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The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or
transmembrane domains for secretion along the conventional biosynthetic pathway. Yet,
these factors must be translocated from the cytoplasm across the plasma membrane into
the extracellular space in order to regulate inflammation. Recent work has identified an
array of mechanisms by which IL-1 family cytokines can be released into the extracellular
space, with supramolecular organizing centers known as inflammasomes serving as
dominant drivers of this process. In this review, we discuss current knowledge of the
mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using
this knowledge, we propose amodel whereby host metabolic state dictates the route of IL-
1β secretion, with implications for microbial infection and sterile inflammation.
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INTRODUCTION

Production and secretion of interleukin-1 (IL-1) family cytokines is closely linked to inflammation.
All IL-1 family cytokines, except IL-1Ra, lack an amino terminal (N-terminal) secretion signal for
secretion by the endoplasmic reticulum (ER)-Golgi vesicular pathway (Garlanda et al., 2013). Several
family members, such as IL-1α, IL-1β, and IL-36α/β/γ, are considered pro-inflammatory. Other
members, such as IL-1Ra and IL-36Ra, serve inhibitory or buffering roles that counteract the
pro-inflammatory functions of IL-1α/β and IL-36 cytokine signaling, respectively. Select IL-1
family cytokines can also serve anti-inflammatory functions in the case of IL-37 and IL-38 or
context-dependent pro-inflammatory and anti-inflammatory functions in the case of IL-18 and
IL-33.

IL-1α and IL-1β (sometimes referred to in aggregate as IL-1) have related functions within the
host through action on their shared heterodimeric receptor IL-1R1 and IL-1R accessory protein
known as IL-1R3 (Mosley et al., 1987a; Mosley et al., 1987b; Sims et al., 1988; Greenfeder et al., 1995).
Through cloning of pro-IL-1β, it was readily appreciated that this inactive precursor molecule did
not contain an N terminal signal sequence highlighting a major conundrum on how the bioactive
form of this cytokine might exit the cell to act on its cognate receptor (Auron et al., 1984; Rubartelli
et al., 1990). The IL-1 receptor complex, when ligated to IL-1α or IL-1β, but not when ligated to the
inhibitory protein IL-1Ra, can recruit the signaling adaptor MyD88 (Wesche et al., 1997). MyD88
recruitment and its downstream pro-inflammatory signaling events are similar to the sensing of
pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) of the
Toll-like receptor (TLR) family. As such, many of the pro-inflammatory functions of TLRs are
recapitulated by IL-1 family receptors. A major action of IL-1R signaling is the activation of the
transcription factor NF-κB leading to production of pro-inflammatory cytokines, upregulation of
antigen presentation, and pro-survival signaling in various cell types (O’Neill, 2008). In addition, IL-
1R signaling can provide mitogenic signals in the case of T and B lymphocytes, as reviewed elsewhere
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(Evavold and Kagan, 2018). Recent work has also highlighted that
IL-1 signaling can induce an antiviral state in fibroblasts (Orzalli
et al., 2018; Aarreberg et al., 2019).

Signaling through other IL-1 receptors appears to follow
analogous processes to IL-1R, whereby the cognate ligand of
an IL-1 family cytokine binds a heterodimeric receptor that
induces the recruitment and activation of MyD88 (Garlanda
et al., 2013; O’Neill, 2008). The anti-inflammatory action of
some IL-1 family members may stem from differential usage
of MyD88 for pro-inflammatory versus anti-inflammatory
responses. For example, IL-33 binding to the specific IL-33
receptor known as IL-1R4 (also known as ST2) can be
considered pro-inflammatory on type 2 T helper (Th2) cells
and mast cells (Ali et al., 2007; Chackerian et al., 2007). IL-33
bound IL-1R4 can then recruit the accessory protein IL-1R3, as is
the case for the IL-1 receptor complex, to recruit and activate
MyD88 (Garlanda et al., 2013). Conversely, IL-33 signaling on T
regulatory cells (Tregs) can be considered anti-inflammatory
through induction of proliferation of this inherently anti-
inflammatory cell type and production of the tissue repair
factor known as amphiregulin (Arpaia et al., 2015; Kuswanto
et al., 2016). Analogous to TLR contextual signaling, TLR4 and
TLR5 expressing Tregs also appear to use TLR-MyD88-
dependent signaling for anti-inflammatory and tissue repair
related responses (Caramalho et al., 2003; Crellin et al., 2005).

