of our approach in clinical settings.

� Theoretical Contributions: Offering theoretical in-
sights into the impact of label smoothing and confi-
dence penalty on model calibration and generalization.
These contributions advance the understanding of how
these techniques can be effectively applied in concert
with binary cross-entropy (BCE) loss,7 providing a
foundation for future research in the field.
2

Literature Review

In recent times, image processing technologies have become
increasingly integral to medical diagnostic procedures,
particularly in the field of ophthalmology.1 Retinal imaging
serves as a crucial tool for assessing the health of the visual
system. Automated systems not only offer a cost-effective
alternative for large-scale screenings but also significantly
reduce the likelihood of human error. Moreover, such sys-
tems have the potential to facilitate eye care in remote or
rural locations where specialized medical professionals are
scarce. This ensures that a greater number of patients can be
diagnosed in a timely manner. There has been sustained
research focus over the past few decades aimed at devel-
oping these automated methodologies.

In this literature survey, we delve into 2 distinct but
interrelated streams of research within the domain of
ophthalmic diagnostics. The first stream focuses on the ad-
vancements in glaucoma classification, detailing the cutting-
edge deep learning models that have significantly improved
the accuracy and efficiency of glaucoma detection.8 The
second stream centers around calibration models,
investigating how well these deep learning models not
only classify but also accurately represent the confidence
level of their predictions. Both streams are integral to
creating a holistic automated system for effective and
reliable glaucoma diagnosis.
Advances in Deep Learning Models for
Glaucoma Detection

Artificial intelligence (AI)-based methods for glaucoma
identification can be categorized into 2 paradigms9: the
monolithic approach and the sequential approach. In the
monolithic framework, also known as an end-to-end or 1-
step method, glaucoma is directly identified through intri-
cate deep learning architectures that operate as "black-box"
models. In contrast, the sequential or 2-step methodology
initially employs AI algorithms to delineate the optic disc
(OD) and cup contours, subsequently leveraging this
anatomical information to derive automated diagnostic rules
for glaucoma detection. For the scope of this literature re-
view, our focus is confined to the monolithic approaches, as
our own work adopts this 1-step strategy.

The field of glaucoma detection has benefitted
immensely from advancements in deep learning techniques,
as illustrated by several key studies. Researchers in10

utilized deep learning models on retinal fundus images
from the Online Retinal Fundus Image Database for
Glaucoma Analysis and Research, Retinal Image Database
for Optic Nerve Evaluation, and Retinal Image Dataset for
Optic Nerve Head Segmentation databases. They inte-
grated the results from various architectures to achieve an
area under the curve of 94%, demonstrating the method’s
efficacy for glaucoma detection. Building on similar themes
of effectiveness, the team in11 employed a binary
classification deep learning algorithm, optimized for a
mixed dataset consisting of 5716 images from both Asian
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and White populations, and reported an area under the curve
of 94%.

Expanding the possibilities of diagnostic sensitivity, the
work in12 proposed a deep ensemble network with an
attention mechanism. They utilized stereo images from
Tan Tock Seng Hospital in Singapore to achieve a high
sensitivity rate of 95.48%. On a different note, the authors
in13 customized a 3-dimensional convolutional neural
network that could function efficiently even without data
augmentation, showcasing its potential in practical clinical
applications.

Taking a specialized approach, Aamir et al in14

developed a multilevel deep convolutional neural network
for diagnosing glaucoma in retinal fundus images. This
dual-phase model excels in both initial detection and sub-
sequent categorization of the disease’s severity, achieving
high sensitivity and accuracy rates.

Broadening the scope of feature extraction, Liao et al in15

introduced multi-layers average pooling, a methodology that
aggregates features from multiple scales to enhance
diagnosis. This technique creates glaucoma activations,
linking global diagnostic data with precise spatial
localization. Similarly focused on feature extraction,
Nawaz et al in16 applied the EfficientNet-B0 architecture
to extract deep features, which were further processed for
precise glaucoma localization.

In terms of fine-tuning existing models, Diaz-Pinto et al
in17 modified well-known architectures like VGG16,
VGG19, and others, specifically observing the performance
metrics of the Xception model. Finally, the study in18

introduces the Classification of Glaucoma Network, a
highly accurate algorithm for diagnosing glaucoma, with
an accuracy rate of 93.5% and an area under the curve of
0.99.

Together, these studies demonstrate the versatility and
robustness of deep learning models in the realm of glaucoma
detection and classification. While they offer various stra-
tegies and architectures to address this critical medical issue,
it is worth noting that the focus remains largely on achieving
high accuracy, with less emphasis on model calibration.

