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Abstract: Siraitia grosvenorii is a type of fruit used in traditional Chinese medicine. Previous studies
have shown that the conversion of saponins was often carried out by chemical hydrolysis, which
can be problematic because of the environmental hazards it may cause and the low yield it produces.
Therefore, the purpose of this study is to establish a continuous bioreactor with immobilized enzymes
to produce siamenoside I and mogroside IV. The results show that the immobilization process of
β-glucosidase exhibited the best relative activity with a glutaraldehyde (GA) concentration of 1.5%,
carrier activation time of 1 h and binding enzyme time of 12 h. After the immobilization through
GA linkage, the highest relative activity of β-glucosidase was recorded through the reaction with the
substrate at 60 ◦C and pH 5. Subsequently, the glass microspheres with immobilized β-glucosidase
were filled into the reactor to maintain the optimal active environment, and the aqueous solution of
Siraitia grosvenorii extract was introduced by controlling the flow rate. The highest concentration of
siamenoside I and mogroside IV were obtained at a flow rate of 0.3 and 0.2 mL/min, respectively. By
developing this immobilized enzyme system, siamenoside I and mogroside IV can be prepared in
large quantities for industrial applications.

Keywords: Siraitia grosvenorii; saponins; β-glucosidase; enzyme immobilization; glutaraldehyde

1. Introduction

Siraitia grosvenorii has been used as a traditional Chinese medicinal ingredient to treat
lung fever and sore throat, etc. In addition to basic nutrients, including carbohydrates,
proteins, amino acids and vitamins, Siraitia grosvenorii contains lots of flavonoids, phenols
and terpenoids. These compounds represent the biochemical basis of Siraitia grosvenorii,
which possesses various medicinal properties [1]. Siraitia grosvenorii contains a proportion
of saponins with cucurbitane-type triterpenoids called mogrosides that are composed
of several glycosylated saccharides linked to the non-glycosyl moiety with β-bonds [2].
Mogrosides have a number of biological activities, such as antioxidant, anti-inflammatory,
anti-cancer and anti-infection properties, etc., and have great potential to be developed
into biopharmaceuticals [1]. Among them, mogroside V is the main type making up the
greatest proportion of content, accounting for about 0.8–1.3% (w/w) [3]. Compared with
the other mogrosides, siamenoside I has a slightly lower physiological activity, but is the
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sweetest among all mogrosides [4,5]. Mogroside IV and siamenoside I are two intermediate
products upon mogroside V hydrolyzation, which is further hydrolyzed into mogroside
IIIE by β-glucosidase [6].

β-D-Glucosidase (E.C. 3.2.1.21) mainly catalyzes β-D-glucopyranosides from β-1,4 and β-
1,6 of non-reducing sugar ends [7]. β-D-Glucosidase is widely used in the food, medicine and
biomass energy industries. The main principle is to use the process of hydrolysis to produce
glucose and the required substances, such as those that engender better aroma in grape juice
and red wine [8], or the daidzin and glycitin in soy milk are cleaved from the glycosidic
bond to generate non-glycosidic daidzein and glycitein [9]. The immobilized enzyme has the
following characteristics: (1) the resistance to temperature and pH value is improved; (2) the
storage stability is enhanced; (3) the enzyme can be reused in different reaction environments;
and (4) the enzyme activity can be improved by reacting in an organic solvent [10].

Since mogroside IV, mogroside V and siamenoside I have different physiological
activities, in this study, in addition to optimizing the β-D-glucosidase immobilized system
through an adjustment of immobilizing conditions, a continued bioreactor was designed
to control the production of various mogrosides by simply adjusting the flow rate. The
continued bioreactor is a type of packed bed reactor, which has been extensively applied in
food manufacturing and processing for different purposes, such as hydrolyzing lactose in
milk to produce lactose-free milk [11], hydrolyzing sucrose to produce syrup with higher
fructose content [12], and clarifying apple juice [13].

2. Results and Discussion
2.1. Morphology of Glass Microsphere

The β-glucosidase was immobilized on glass microspheres using glutaraldehyde (GA)
as the cross-linker. To determine the situation of the immobilization, a scanning electronic
microscope (SEM) was used to observe the surfaces of glass microspheres with and without
β-glucosidase immobilization (Figure 1A–C). The interaction between carriers and the
enzyme provides specific chemical, physical, biochemical and kinetic properties for each
immobilized enzyme [14].