Thus, as IL-1 family cytokines can have location and cell-type-
dependent responses, leading to either the induction or resolution
of inflammation, this family of cytokines is under increased
regulation compared to conventionally secreted counterparts.
Regulation of the induction, maturation, and secretion of these
cytokines is the focus of this review.

OVERVIEW OF IL-1 FAMILY CYTOKINES

As stated above, IL-1 is the prototypical member of the IL-1
family of cytokines. IL-1 acts on many cell types to induce
inflammation including, but not limited to, endothelial cells,
epithelial cells, myeloid cells, and lymphocytes (Evavold and
Kagan, 2018). IL-1 can also trigger the secretion of additional
conventional cytokines and chemokines, such as IL-6 and IL-8
respectively, that promote local inflammation through increasing
the permeability of endothelial cells for immune cell recruitment
and systemic inflammation through induction and maintenance
of fever and production of acute phase proteins in the liver
(Garlanda et al., 2013).

IL-1α exists as a pro-form cytokine primarily within the
nucleus of cells (Werman et al., 2004; Lamacchia et al., 2013).
Some cell types, such as epithelial cells, appear to constitutively
express IL-1α, though pro-inflammatory signaling can induce the
production of new pools of IL-1α. The subcellular localization of
this cytokine is attributed to a nuclear localization signal (NLS)
within the pro-domain (Werman et al., 2004; Wessendorf et al.,
1993). IL-1α is best known for its pro-inflammatory activities
resulting from ligation and activation of the IL-1 receptor
complex. This necessitates that IL-1α egresses the nucleus and
makes it to the extracellular space to act on IL-1 receptor

complexes on other cells (Figure 1). While pro-form IL-1α
can signal through the IL-1 receptor complex (Kim et al.,
2013), the potency of IL-1α on its cognate receptor increases
after processing by select proteases (Figure 2). Examples of such
proteases include calpains, which are calcium-dependent cysteine
proteases located at the inner leaflet of the plasma membrane
(Kobayashi et al., 1990; Afonina et al., 2011). Thus, while IL-1α
can be released upon cellular necrosis, the activity of IL-1α is
increased following regulated secretion that includes disruption
of the nucleus and calcium (Ca) flux (Gross et al., 2012; England
et al., 2014). These events occur during certain cell death
processes such as induction of pyroptosis through the action
of inflammasomes, which will be discussed in the following
sections (Keller et al., 2008; Gross et al., 2012). Recent studies
indicate that IL-1α can also be released from cells after sublytic
inflammasome stimulations and from living cells, such as occurs
during phagocyte hyperactivation or early pyroptotic
stimulations (Gardner et al., 2015; Evavold et al., 2018; Tapia
et al., 2019; Wiggins et al., 2019; Aizawa et al., 2020; Tsuchiya
et al., 2021). While the canonical inflammasome component
caspase-1 can mediate the calpain-dependent processing and
subsequent release of IL-1α (Gross et al., 2012; Tsuchiya et al.,
2021), caspase-1 is unable to directly process pro-IL-1α (Howard
et al., 1991). In contrast, recent work has identified that
inflammatory caspase-5/-11 can directly process IL-1α into a
more bioactive molecule (Wiggins et al., 2019). The increased
bioactivity of processed IL-1α can also be contextually controlled
in trans. Under these circumstances, a necrotic cell may release
pro-form IL-1α that is then cleaved by proteases from a different
cell, such as mast cell chymase, neutrophil elastase, or cytolytic
T-lymphocyte (CTL) and natural killer (NK) cell granzyme B
(Lüthi et al., 2009; Clancy et al., 2018). Moreover, IL-1α can be
activated after cleavage by the coagulation cascade associated
protease thrombin (Burzynski et al., 2019) (Figure 2).