Model Calibration in Medical Image
Classification

The landscape of medical imaging analysis has undergone a
significant transformation owing to groundbreaking strides
in deep learning technologies.19,20 A plethora of
sophisticated deep learning frameworks have emerged,
elevating the capabilities of this domain. While the
academic community primarily emphasizes enhancing the
precision of convolutional neural networks, the equally
vital aspect of uncertainty quantification often remains
unfathomed. In medical contexts, where automated
decision-making systems are increasingly prevalent, the
accurate gauging of a model’s uncertainty is indispensable.
Failing to address this can yield imprecise confidence or
probability metrics, consequently posing the risk of
considerable diagnostic inaccuracies.21

Recent studies have examined how image classifiers
perform when the data changes, also known as robustness.3
In addition, some research has focused specifically on
calibration. A notable example is a study by Guo et al,6

which revealed that modern neural networks are generally
not well-calibrated, especially when they are larger in size.
They also observed that even as these networks get better at
classifying images, their calibration tends to get worse.
These observations have been supported by other research
as well.22,23

In the realm of medical imaging, researchers are actively
exploring various techniques for model calibration to
enhance predictive accuracy and reliability. For instance, a
study by Carneiro et al24 employed the monoparametric
variant of Platt scaling to improve probability calibration
in a multiclass polyp categorization task. Their calibrated
model demonstrated reductions in both expected
calibration error and maximum calibration error, thereby
boosting interpretability. Building on this theme,
researchers in study25 adopted a similar Platt scaling
method for calibrating probabilities in renal biopsy image
classification. Despite achieving lower expected calibration
error values, they observed that this calibration adversely
affected the model’s overall accuracy. Expanding the
scope to different imaging modalities, the study in26 took
a comprehensive approach, systematically examining the
impact of calibration on performance metrics across chest
x-rays and fundus photographs. Various deep learning
classifiers were employed to assess the effects, making it a
multifaceted inquiry into the role of calibration in medical
imaging.

In the quest for achieving not only high accuracy but also
reliable uncertainty quantification in deep learning models,
recent advancements such as label smoothing and confi-
dence penalty mechanisms have emerged as pivotal strate-
gies. Label smoothing, a technique aimed at preventing the
model from becoming overconfident in its predictions, has
shown promise in enhancing the generalization of models
by softening the targets during training.27,28 This method
mitigates the issue of overfitting to the hard labels and
encourages the model to be more robust to input
variations. On the contrary, the confidence penalty
approach directly addresses the calibration of neural
networks by penalizing overly confident predictions.29,30

This regularization strategy discourages the model from
assigning extreme probabilities to its predictions, thereby
promoting a more calibrated and interpretable output. Both
label smoothing and confidence penalty are especially
relevant in the medical imaging domain, where the cost of
misinterpretation can be high, and the demand for
calibrated probability estimates is critical. By
incorporating these methods, deep learning models can
achieve a delicate balance between accuracy and
reliability, ensuring that the predictions are not only
precise but also reflect true confidence levels. The
integration of these approaches into glaucoma
classification models could potentially bridge the current
gap in research, offering a novel perspective on how to
achieve calibrated and trustworthy predictions in
ophthalmic diagnostics.

In the existing literature, it is noteworthy that there ap-
pears to be a gap with respect to calibration studies
3
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specifically focused on glaucoma classification. Despite the
plethora of research on model calibration in various medical
imaging contexts, glaucoma diagnosis remains an area yet to
be explored in this regard. To fill this research void, the
present study introduces a calibrated model tailored for
glaucoma classification, employing a CC-LS function to
enhance both predictive accuracy and reliability. This work
aims to contribute a calibrated approach to glaucoma
detection, offering a new dimension to the ongoing
discourse in the field.

Approach

Significance of Calibration in Medical Image
Classification and the Imperative for Innovative
Loss Functions

Calibration pertains to the alignment between a model’s
asserted confidence in its predictions and the actual likeli-
hood of those predictions being correct. In medical image
classification, where decisions can influence clinical out-
comes and patient care trajectories, this alignment is espe-
cially paramount.

Why Calibration Matters:
4

1. Patient Safety: Inaccurate confidence estimations
could lead to overdiagnosis or missed diagnoses.
For instance, a high-confidence misclassification
might bypass further necessary investigations,
potentially compromising patient safety.

2. Clinician Trust: For physicians to trust and inte-
grate AI tools into their workflow, they need more
than just an accurate prediction. They require an
understanding of how certain the model is about its
decision, enabling them to make informed clinical
judgments.