In general, when the diameter of the carrier is smaller, the specific surface area will
increase, resulting in more enzymes being immobilized. A carrier with a smaller size
will reduce the diffusion limitation, which usually decreases the reduction of enzyme
activity [15]. The surfaces of glass microspheres without β-glucosidase were smooth
and the average diameter was about 8 µm. After β-glucosidase immobilization through
covalent binding with GA, the surfaces of glass microspheres became rough and granulated
with a lot of flocci attached to them, as indicated by the red arrow. The morphology
results showed that β-glucosidase was successfully immobilized on the glass microspheres
through GA modification.

2.2. Verification of Enzyme Immobilisation

Figure 1D,E shows the ESCA spectra of glass microspheres with and without β-
glucosidase immobilization, which were used to investigate the chemical bonding be-
tween the enzyme and the carriers. The glass microspheres were cross-linked with the
β-glucosidase using GA as the cross-linker. GA is a type of cross-linking agent that is com-
monly used due to its high commercial availability, colorlessness, low cost, water solubility
and, most importantly, quick reaction with an amine group on an enzyme [16]. Before
immobilization, the characteristic signals at 284.6, 285.8, 286.2 and 288.9 eV corresponded
to C-C, C=N, C-OH and C=O, respectively. After immobilization, the signal at 286.2 eV
was reduced, and the signal at 285.8 eV was enhanced, which means that β-glucosidase
was successfully linked on the surfaces of glass microspheres by GA and formed the Schiff
base [17]. According to the results, the β-glucosidase was successfully immobilized on the
glass microspheres using GA as the cross-linker.
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Figure 1. SEM images and the C element scan of glass microspheres without and with β-glucosidase
immobilization. The SEM images of glass microspheres without β-glucosidase immobilization at
5000× magnification power (A), and with β-glucosidase immobilization at 3000× (B) and 15,000×
(C) magnification power. The C element scan without (D) and with (E) β-glucosidase immobilization
by ESCA. The characteristic signals at 284.6, 285.8, 286.2 and 288.9 eV corresponded to C-C, C=N,
C-OH and C=O, respectively. The red arrow is pointing the attached β-glucosidase.

2.3. Determination of Optimal Conditions for the β-Glucosidase Immobilized System

Using GA as the crosslinker significantly affected the enzyme activity, which includes
the GA concentration, the activation time and the coupling time [15]. Figure 2A–C shows
that β-glucosidase had the maximal relative activity, in which the GA concentration was
1.5%, the activation time was 1 h and the coupling time was 12 h. More GA concentration,
activation time and coupling time may change the enzyme structure due to excessive
crosslinking between GA and enzyme, which in turn decreases the enzyme activity [18].

To optimize the catalytic activity, the reaction temperature and the pH value were
considered, both of which significantly affected the enzyme activity. In order to determine
the optimal reaction conditions for the immobilized system, the catalytic activity of β-
glucosidase was evaluated at different reaction temperatures and pH values. The results
for the reaction temperature show that the relative activity of β-glucosidase with and
without immobilization was the same at 60 ◦C (Figure 2D). However, when the reaction
temperature changed, the relative activity of the free enzyme changed more drastically
than the immobilized enzyme, which means that the resistance to the reaction temperature
was increased after enzyme immobilization. That may be because the immobilized enzyme
reduced the flexibility and thermal vibration of the configuration, and then reduced the
probability of protein denaturation [19]. Just as the relative activity was recorded at its
highest at the same reaction temperature of 60 ◦C both with and without immobilization,
β-glucosidase also demonstrated the greatest relative activity at the same pH value of 5
under the two conditions (Figure 2E). Based on the results, a reaction temperature of 60 ◦C
and a pH value at 5 were be used for subsequent experiments.
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Figure 2. Immobilization conditions of β-glucosidase onto glass microspheres. The relative activity
with glutaraldehyde concentration (A), the relative activity for activation time (B), and the relative
activity for coupling time (C). The optimal reaction temperature (D) and pH value (E) on the relative
activity of free and immobilized β-glucosidase. Each value is expressed as mean ± SD, and values
marked by different letters were significantly different by LSD tests (p < 0.05).