IL-1β is generally associated with myeloid lineage cells such as
macrophages, dendritic cells, and neutrophils (Chan and
Schroder, 2020). In their resting (non-inflammatory state),
these myeloid cells do not express pro-form IL-1β and
typically require a pro-inflammatory signal to initiate
transcription and translation, such as after TLR activation
upon microbial encounters (Figure 1). Conversely, certain cell
types, such as keratinocytes, may constitutively express low levels
of IL-1β without pro-inflammatory stimuli (Mizutani et al.,
1991a). Pro-IL-1β is found within the cytosol (Chan and
Schroder, 2020). This pro-form cytokine requires proteolytic
processing to become biologically active on the IL-1 receptor
complex (Howard et al., 1991; Thornberry et al., 1992) (Figure 2).
This cytokine also must be released from the cytosol into the
extracellular space to reach IL-1 receptor complexes on other cells
(Figure 1). Thus, in contrast to IL-1α, which must cross the
nuclear and plasma membrane to access the extracellular space,
cytosolic IL-1β must only traverse the plasma membrane. The
lower threshold of crossing the membrane of a single
compartment for IL-1β to escape the cell might be explained
through the additional regulation at the induction of
transcription, compared to a pre-existing pool of nuclear IL-1α
in some cell types. Moreover, unlike IL-1α, IL-1β has an absolute
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requirement for its cleavage to achieve bioactivity. Thus, multiple
strategies of IL-1 regulation appear to mediate IL-1α and IL-1β
release from cells.

The cleavage and release of IL-1β is often closely linked to the
action of inflammasomes (Evavold and Kagan, 2019; Chan and
Schroder, 2020). Inflammatory caspase-1 cleaves pro-IL-1β into
mature IL-1β (Kostura et al., 1989; Thornberry et al., 1992; Li
et al., 1995). Caspase-1 also cleaves the protein gasdermin D
(GSDMD) to mediate pyroptotic lysis of cells (He et al., 2015;
Kayagaki et al., 2015; Shi et al., 2015). GSDMD cleavage by
caspase-1 releases a fragment that oligomerizes into pores in host
cell membranes (Aglietti et al., 2016; Liu et al., 2016a; Ding et al.,
2016; Sborgi et al., 2016). GSDMD pores can mediate IL-1β
release in direct and indirect ways (Evavold et al., 2018; Heilig
et al., 2018). Moreover, inflammatory caspases-4, -5, -11 can also
mediate the cleavage and secretion of IL-1β, but this process
requires the secondary activation of the NLRP3 inflammasome
and caspase-1 for direct IL-1β cleavage (Kayagaki et al., 2015;
Rühl and Broz, 2015; Shi et al., 2015). The necroptotic pathway
can also cause membrane permeability and rupture via the pore
forming protein MLKL and pro-IL-1β processing via the NLRP3
inflammasome (Gutierrez et al., 2017). Recent work has also
illustrated that caspase-8 can mediate the cleavage and release of
IL-1β in contexts where traditional inflammasome components
are lacking or under conditions of TAK1 inhibition (Orning et al.,
2018; Sarhan et al., 2018; Muendlein et al., 2020). Finally, pro-IL-
1β can be cleaved in the extracellular space in trans viamast cell-
associated chymase, neutrophil-associated elastase, proteinase-3,

matrix metalloprotease 9, and CTL and NK cell-associated
granzyme A (Black et al., 1988; Hazuda et al., 1990; Mizutani
et al., 1991b; Coeshott et al., 1999) (Figure 2).

IL-1Ra is an inhibitory protein to the IL-1 receptor complex
(Arend et al., 1989; Arend et al., 1994). IL-1Ra is the only IL-1
family member that contains an N-terminal signal sequence for
translation at the endoplasmic reticulum, trafficking through the
Golgi, and fusion and release at the plasma membrane (Figure 1)
(Garlanda et al., 2013). The highly inflammatory nature of IL-1α
and IL-1β on cells expressing the IL-1 receptor complex may
explain why this inhibitory member of the IL-1 family evolved to
be conventionally secreted. IL-1Ra binds to the same IL-1R1 as
IL-1α and IL-1β, thus limiting the pro-inflammatory signaling
that these cytokines induce (Arend et al., 1989; Arend et al., 1994).
IL-1Ra bound IL-1R1 cannot productively signal through IL-1R3.
This may serve as a local and systemic buffering system to limit
low levels of autoinflammation during constitutive death
processes or during resolution of inflammation. Other
cytokine systems, such as the conventional cytokine IL-6, also
have mechanisms to buffer the signaling propensity of the pro-
inflammatory cytokine via the production of secreted decoy
receptors (Yousif et al., 2021). In addition to IL-1Ra-
dependent inhibition of IL-1R1 signaling, IL-1 is also
scavenged by a membrane bound and soluble decoy receptor
known as IL-1R2 (Colotta et al., 1993; Re et al., 1996; Kuhn et al.,
2007; Lorenzen et al., 2012). These two strategies in addition to
the cell-intrinsic and in trans regulation of IL-1α and IL-1β
cytokine processing and release illustrate that these cytokines