3. Resource Allocation: Health care resources, both in
terms of time and finance, are precious. A calibrated
model ensures that interventions and further di-
agnostics are reserved for patients who truly need
them, promoting efficient resource allocation.
The Demand for Customized Loss Functions:

Traditional loss functions in deep learning, such as BCE
loss,7 focus predominantly on optimizing model accuracy.
However, these conventional loss functions may
inadvertently overlook the model’s calibration.
1. Bridging the Calibration-Accuracy Gap: While
many high-accuracy models exist, they sometimes
suffer from miscalibration, revealing a disconnec-
tion between accuracy and calibration. Novel loss
functions can be designed to bridge this gap,
ensuring models are both accurate and well-
calibrated.
2. Direct Calibration during Training: Instead of
post hoc calibration methods, which attempt to
recalibrate models after training, a specialized loss
function, like the one introduced in this study,
directly incorporates calibration during the training
phase. This preemptive approach ensures the model
learns to make calibrated predictions from the
outset.

3. Inherent Model Robustness: A calibrated model
tends to generalize better to unseen data,31

especially in cases where there might be slight
deviations from the training distribution. This
robustness is crucial in medical imaging, where
patient data can vary widely.
Decisively, in the evolving domain of medical imaging
powered by deep learning, the need for calibration is not just
a technical requirement but a clinical imperative. As we
advance our methods and tools, introducing novel loss
functions that prioritize calibration will be pivotal in shaping
a future where AI-assisted diagnostics seamlessly merge
with the broader tapestry of patient care.
Technical Description of the CC-LS

The CC-LS loss function is formulated to counteract model
overconfidence while ensuring calibrated and generalized
predictions. It comprises 2 core components: label
smoothing and confidence-based penalties.

Label Smoothing Loss: This component prevents
extreme confidence in predictions by adjusting the hard
0 and 1 labels of the binary classification task. The adjusted
targets are computed as:

t ¼ ð1:0� sÞ � Lþ s� ð1� LÞ (1)

In this equation, t represents the new or smoothed target
label, designed to mitigate the model’s overconfidence in its
predictions and improve generalization. The term s serves as
the smoothing factor, playing a crucial role in adjusting the
original labels. The s values ranging from 0.01 to 0.1 were
explored to identify the most effective degree of label
smoothing. This range was selected based on preliminary
tests aimed at enhancing the model’s robustness without
compromising prediction accuracy. The value of s ¼ 0.05
was ultimately chosen, as it optimally reduced over-
confidence and improved the model’s generalization capa-
bilities. On the other hand, L symbolizes the original, or
ground truth, labels, which could be 0 or 1 in the case of
binary classification. The equation operates by attenuating
the original label L through the factor 1:0� s and intro-
ducing an additive term that nudges the label toward its
opposite class, scaled by s. This subtle modification to the
labels prevents the model from becoming overly sure of its
predictions, thereby fostering better adaptability to unseen
data.

After obtaining the smoothed labels, the Label Smooth-
ing Loss L is calculated as follows:
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L ¼ � 1
N
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ti log

�
1
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þð1� tiÞlog
�
1� 1

1þ expð�oiÞ
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Here is a breakdown of the terms in the equation:

� L is the Label Smoothing Loss.
� N is the number of samples.
� ti is the target label after label smoothing for the ‘i th

’

sample.
� oi is the output from the neural network for the ‘i th

’

sample.

Confidence-Based Penalty Mechanism: The essence of
the CC-LS loss is to penalize instances where the model is
highly confident but incorrect. This is achieved through:

Overconfidence Masks. For each prediction, the
probability score (probs) is compared against predefined
thresholds (Tnormal and Tdiseased). These thresholds are
hyperparameters set to distinguish between overconfident
and appropriately confident predictions for each class. For
example, Tnormal could be set to 0.9, meaning any predicted
probability >0.9 for a sample being normal would be
considered overconfident. Similarly, Tdiseased could be set to
0.1, indicating that any predicted probability <0.1 for a
sample being diseased would be deemed overconfident.

ðoverconfident mask normal ¼ ðprobs> TnormalÞ (3)

ðoverconfident mask diseased ¼ ðprobs< TdiseasedÞ (4)

Penalty Computation. By applying the boolean masks
combined_mask_normal and combined_mask_diseased, the
model assigns penalties to predictions that are both over-
confident and incorrect. These combined masks function as
filters that isolate instances where the model is mistaken
despite its high confidence. These masks likely synthesize
information from both the model’s confidence levels, indi-
cated by the overconfidence masks, and the model’s accu-
racy based on the ground truth labels. The severity of the
penalty depends on the degree to which the predicted
probability strays from the established threshold.

penalty normal ¼ combined mask normal

� jprobs� Tnormalj
(5)

penalty diseased ¼ combined mask diseased

� jTdiseased � probsj (6)

Here is a breakdown of the terms in the equations:

� penalty_normal and penalty_diseased are the penalties
computed for overconfident predictions in the normal
and diseased classes, respectively.