2.4. Determination of Kinetic Parameters for β-Glucosidase Immobilized System

The kinetic parameters, Vmax and Km represent the affinity between the enzyme and
the substrate, which was calculated by the reaction time and the catalytic activity. These
Michaelis–Menten kinetic constants are important characteristics to compare different
enzyme systems [20]. As shown in Figure 3 and Table 1, the Vmax and Km of free β-
glucosidase were 5.15 mM/min and 2.36 mM, respectively, and the Vmax and Km of
immobilized β-glucosidase were 1.04 mM/min and 3.31 mM, respectively. After enzyme
immobilization, the Vmax was decreased, and the Km was increased due to changes in
the enzyme structure and the diffusion limitation [21]. Table 1 also shows the kinetic
parameters of τ50 and τcomplete with and without immobilization, in which τ50 represents
the time required for half of the reaction to complete and τcomplete represents the time
required for the reaction to complete. Both parameters are calculated by plotting the
relative activity at different reaction times. As shown in the results, the τ50 of the free
enzyme was 1.33 min and the τcomplete was 4.43 min, whereas the τ50 of the immobilized
enzyme is 6.43 min and the τcomplete is 21.36 min. The results of τ50 and τcomplete were
similar to those for Vmax and Km, the catalytic time of immobilized β-glucosidase was
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increased. That was due to the diffusion limitation of immobilized β-glucosidase and the
reduced probability of the substrate binding to the enzyme active site [11].
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Figure 3. Effects of p-NPG concentration on the activity of free β-glucosidase (A) and immobilized
β-glucosidase (B), and effects of time on the activity of free enzyme and immobilized β-glucosidase (C).
Each value is expressed as mean ± SD, and values marked by different letters are significantly different
by LSD tests (p < 0.05).

Table 1. Enzyme kinetic parameters of free and immobilized β-glucosidase.

K (mM/min) τ50 (min) τcomplete (min)

Free β-glucosidase 0.52 1.33 4.43
Immobilized β-glucosidase 0.11 6.43 21.36

2.5. Storage Stability and Reusability of the β-Glucosidase Immobilized System

Enzyme immobilization has attracted much attention in recent years, due to the
enzyme storage stability and reusability reducing costs and increasing environmental sus-
tainability [22]. Figure 4A shows the results of the reusability of immobilized β-glucosidase
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by covalent bonding to glass microspheres as the carriers. The immobilized β-glucosidase
still showed 80% relative activity after four catalysis reactions, and retained 50%.
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The parameters τ50 and τ100 represent the time needed to catalyze 50% and 100% of
the p-NPG, respectively.

Relative activity after 10 times of catalysis. Previous studies reported that the relative
activity of β-glucosidase immobilized on chitosan was lower than 50% by reusing the
reaction seven times [23]. In contrast, β-glucosidase immobilized on glass microspheres
effectively enhanced the enzyme activity. The catalytic activity of β-glucosidase was
decreased in the subsequent cycles, due to the conformation changing of enzymes, the
blocking of some reaction substrate, the loss of carriers and the removing of enzyme from
carriers [24]. The storage stability of immobilized β-glucosidase is shown in Figure 4B,
the relative activity of immobilized β-glucosidase was above 90% after storage at 4 ◦C for
35 days, which indicates that this immobilization system maintained the superior stability
and allowed long-term operation. These results suggest that β-glucosidase immobilized on
the glass microspheres had increased storage stability and reusability, bearing out excellent
potential for industrial applications.

2.6. Production of Siamenoside I and Mogroside IV from Siraitia grosvenorii through the
β-Glucosidase Immobilized Bioreactor

The β-glucosidase immobilized bioreactor was adopted according to the design dia-
gram of the reactor (Figure 5A) and filled with glass microspheres, and the actual diagram
is shown in Figure 5B. There are two types of bioreactor systems, namely suspension and
immobilization. Some reactors use a combination of these two systems to achieve the best
culture mode by taking into account the advantages of both, for example, immobilization
of cells or enzymes on a carrier in a stirring, gas-lifting or bubbling reactors [25]. Through
comprehensive comparison of all types, the immobilization system known as a packed bed
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type is considered to be the most suitable for applications relating to enzyme reaction due
to its design simplicity and low cost. The methodology used in a packed bed type involves
fixing enzyme to carriers in the reactor’s column and allowing the reaction solution to flow
from the bottom of the column to the top.
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Figure 5. The design of (A) and the real (B) immobilized β-glucosidase bioreactor. The inner layer of
the column (9 mL) with 2 g β-glucosidase immobilized glass microspheres and the outer layer full,
with constant temperature water to control the reaction temperature. The sample injected into the
column from the bottom through a pump and collected by a bottle with a constant temperature water
tank for the termination of the catalysis.