FIGURE1 |Multi-level regulation of unconventional secretion of IL-1. IL-1α can be constitutively expressed, but accumulates in the nuclear compartment. Secretion
requires crossing the topological barriers of the nuclear membrane and the plasma membrane. Proform IL-1α is biologically active on the IL-1 receptor complex, but
cleavage by certain proteases such as calpains can increase activity. Pro-IL-1β is often transcriptionally induced upon sensation of lower level threats to the host such as
extracellular PAMPs or pro-inflammatory cytokines. Pro-IL-1β is translated and remains in the cytosol, and must cross the topological barrier of the plasma
membrane for secretion. Cleavage of pro-IL-1β by proteases such as caspase-1 is required for bioactivity on the IL-1 receptor complex. IL-1Ra is the only IL-1 family
member that is conventionally secreted through the biosynthetic pathway. IL-1Ra is transcriptionally induced alongside sensation of inflammatory cues and conventional
secretion of this cytokine may buffer the action of pro-inflammatory IL-1α/IL-1β by blocking their interaction with IL-1R1.
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FIGURE 2 | Proteases that regulate IL-1 bioactivity in cis or in trans. (A) The precursor protein for IL-1α is inherently bioactive. Several proteases have been shown
to increase this bioactivity. Intracellular proteases that can regulate IL-1α in cis include calcium activated proteases such as calpains as well as the non-canonical
inflammasome associated caspase-5 and caspase-11 in human and mouse respectively. Extracellular proteases that can regulate IL-1α in trans include coagulation

(Continued )
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are highly inflammatory. Indeed, several autoinflammatory
diseases, such as cryopyrin-associated periodic syndrome
(CAPS) and familial Mediterranean fevers (FMF), and
autoimmunity diseases, such as rheumatoid arthritis (RA) and
multiple sclerosis (MS), are associated with overproduction and
secretion of IL-1 (Garlanda et al., 2013). Recombinant IL-1Ra
(known as Anakinra) is used as a therapy in some of these
indications, and monoclonal antibodies against IL-1β (such as
Canakinumab) demonstrate similar reduction in inflammation
associated with neutralizing the bioactivity of this cytokine
(Dinarello, 2018).

IL-18 is expressed constitutively in certain cell types such as
epithelial and myeloid cells (Puren et al., 1999). Similar to IL-1β,
IL-18 is an inactive, pro-form cytokine produced in the cytosol of
cells (Okamura et al., 1995; Ghayur et al., 1997). IL-18 is cleaved
into a bioactive cytokine via inflammasome activated caspase-1
(Ghayur et al., 1997; Gu et al., 1997). IL-18 can also be directly
cleaved by inflammatory caspase-4 (Kobayashi et al., 2013;
Knodler et al., 2014). This contrasts with the indirect role of
caspase-4 in activating the NLRP3 inflammasome for IL-1β
processing via caspase-1 (Kayagaki et al., 2015; Rühl and Broz,
2015). Notably, these molecular themes of IL-1 cleavage apply to
humans and mice, but not all mammals. A subset of carnivores
(excluding canines) can utilize a hybrid inflammatory caspase to
detect bacterial cell wall lipopolysaccharides (LPS), akin to
human caspase-4, and also mediate IL-1β cleavage directly
(Devant et al., 2021). As such, this hybrid enzyme, known as
caspase-1/4, operates as a one-protein signaling pathway that
bypasses the need for an inflammasome and directly links LPS
detection to IL-1β cleavage in an analogous manner to human
caspase-4 direct cleavage of IL-18.