� combined_mask_normal and combined_mask_di-
seased are boolean masks that identify instances that
are both overconfident and incorrect for each respec-
tive class.

� probs are the predicted probabilities produced by the
model.
� Tnormal and Tdiseased are the thresholds that define what
is considered an overconfident prediction for each
class.

These penalties are then combined to yield an overall
confidence-based penalty for each prediction.

Final Loss Computation: The label smoothing loss (L)
and the confidence-based penalties are combined to compute
the final CC-LS loss:

CC � LS ¼ label smoothing loss

þ l� confidence penalty
(7)

Here, l is a weighting factor that determines the
confidence-based penalty’s importance in the total loss. It
allows balancing between generalization (from label
smoothing) and calibration (from the confidence penalty).
To empirically determine the optimal balance, a range of
values for l from 0.1 to 1.0 was explored. This range was
chosen based on preliminary experiments aimed at maxi-
mizing model performance while preventing overfitting.
Ultimately, l ¼ 1.0 was selected as it provided the best
compromise between generalization and calibration, as
evidenced by the validation set performance.

Model Architecture and Training Protocols

Prior to elaborating on the specifics of the training process,
it’s pertinent to mention that we have chosen the Effi-
cientNet-B332 model as the backbone architecture for our
deep learning model. This architecture was chosen
because of its state-of-the-art performance in image classi-
fication tasks and its efficient utilization of computational
resources, making it well-suited for the task of glaucoma
classification.

In the study, a transfer learning strategy was employed,
beginning with a model pretrained on the expansive
ImageNet dataset.33 This initial phase allowed the model to
learn generic features from a broad spectrum of images,
laying a solid foundation for specialized tasks. The
pretrained model was then fine-tuned on our glaucoma-
specific dataset. The training dataset was divided into por-
tions for actual training and validation to focus the model’s
learning on distinguishing between glaucomatous and non-
glaucomatous fundus images. This division allows for a
comprehensive assessment of the model’s accuracy and the
reliability of its predictions. Further details on the dataset
composition and division are described in section Dataset
Details.

The fine-tuning phase was meticulously executed to
enhance the model’s ability to accurately detect glaucoma,
ensuring that predictions are both precise and accompanied
by reliable confidence intervals. This approach guarantees
that the model not only achieves high accuracy in identi-
fying the presence or absence of glaucoma but also supports
clinical decision-making by providing confidence measures
alongside its predictions. By adopting this transfer learning
methodology, our model is optimized to assist in the early
detection and accurate categorization of glaucoma, demon-
strating its potential to significantly aid in medical diag-
nostic processes.
5



Table 1. Brier Score Loss Values for Different Loss Functions

Loss Function Used Brier Score Loss

Binary cross-entropy 0.195
Focal loss 0.145
CC-LS loss 0.098

CC-LS ¼ Confidence-Calibrated Label Smoothing.
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To facilitate model calibration, we incorporate a
customized loss function, referred to as CC-LS, during the
training regimen. The Adam optimizer34 is employed to
train the model across 50 epochs, using a batch size of 16
and a learning rate of 1e-4. To circumvent the pitfalls of
model overfitting, we implement several data
augmentation techniques, including but not limited to
geometrical transformations like scaling, flipping, and
rotating. These strategies are designed to augment the
model’s robustness and generalizability to new or unseen
data. To ensure consistency across our experiments, we
applied the same training settings, including a batch size
of 16, a learning rate of 1e-4, and the Adam optimizer, to
train all other models tested in our study. This approach
allows for a fair comparison of the effectiveness of the
CC-LS loss function relative to other loss functions evalu-
ated, while maintaining consistency in our experimental
methodology.

Results

In the training and evaluation phases, a varied selection of
datasets is utilized, including retinal fundus images from the
reputable Online Retinal Fundus Image Database for
Glaucoma Analysis and Research35 and Retinal Fundus
Glaucoma Challenge36 datasets, as well as a specialized
internal dataset. This multipronged approach to data
sourcing significantly elevates the model’s robustness and
ensures that it remains applicable and generalizable in
diverse clinical scenarios. Subsequent sections will
provide a detailed examination of the datasets in use, the
experimental setup, and offer both qualitative and
quantitative analyses of the results, including calibration
curve analysis.