The operation efficiency of a packed bed type reactor is high since the carrier is not
subjected to mechanical shear force. Moreover, it is commonly used in enzyme-catalyzed
reactions that consist of different phases of solid and liquid [26]. The results of each flow
rate to convert Siraitia grosvenorii extract into mogroside IV, mogroside V, mogroside IIIE,
and siamenoside I are shown in Figure 6. The total amount of Siraitia grosvenorii extract
at different flow rates had no significant enhancement, which means that the alteration
and the catalysis of different Siraitia grosvenorii extracts had no inference from variables
of this bioreactor design. For the mogroside V production, the amount of mogroside
V was enhanced according to the increase in the flow rate. Given that mogroside V
was the precursor of other mogrosides, the faster the flow rate (meaning the shorter the
reaction time), the more mogroside V was produced. On the other hand, the production of
mogroside IIIE as the final product was the opposite of mogroside V. The slower the flow
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rate (meaning the longer reaction time), the more mogroside IIIE was generated. In addition,
the two intermediate products, siamenoside I and mogroside IV, had the highest production
at flow rates of 0.3 mL/min and 0.2 mL/min, respectively. In conclusion, the production of
these mogrosides, especially siamenoside I and mogroside IV, was significantly influenced
by the flow rate, and the bioreactor designed in this experiment could control the flow rate
to obtain two intermediates with higher conversion rates.
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Figure 6. The result of immobilized β-glucosidase converting mogrosides at different times (A), and
using the bioreactor to convert mogrosides by different flow rates (B). Each value is expressed as
mean ± SD.

3. Materials and Methods
3.1. Materials

Siraitia grosvenorii was purchased from Huang Changsheng Traditional Chinese Medicine
Store in Taipei City. p-Nitrophenylglucopyranose (p-NPG), β-glucosidase, glass particles,
sodium carbonate, disodium hydrogen phosphate, sodium dihydrogen phosphate, glu-
taraldehyde (GA), nitric acid, 3-aminopropyltriethoxysilane (3-APES), formic acid, Bio-rad
reagent, and hydrocorticoid were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).
Methanol and ethanol were purchased from ECHO Chemical Co., Ltd. (Miaoli, Taiwan).

3.2. Enzyme Immobilization

To prepare carriers, glass microspheres were prepared following a modified version
of the method by Chen et al.; a total weight of 2 g glass microspheres was first treated
with 40 mL 10% nitric acid (HNO3) at 90 ◦C for 1 h, and then washed several times with
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distilled water. After the first treatment, glass microspheres were treated with 40 mL 10%
3-amino-propyltriethoxysilane (APES) aqueous solution at 70 ◦C for 3 h, then washed
several times with distilled water and stored at 4 ◦C [23,27]. For the activation of glass
microspheres, modified version of the method by Chen et al. was used, a total weight of
2 g glass microspheres was treated with 1.5% (w/v) GA and stirred at 100 rpm at room
temperature for 1 hr, then washed three times with distilled water. After activation, glass
microspheres were treated with 1% (w/v) β-glucosidase solution at 4 ◦C for 12 h, then
washed three times with 0.1 M phosphate buffer and stored at 4 ◦C. The concentration of
immobilized β-glucosidase was calculated by the Bradford method [28].

3.3. Morphology Characterization

In this study, p-NPG was used as the substrate to evaluate the catalytic efficiency of
β-glucosidase in various systems (with and without immobilization). The glass micro-
spheres with and without β-glucosidase immobilization were dried by lyophilizer, then the
surface morphologies were evaluated using scanning electron microscopy (SEM, Model
JSM-6300, JEOL, Tokyo, Japan) at an accelerating voltage of 10 kV after gold sputtering.
The covalent bonding between glass microspheres, GA and β-glucosidase was confirmed
by electron spectroscopy for chemical analysis (ESCA, VG MICROTECH, MT-500, British).

3.4. Determination of Reaction Conditions

The determination of the optimal reaction temperature was evaluated by 0.5 mg/mL
p-NPG as a substrate in pH 4 citric acid buffer at 30, 40, 50, 60, 70 and 80 ◦C for 10 min.
The optimal reaction pH value was examined by 0.5 p-NPG as a substrate at 60 ◦C in
different pH values (from 4 to 8). The β-glucosidase activity was calculated by measuring
the absorbance at 425 nm using a Multiskan GO microplate spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) [29].