The specific IL-18 receptor is known as IL-1R5 (formerly IL-
18 receptor α chain). When IL-1R5 binds cleaved IL-18, IL-1R5
recruits the signaling competent accessory protein known as IL-
1R7 (formerly known as IL-18 receptor β chain) (Dinarello,
2018). Downstream signaling occurs through recruitment of
MyD88, as is the case for the activated IL-1 receptor complex.
IL-18 signaling can be considered pro-inflammatory as it can
mediate inflammation via immune cell recruitment to tissues and
upregulation of antigen presentation (Garlanda et al., 2013). IL-
18 also functions to impact adaptive immunity in concert with
conventionally secreted pro-inflammatory cytokines from
myeloid cells, such as IL-12 and IL-15 (Okamura et al., 1995;
Evavold and Kagan, 2018). The original name for IL-18 was IFN-
γ inducing factor because IL-18 in combination with IL-12 (or IL-
15) can instruct T lymphocytes to differentiate towards the Th1
helper subset, and thus encourage IFN-γ production via Th1 and
NK cell lymphocytes (Okamura et al., 1995; Ghayur et al., 1997).
Consistent with this pro-inflammatory role of IL-18, several

autoinflammatory and autoimmune diseases are associated
with increased serum concentrations of IL-18 including CAPS,
FMF, and MS (Garlanda et al., 2013). Unlike IL-1, IL-18 does not
induce fevers when administered exogenously (Gatti et al., 2002).
While IL-18 has been purported to have protective roles in colitis,
subsequent work suggests that IL-18 mediates inflammation and
epithelial barrier dysfunction (Nowarski et al., 2015). Similar to the
buffering activity of the membrane-bound decoy receptor IL-1R2
towards the bioactivity of IL-1, the host produces a conventionally
secreted protein called IL-18 binding protein (IL-18bp) to scavenge
IL-18 and likely dampen the inflammatory activities of IL-18
(Novick et al., 1999). While more studies are needed to
delineate the magnitude and kinetics of production of receptor
antagonists, binding proteins, and decoy receptors for other IL-1
family members, IL-18bp is well characterized as a buffering
system for IL-18 driven inflammation (Novick et al., 1999; Kim
et al., 2000; Novick et al., 2001). During homeostasis, serum
concentrations of IL-18bp seem to be constitutively higher than
serum concentrations of IL-18 by at least an order of magnitude
(Novick et al., 2001). As IL-18bp can bind in a 1 to 1M fashion to
IL-18 with tight affinity, this means that at baseline even
homeostatic production of IL-18 is buffered or chelated by IL-
18bp (Novick et al., 1999; Kim et al., 2000; Novick et al., 2001).
During inflammation, IL-18 levels must surmount the levels of IL-
18bp to mediate bioactivity on the cognate cytokine receptor.
Interestingly, IL-18bp is upregulated by IFN-γ during
inflammation (Mühl et al., 2000; Hurgin et al., 2002). As IL-18
can induce the production of IFN-γ asmentioned above (Okamura
et al., 1995; Ghayur et al., 1997), this transcriptional feedback loop
may initiate resolution of inflammation unless high levels of IL-18
continue to be produced. Other factors that affect the IL-18 to IL-
18bp setpoint require further characterization, but this example
illustrates that IL-1 family members are under additional
extracellular regulation likely to limit inappropriate
inflammation at baseline and promote return to homeostasis
quickly following resolution of a pathogenic insult.

Similar to IL-1α, IL-33 is expressed as a nuclear pro-form
cytokine that has inherent bioactivity when released from cells in
an unprocessed form (Carriere et al., 2007; Talabot-Ayer et al.,
2009; Bessa et al., 2014). Thus, as is the case in IL-1α regulation,
the presence of an NLS and pro-domain act as two barriers to IL-
33-mediated inflammation. In contrast to IL-1β and IL-18,
caspase-1 processing of IL-33 may abrogate bioactivity (Cayrol
and Girard, 2009). Similarly processing by apoptotic executioner
caspases such as caspase-3/-7 also leads to diminished bioactivity
(Lüthi et al., 2009). It is unknown whether this processing can
occur within the nucleus during cell death programs or whether it
primarily occurs as the nuclear compartment is damaged and IL-
33 egresses through the cytosol on its way to the extracellular