Dataset Details

Training and Validation Dataset. The presented model le-
verages a diverse set of training data to ensure robust
learning. The Online Retinal Fundus Image Database for
Glaucoma Analysis and Research dataset35 includes 482
fundus images classified as normal and 168 as glaucoma.
The Retinal Fundus Glaucoma Challenge dataset36 further
contributes with 720 normal fundus images and 80
glaucoma fundus images. Additionally, a specialized
internal dataset is utilized, comprising 4639 fundus images
for each categorydnormal and glaucoma. This varied
assortment of datasets, featuring different proportions of
normal and glaucoma images, facilitates a nuanced training
environment. It allows the model to learn from a broad
spectrum of examples, enhancing its ability to generalize
and accurately evaluate glaucoma presence. Furthermore,
20% of the data from each dataset is reserved as a validation
set to assess the model’s performance, while the remaining
80% is utilized for actual training, ensuring a comprehensive
evaluation and optimization process.

Test Dataset. For evaluation purposes, the analysis pri-
marily utilizes a comprehensive test subset derived from the
internal dataset. It is important to note that the test images
were selected randomly from this subset, ensuring a diverse
6

representation of data for robust evaluation. This subset
consists of 49 542 fundus images, categorized into 47 913
normal and 1629 glaucoma images. Selected for its exten-
sive size and diversity, this test subset accurately reflects the
variety of data clinicians are likely to encounter, making it
an ideal platform for assessing the model. The evaluation is
conducted using both quantitative and qualitative metrics,
ensuring a thorough examination of our loss function, CC-
LS, and its efficacy in medical diagnostic applications.
Thus, this test set serves as the foundation for both quanti-
tative and qualitative evaluations, allowing for an in-depth
analysis of the CC-LS loss function’s impact on the
model’s performance in actual medical diagnostic scenarios.
Quantitative Analysis

For an in-depth understanding of the model’s performance,
3 variants were analyzed, each distinguished by the loss
function used during training. The first model employed the
traditional BCE loss function,7 serving as a baseline for
comparison. The second model was configured using focal
loss, an adaptation often employed to handle class
imbalance. The third and final model utilized the proposed
loss function, designed specifically to enhance calibration
in glaucoma classification tasks.

These 3 configurations allow for a comprehensive anal-
ysis of loss function impact on model performance, partic-
ularly in terms of accuracy and calibration. The succeeding
subsections delve into the detailed outcomes of these
evaluations.

Calibration Metrics: Brier Score Loss. To rigorously
assess the calibration performance of the models, the Brier
Score Loss3 was employed as the key metric. It quantifies
how well the predicted probabilities match the actual
outcomes and is particularly useful for gauging the
reliability of probabilistic predictions. A lower Brier Score
indicates better calibration, making it an ideal choice for
this evaluation.

The calculated Brier Score Loss values for the different
loss functions used in model training are depicted in
Table 1.

From the obtained results, it is evident that the model
trained using the CC-LS function demonstrates the best
calibration, as indicated by its lowest Brier Score Loss of
0.098. This is followed by the model trained with focal loss,
which has a Brier Score Loss of 0.145. The model trained
using BCE loss shows the least optimal calibration, reflected
by the highest Brier Score Loss of 0.195.



Table 2. Comparative Evaluation of Model Metrics

Loss Function Used
Sensitivity

(%)
Specificity

(%)
Weighted

Accuracy (%)

Binary cross-entropy 76 78 78
Focal loss 78 77 77
CC-LS loss 81 80 80

CC-LS ¼ Confidence-Calibrated Label Smoothing.
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These results confirm the efficacy of the presented loss
function in improving the model’s calibration capabilities
compared with traditional loss functions.

Comparative Metrics for Model Evaluation. The key
quantitative measures used for assessing the performance of
the models are as follows:

� Sensitivity, also known as the true positive rate,
measures the proportion of actual positive cases (in
this context, glaucoma cases) that are correctly iden-
tified by the model. It is vital for medical applications,
where missing a positive case can have severe impli-
cations. Mathematically, sensitivity can be defined as:

Sensitivity ¼ True Positive ðTPÞ
True Positive ðTPÞ þ False Negative ðFNÞ

(8)

� Specificity, also known as the true negative rate, in-
dicates the proportion of actual negative cases (in this
context, nonglaucoma cases) that are correctly identi-
fied by the model. In medical settings, a high speci-
ficity ensures that patients who do not have the
condition are not subjected to unnecessary treatments
or tests. Mathematically, specificity can be defined as:

Specificity ¼ True Negative ðTNÞ
True Negative ðTNÞ þ False Positive ðFPÞ

(9)

� Weighted Accuracy is a measure that takes into ac-
count both sensitivity and specificity, weighted by the
prevalence of each class in the dataset. It can be
formally defined as:

Weighted Accuracy ¼ w1 � Sensitivity þ w2

� Specificity (10)

Where w1 and w2 are the weights representing the prev-
alence of the positive and negative classes in the dataset,
respectively. These weights should sum to 1 (w1þw2 ¼ 1).
The weights w1 and w2 can be calculated as follows:

w1 ¼ Number of Actual Positive Samples

Total Number of Samples

w2 ¼ Number of Actual Negative Samples

Total Number of Samples

By using this formula, the weighted accuracy provides a
more balanced view of the model’s performance across
different classes, especially in scenarios where the dataset is
imbalanced.