3.5. Determination of Kinetic Parameters

To determine kinetic parameters of β-glucosidase, including K, τ50, τcomplete, the
Michaels–Menten kinetic constant (Km) and maximal velocity (Vmax), different concentra-
tions of p-NPG (from 0 to 20 mM) as the substrate for the reaction of free and immobilized
β-glucosidase for different reaction times (from 0 to 90 min) were used. The parameters
of K, τ50 and τcomplete represents the rate constant (min−1), the time required to reach re-
quired p-NPG and the time necessary to complete p-NPG, respectively. The β-glucosidase
activity time curve fitted Equation (1), and the Vmax and Km were calculated based on the
Lineweaver–Burk plot (Equation (2))

Abs(t) = Abs(S)(1 − e−Kt) (1)

V = Vmax [S]/Km + [S] (2)

3.6. Storage Stability and Reusability

The evaluation of the storage stability was determined for the immobilized β-glucosidase
activity for 0, 2, 4, 6, 8, 10, 15, 20, 25, 30 and 35 days storage at 4 ◦C. The reusability was
determined by running reactions using immobilized β-glucosidase 10 times in 1 day.
Both reusability and storage stability were reacted under the optimal conditions, and
β-glucosidase activity in the first reaction and day 0 was a relative activity of 100%.

3.7. Creation of the β-glucosidase Immobilized Bioreactor

As in the β-glucosidase immobilized bioreactor shown in Figure 5, the column was
fixed by the rack. The outer layer of the column was connected to a constant tempera-
ture water bath to maintain the reaction temperature, and the inner layer was full the
immobilized glass microspheres. For the β-glucosidase catalysis, three times volume of
Siraitia grosvenorii extract was passed into the reactor from below and collected from above
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through the pump, the final product was collected in a bottle at 4 ◦C to terminate the
enzyme activity.

3.8. Siraitia Grosvenorii Extraction

The extraction of Siraitia grosvenorii was performed using a modified version of the
method by Zhang et al., Siraitia grosvenorii was broken by a grinder, screened by 60 mesh,
and then stored at room temperature in the drying oven. To extract Siraitia grosvenorii,
15 g Siraitia grosvenorii powder was added to pH 5 citric acid buffer at 100 ◦C for 10 min,
then filtered by suction and the supernatant stored as the Siraitia grosvenorii solution for
subsequent use. For the bioreactor system, 27 mL Siraitia grosvenorii solution was added
into the column at different flow rates (from 0.1 to 035 mL/min) [30].

3.9. HPLC Analysis

The analytic process was modified according to Shen et al., the resolution of Siraitia
grosvenorii extract, which included siamenoside I and mogroside IV, was performed by a
YMC-Pack-ODS-AMC C18 column (5 mm, 250 × 4.6 mm) attached to a high performance
liquid chromatography (HPLC) system containing the pump (PU-2089, JASCO, Tokyo,
Japan) and the analytical mixer. The results were analyzed using a SISC chromatography
data system (SISC, New Taipei City, Taiwan). The detection was performed by UV absorp-
tion at 210 nm, and the injection volume and the elation rate were 20 mL and 0.6 mL/min,
respectively. A 0.01% formic acid solution and methanol were used as the eluent [31].

3.10. Statistical Analysis

All experiments are expressed as mean ± standard deviation and performed at least
in triplicate. The data analysis was measured using Prism, Minitab, Excel and Sigma plot,
and the statistical analysis was performed by ANOVA and Fisher’s LSD. The p-value was
set at 0.05.

4. Conclusions

The optimal process for β-glucosidase immobilization was successfully developed
with 1.5% GA concentration for 1 h activation, and coupled with β-glucosidase for 12 h.
According to the results as presented, although the optimized conditions of both reaction
temperature and pH value were not significantly affected by whether enzyme immobi-
lization was carried out, the resistance of β-glucosidase to temperature was increased
after immobilization. Moreover, the kinetic parameters of immobilized β-glucosidase were
worse than free enzyme, due to the diffusion limitation and the conformation change
after GA covalent bonding. Because of the advanced resistance to reaction conditions, the
gainful storage stability of 35 days and the usability of more than 10 times were recorded.
The increasing amount of research into mogrosides has pointed out that siamenoside I is
563 times sweeter than 5% sucrose aqueous solution and has a better flavor than other
types of mogrosides, making it more suitable for use as a sweetener. Also, mogroside
IV can slow down the symptoms of pulmonary fibrosis and inhibit the proliferation of
cancer cells, thus has great potential in the biopharmaceutical industry. In this study, the β-
glucosidase immobilization was optimized by GA concentration, activation time, coupling
time, reaction temperature and pH value. Moreover, this study establishes a β-glucosidase
immobilization system for the continued reaction of different mogrosides by controlling
the flow rate. Therefore, this immobilized β-glucosidase system has the potential to be
applied in industry.
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