FIGURE 2 | associated thrombin, T cell/NK cell associated granzyme B, neutrophil associated elastase, and mast cell associated chymase. (B) Pro-IL-1β must be
processed into IL-1β to become bioactive. Several proteases have been shown tomediate this conversion to bioactivity. Intracellular proteases that can regulate IL-
1β in cis include inflammasome associated caspase-1 or diverse complexes that can contain caspase-8. Extracellular proteases that can regulate IL-1β in trans
include T cell/NK cell associated granzyme A, neutrophil associated proteases elastase, proteinase-3, and matrix metalloprotease 9, and mast cell associated
chymase. As inflammasome specks can exist in the extracellular space after pyroptotic lysis, extracellular inflammasomes may also be capable of regulating
extracellular pro-IL-1β cleavage likely through caspase-1.
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space. Moreover, inflammasomes have been shown to exist in
inflamed tissues apart from the initial source pyroptotic cell
(Baroja-Mazo et al., 2014; Franklin et al., 2014). While it is
unknown how much caspase-1 activity might be retained
within these extracellular “ASC specks,” the presence of
relatively few pyroptotic events may have effects on the
bioactivity of IL-33 released from other cells in a local tissue
environment. These data suggest that IL-33 can be a contextual
signal for caspase-independent necrotic or necroptotic cell death
processes (Lüthi et al., 2009; Ohno et al., 2009). IL-33 can be
processed in trans by proteases, such as mast cell-associated
chymase and neutrophil elastase, that increase bioactivity (Bae
et al., 2012; Lefrançais et al., 2012; Waern et al., 2013; Roy et al.,
2014). IL-33 binds to the specific receptor known as IL-1R4
(formerly ST2) to mediate recruitment of the signaling competent
accessory protein IL-1R3 that is also used by the IL-1 receptor
complex and IL-18 receptor complex (Ali et al., 2007; Chackerian
et al., 2007). The activated IL-33 receptor complex can then
recruit MyD88 to activate NF-κB-dependent processes (Garlanda
et al., 2013). IL-33 can incur pro-inflammatory functions through
activation and proliferation of the Th2 helper subset of T
lymphocytes in contexts such as multicellular parasite
infection or allergy (Ali et al., 2007; Bartemes et al., 2012;
Garlanda et al., 2013). IL-33 can act as an anti-inflammatory
cytokine through proliferation and upregulation of the tissue
repair cytokine amphiregulin in T regulatory cells in contexts
such as muscle injury (Arpaia et al., 2015; Kuswanto et al., 2016).

The IL-36 subfamily consists of IL-36α, IL-36β, IL-36γ, IL-36Ra,
and IL-38 (Dinarello, 2018). These members all bind to the specific
IL-36 receptor chain known as IL-1R6 (formerly known as IL-1
receptor-related protein 2) (Towne et al., 2004). The production and
response to IL-36 cytokines primarily occurs at barrier sites such as
the squamous epithelium of the skin (Boutet et al., 2016).
Keratinocytes transcribe and translate IL-36γ after sensation of
PAMPs such as poly (I:C) and flagellin (Lian et al., 2012). IL-36γ
is released after poly (I:C) treatment of keratinocytes in a caspase-3/-
7-dependent manner that also requires upstream caspase-1
activation (Lian et al., 2012). While little is known regarding the
processing and secretory mechanism of IL-36 members, the
association with inflammasome related caspase-1 and apoptotic
caspase-3/-7 may suggest that the gasdermin family of pore
forming molecules may play a role in secretion of IL-36 from
keratinocytes as is the case for IL-1β and IL-18. While
recombinant full-length IL-36 cytokines can elicit bioactivity,
N-terminally truncated IL-36 increases bioactivity on the IL-36
receptor complex (Towne et al., 2011). The IL-36 cytokines do
not have obvious caspase cleavage motifs, but there may be distinct
proteases that cleave IL-36 either in a secreting cell or in trans as is
the case for other IL-1 family members. This might proceed through
either caspase-1-dependent GSDMD pore formation or caspase-3/-
7-dependent GSDME pore formation. IL-36 can signal to epithelial
cells, such as skin keratinocytes, to produce chemokines that may
mediate inflammation through recruitment of immune cells to the
site of IL-36 release (Li et al., 2014). Moreover, IL-36 is produced in
lesions associated with the autoimmune disorder psoriasis (Johnston
et al., 2011; Marrakchi et al., 2011). The inhibitory protein IL-36Ra
inhibits IL-36 receptor signaling by blocking binding of the