In the Table 2, a comparison is made between the
performance metrics of models trained with 3 distinct loss
functions: BCE loss, focal loss, and CC-LS function. The
proposed loss function shows a clear advantage, achieving
81% in sensitivity, 80% in specificity, and an overall ac-
curacy rate of 80%. Models trained with BCE and focal loss
show comparatively lower performance metrics, with the
highest scores being 76% in sensitivity and specificity and
75% in accuracy for the model trained with focal loss. The
improved performance across all metrics when employing
the CC-LS function suggests its effectiveness in enhancing
the accuracy and reliability of classification models, thus
making it a favorable choice for tasks related to medical
image classification.

Following the evaluation of sensitivity and specificity, it
is pertinent to address the CC-LS model’s false positive rate
(FPR) in glaucoma detection. The model exhibits a FPR of
20%, indicating that 20% of nonglaucomatous images are
erroneously classified as glaucomatous. This performance
metric is crucial for assessing the model’s clinical efficiency,
as a lower FPR minimizes false alarms, thereby alleviating
unnecessary patient anxiety and reducing the workload on
health care systems. Despite the challenge of minimizing
FPR, our model achieves a commendable balance with an
81% sensitivity rate, underscoring its proficiency in accu-
rately detecting glaucomatous conditions.

When compared to other models that employ BCE loss
and focal loss, with FPRs of 22% and 23% respectively, the
CC-LS model demonstrates a superior balance between
sensitivity and specificity. This balance is vital for effective
glaucoma screening, aiming to ensure a high detection rate
of true positives while maintaining a manageable rate of
false positives. The development of the CC-LS model marks
a significant advancement in ophthalmic diagnostics,
contributing to the improvement of early detection and
management strategies for glaucoma.

Qualitative Analysis: Heatmap Visualization for
Feature Relevance

In this segment, the qualitative dimension of model per-
formance is scrutinized using heatmap visualizations. These
visual aids serve as powerful tools for interpreting the
feature importance attributed by the classification model to
different regions within the medical images. Significantly,
the heatmaps substantiate that the model allocates higher
weights to regions around the OD, which is a critical locus
for glaucoma diagnosis according to established medical
literature.

By systematically attending to the OD region, the model
illustrates its adherence to medically relevant criteria. This
focus on the OD region not only validates the feature
extraction capabilities of the model but also enhances the
7
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interpretability and clinical utility of the diagnostic system.
In tandem with the superior quantitative metrics achieved
through the implementation of the CC-LS function, these
qualitative observations further advocate for the robustness
and applicability of this machine learning-based diagnostic
approach in a medical imaging context.

Additionally, the heatmaps reveal the nuanced under-
standing developed by the model during its training phase.
While focusing on the OD region is paramount for glau-
coma diagnosis, an incorrect or shallow feature extraction
could have resulted in false positives or negatives. The
heatmaps confirm that this is not the case; they demonstrate
a precise and targeted focus on the OD region’s dis-
tinguishing characteristics, which are critical for accurate
glaucoma detection. This targeted feature recognition adds
another layer of confidence in the model’s diagnostic ca-
pabilities. Together with the compelling quantitative per-
formance metrics, the heatmap-based qualitative analysis
fortifies the argument for adopting this model as a reliable
and insightful tool for medical image classification in the
realm of ophthalmology.

Figure 1 showcases heatmaps and zoomed-in views of
the OD for 2 distinct sets of glaucomatous input images,
highlighting the areas of interest identified by our CC-LS
model for the classification of glaucomatous conditions.
Organized into 2 subfigures, set 1 and set 2, each set is
composed of 4 images that offer varied perspectives on the
model’s analytical focus, especially on the OD region which
is crucial for detecting glaucoma.

In set 1 (Fig 1A), the sequence begins with the original
input image (a), followed by a heatmap (b) that visualizes
the model’s focus areas for classification, underscoring its
ability to identify glaucoma-relevant features. The third
image (c) provides a closer look at the OD region of the
original input, while the fourth image (d) zooms into the OD
region within the heatmap. Both the heatmap and its
zoomed-in version distinctly highlight the model’s precision
in recognizing the features indicative of glaucoma within the
OD, affirming its classification accuracy.