activating ligands IL-36α, IL-36β, and IL-36γ to IL-1R6 in an
analogous way to IL-1Ra action on the IL-1 receptor complex
(Dinarello, 2018). Deficiency in IL-36Ra is associated with
pustular psoriatic lesions in the skin, again highlighting that
beyond IL-36 processing and release that additional regulation at
the level of receptor binding is required to prevent autoinflammation
and autoimmunity for inflammatory IL-1 family members
(Blumberg et al., 2007; Marrakchi et al., 2011; Sugiura et al.,
2014). IL-38 is a partial antagonist of IL-36-dependent
inflammation as IL-38 binds the same IL-36 receptor complex as
agonist IL-36 cytokines (van de Veerdonk et al., 2012). IL-38 has an
anti-inflammatory role as it can block IL-22 and IL-17A production
in response to Candida albicans (van de Veerdonk et al., 2012; Han
et al., 2019). As IL-38 is elevated in patients with the
autoinflammation such as asthma and autoimmune diseases such
as SLE and RA, this cytokine may act similarly to IL-1Ra, IL-18bp,
and IL-36Ra in buffering the inflammatory actions of agonist IL-36
cytokines (Rudloff et al., 2015; Boutet et al., 2016; Chu et al., 2016).
The potential role of processing and mechanisms of IL-38 release
await further characterization.

IL-37 is another IL-1 family member that is transcriptionally
regulated and sequestered to the nucleus until programmed release
into the extracellular space where it can exert anti-inflammatory
functions (Sharma et al., 2008; Nold et al., 2010). IL-37 is expressed
in epithelial cells, lymphocytes, andmyeloid cells (Dinarello, 2018).
Mice do not express an orthologue of human IL-37, but ectopic
expression in mice and murine cells demonstrates anti-
inflammatory properties (Nold et al., 2010). IL-37 binds to IL-
1R5 which is the same specific ligand receptor for IL-18 signaling
(Kumar et al., 2002; Nold-Petry et al., 2015). In contrast to IL-18/
IL-1R5 recruitment of IL-1R7 for IL-18 signaling, IL-37 binding to
IL-1R5 recruits the chain IL-1R8 (also known as SIGIRR) (Li et al.,
2015; Nold-Petry et al., 2015). IL-37 is released in both a cleaved
and unprocessed form after inflammasome activation in human
myeloid cells, but processing is not necessary for bioactivity of IL-
37 (Kumar et al., 2002; Bulau et al., 2014; Li et al., 2015). Release of
IL-37 after inflammasome signaling may serve to mitigate or buffer
the inflammatory potential of inflammasome released IL-1 or other
sources of inflammation due to the presence of microbial ligands in
an infected tissue. One model that has been proposed for how IL-
37 could be anti-inflammatory is through sequestering MyD88 to
the TIR domain of IL-1R8, thus depriving other TLR and pro-
inflammatory IL-1 family receptors of their required signaling
adaptor (Gong et al., 2010). This intracellular buffering of pro-
inflammatory signaling again highlights the potency of IL-1 family
members and the requirement for multiple levels of regulation to
their inflammatory actions. As several members of the IL-1 family
seem to utilize contextual processing and release via the inducible
organelles known as inflammasomes, we will provide updates on
regulation of inflammasome signaling and membrane
permeabilization in subsequent sections.

REGULATION OF INFLAMMASOMES

Inflammasomes are threat-assessing organelles that assemble in
response to cytosolic perturbations indicative of pathogen
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invasion or sterile damage (Evavold and Kagan, 2019; Chan and
Schroder, 2020). Inflammasomes have many layers of regulation
that affect the cleavage and secretion of bioactive IL-1 family
cytokines. This regulation can take the form of transcriptional
control of inflammasome components and substrates, post-
translational control of location and conformation of
inflammasome components, and control of negative regulators
of inflammasome signaling. Inflammasomes consist of a seed
protein, oligomerization unit, and enzymatic effector (Evavold
and Kagan, 2019). Many intracellular PRRs have been
determined to serve as seed proteins for inflammasome
activation, including proteins of the NLR family, the protein
Pyrin, the protein AIM2, and the recently discovered protein
CARD8.