Set 2 (Fig 1B) mirrors this layout, further validating the
model’s consistent and effective focus on critical areas for
diagnosing glaucoma. The heatmap and its detailed view
of the OD region in this set again confirm the model’s
adeptness at concentrating on the essential aspects for its
classification task.

Crucially, the images presented in both sets are
confirmed to be glaucomatous, with the heatmaps and
zoomed-in views of the OD region serving as visual evi-
dence of the model’s capability to accurately detect and
classify glaucomatous changes. This focused approach not
only demonstrates the model’s proficiency in identifying
key diagnostic features but also aligns with the clinical
diagnosis of glaucoma, showcasing the potential of the CC-
LS model as a valuable tool in the early detection and ac-
curate diagnosis of this condition.

Calibration Curve Analysis

In the depicted calibration curve comparison in Figure 2, the
graph illustrates the alignment of 3 different loss
8

functionsdCC-LS loss, BCE loss, and focal lossdwith
the perfect calibration line. The CC-LS loss function, rep-
resented by the green curve, distinctly demonstrates the
most consistent adherence to the ideal calibration line across
the full range of predicted probabilities. This superior cali-
bration indicates that the CC-LS loss function is capable of
providing exceptionally accurate probability estimates,
crucial for applications where precise risk assessments are
paramount. Conversely, the BCE loss and focal loss func-
tions, represented by the red and blue curves respectively,
show greater deviations from perfect calibration, suggesting
that the CC-LS loss-based model is better calibrated
compared with the other 2 loss functions.

Discussion

Significance of CC-LS Function

The primary focus of this study was to introduce and evaluate
the CC-LS loss function, designed to improve the calibration
of deep learning models for glaucoma classification. The
quantitative metrics employeddsensitivity, specificity, and
accuracydserved as reliable measures for assessing the
model’s performance. Notably, the proposed loss function
outperformed traditional loss functions like BCE and focal
lacross all performance metrics. This superiority was most
evident in the Brier Score Loss, a key metric for model
calibration, where the CC-LS function attained a significant
improvement over the existing loss functions.

The CC-LS enhances traditional BCE7 by emphasizing
both accuracy and calibration. While BCE primarily
focuses on accuracy, the CC-LS integrates label smooth-
ing and confidence penalty techniques to improve calibra-
tion. This ensures that the model’s predictions are not only
accurate but also appropriately calibrated, especially vital in
medical diagnostics. Through empirical evaluations, the
effectiveness of the CC-LS is evident, consistently out-
performing BCE across various metrics, thereby providing
more reliable predictions.

In comparison to focal loss, the CC-LS takes a distinct
route to address model calibration and performance. While
focal loss aims to mitigate the impact of class imbalance and
noisy data during training, the CC-LS directly targets cali-
bration using label smoothing and confidence penalty stra-
tegies. By promoting well-calibrated predictions and
penalizing overconfidence, the CC-LS enhances uncertainty
estimation, leading to more dependable predictions, particu-
larly in challenging scenarios. Empirical results illustrate that
the CC-LS achieves comparable or superior accuracy to focal
loss while significantly improving calibration, demonstrating
its efficacy in medical image classification tasks.

Heatmap Analysis Insights

The heatmap analysis conducted within this study is spe-
cifically tied to the model trained using the CC-LS function.
This approach distinctively demonstrates the model’s pro-
ficiency in identifying and prioritizing critical diagnostic
features in retinal fundus images for glaucoma detection,
with a notable focus on vital areas such as the OD. The



Figure 1. Visualization of heatmap and zoomed OD region for 2 glaucomatous input images (Set 1, A, and Set 2, B). For each set: (a) Input image, (b)
Heatmap, (c) Zoomed OD of input, and (d) Zoomed OD of Heatmap. OD ¼ optic disc.
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study does not feature direct heatmap comparisons from
models trained with alternative loss functions. However, the
precision observed in the CC-LS model’s focus on relevant
diagnostic features, alongside its improved accuracy and
calibration, highlights its superior capability in emphasizing
significant features for glaucoma diagnosis. Future work is
encouraged to include direct comparisons through heatmap
analyses of models trained with various loss functions to
empirically validate these observations.
Interpretability and Clinical Relevance

A critical aspect that sets this work apart is the focus on
model interpretability, a feature often overlooked in ma-
chine learning models for health care applications. The
qualitative heatmap analysis reinforced the model’s clinical
relevance. Importantly, the heatmaps confirmed that the
model focuses on the OD region when making a classifi-
cation, a crucial factor for potential clinical applications.
9



Figure 2. Comparative calibration curves for different loss functions. BCE ¼ binary cross-entropy; CC-LS ¼ Confidence-Calibrated Label Smoothing.
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This aligns with medical understanding, providing an
additional layer of validation to the quantitative results.

In this study, the test set comprehensively included im-
ages representing all stages of glaucoma, alongside
borderline cases and more definitive conditions, to thor-
oughly evaluate the CC-LS model. This diverse inclusion
was strategically aimed at assessing the model’s capability
to accurately identify glaucoma across a broad spectrum of
presentations, from early and ambiguous stages to advanced
and clear-cut cases. The quantitative analysis, with a
particular focus on sensitivity and specificity, has confirmed
the model’s effectiveness in detecting glaucoma under all
conditions presented within these stages. The encouraging
results for borderline cases, known for their diagnostic
challenges, further highlight the model’s robust perfor-
mance. The ability of the CC-LS model to effectively
identify glaucoma across its various stages underscores its
potential as a valuable supportive tool for clinicians. It offers
a nuanced approach to glaucoma detection, ensuring
comprehensive coverage of the full range of clinical pre-
sentations encountered in practice.

Ensuring Data Integrity: Measures Against Data
Leakage in Model Training

In this study, we utilized mutually exclusive external data-
sets exclusively for training and validation, ensuring they
were not used in the testing phase. The internal dataset,
however, was employed across training, validation, and
testing. We took strict measures to prevent data leakage
between these phases. Initially, we confirmed there were no
duplicates in the dataset, then carefully partitioned it to
ensure that no data appeared in >1 subset. Each datasetd
training, validation, and testingdwas processed indepen-
dently to avoid any unintended leakage of information.
Specifically, normalization parameters were calculated using
only the training set data. Furthermore, during model
development, we fine-tuned hyperparameters solely on the
validation set, while the test set was completely isolated and
used only for the final evaluation. These measures were
10
crucial to ensure that our results are reliable and truly reflect
the model’s performance on unseen data.

Limitations and Future Work

While the results are promising, there are a few caveats to
consider. Firstly, the study is constrained by its focus on
specific types of medical images and the exclusion of other
ocular diseases that may cooccur with glaucoma. Although
the datasets employed include a range of glaucoma stages,
they may not fully capture the breadth of variations seen in
actual clinical scenarios. Future studies should aim to
incorporate more heterogeneous datasets, including a wider
array of glaucoma stages and potentially images from
different medical imaging modalities to better reflect the
diversity encountered in clinical practice.

The effectiveness of the CC-LS loss function could be
further evaluated by applying it to different deep learning
architectures. It would also be worthwhile to explore mul-
tiobjective loss functions that combine different types of
errors to optimize multiple aspects of model performance
simultaneously.

Currently, the CC-LS model is designed for binary
classification, distinguishing between glaucomatous and
nonglaucomatous images without specifying the stage of the
disease. As a future direction, there are plans to enhance the
model to predict the specific stages of glaucoma, aiming to
provide even more detailed insights for clinical assessment
and management.

In summary, the proposed loss function, CC-LS, exhibits
a compelling case for its adoption in medical image classi-
fication tasks, particularly in glaucoma diagnosis. It excels
in both calibration and interpretability, crucial aspects for
practical health care applications. The research opens
several avenues for future investigation, including the
application to other medical conditions, integration with
different machine learning architectures, and further clinical
validation. A prime example is diabetic retinopathy, an
ocular condition where our approach could be highly
beneficial. Beyond diabetic retinopathy, we foresee potential
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applications in other medical areas where diagnostic accu-
racy is crucial.

This study introduces CC-LS loss function, designed to
calibrate glaucoma classification models. The CC-LS loss
function demonstrated significant improvements over the
conventional loss functions discussed in earlier sections,
showing enhanced performance in terms of sensitivity,
specificity, and accuracy. Furthermore, the Brier Score Loss
metric corroborated the superior calibration characteristics
of the proposed loss function.

Beyond quantitative performance metrics, the model’s
interpretability was verified through heatmap visualizations.
These heat maps confirmed the model’s focus on the OD
region, making the findings particularly relevant for clinical
applications. The study thereby addresses a critical gap in
the literature by providing a calibrated and interpretable
model for glaucoma classification.

Future research could extend the present work by
applying the CC-LS loss function to other machine learning
architectures and medical imaging modalities. Furthermore,
the inclusion of more heterogeneous datasets and the
exploration of multiobjective loss functions could provide
additional insights into the method’s applicability and
robustness.

In conclusion, the CC-LS loss function offers an effective,
calibrated, and interpretable approach for glaucoma classifi-
cation, warranting further investigation and clinical validation.
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