Some inflammasomes require a two-signal integration of
threat level for optimal activation (Evavold and Kagan, 2019;
Chan and Schroder, 2020). The two-signal requirement of certain
inflammasomes serves as a logic gate to prevent the inappropriate
release of bioactive IL-1 and inflammatory cell death. This logic
gate is best exemplified by the synergistic recognition of microbial
ligands by the TLR family and subsequent activation of the
NLRP3 inflammasome in myeloid cells, such as macrophages.
Unstimulated macrophages do not express appreciable amounts
of the inflammasome seed protein NLRP3 or pro-IL-1β. Only
upon PRR detection of PAMPs, such as TLR4 sensing bacterial
LPS, or through the action of certain pro-inflammatory cytokines,
such as TNFR sensing TNFα, can an NF-κB-dependent
transcriptional response upregulate NLRP3 and pro-IL-1β.
Thus, low-level threats of extracellular microbial ligands, stress
ligands, or pro-inflammatory cytokines can poise a sentinel cell to
survey for the presence of higher threats such as pathogen
invasion of the cytosol or manipulation of host machinery.
This transcriptional upregulation of inflammasome
components and inflammasome substrates has been termed
“priming” or “signal one.” Other inflammasomes such as the
AIM2 inflammasome and the caspase-11 inflammasome are
under the control of a transcriptional signal one, though these
receptors typically require the induction of an interferon (IFN)
response for their transcriptional upregulation. Beyond the
upregulation of transcriptional responses, priming can also
post-translationally modify inflammasome proteins or alter
lipid organization on membranous organelles to mediate
conformational changes or subcellular location of
inflammasome proteins.

The second signal in inflammasome activation is the trigger
for seed oligomerization. This process is intrinsically controlled
by receptor location because all known inflammasome receptors
are located within the cytosol (or nucleus) and are thus
topologically separated from low-level threats, such as
microbial ligands in the extracellular space (Evavold and
Kagan, 2019). A higher threat, such as microbial ligands in the
sterile cytosol or dysfunction of a cellular process, are thus used as
indications of pathogen invasion and result in a commensurate
inflammatory response of release of bioactive IL-1 and in some
cases lytic cell death.

Inflammasomes consist of several distinct seed proteins that
can sense diverse inputs, but triggering of these receptors

converge on oligomerization of adaptor ASC (and in some
cases NLRC4) to promote the activation of inflammatory
caspase-1. ASC is recruited to most inflammasome seeds, such
as NLRP3, NLRP6, AIM2, and Pyrin, through PYRIN-PYRIN
domain interactions. The NAIP proteins sense proteins
structurally related to components of bacterial secretion or
motility machinery to recruit the adaptor NLRC4. The
oligomerization of the adaptors ASC and NLRC4 in the above
inflammasomes serves to recruit pro-caspase-1 and induce
activation of caspase-1 through enforced proximity. Oligomers
of NLRC4 or ASC recruit pro-caspase-1 through CARD-CARD
domain interactions. Increasing the local concentration of
caspase-1 within the inflammasome filament allows for pro-
caspase-1 and various caspase-1 heterodimers to process other
caspase-1 molecules in trans at two linker locations (Thornberry
et al., 1992; Boucher et al., 2018). These cleavage events cause the
formation of distinct species of active caspase-1 heterodimers
including an inflammasome localized, highly active species
consisting of a p33 and p10 fragment and a solubilized species
consisting of a p20 and p10 fragment (Boucher et al., 2018). This
sequential cleavage illustrates tight regulation on the duration and
magnitude of caspase-1 activity within cells that may be
intrinsically related to the size or available oligomerization
surfaces of inflammasome assemblies (Boucher et al., 2018;
Evavold and Kagan, 2019).

ROLE OF IL-1 CLEAVAGE IN BIOACTIVITY,
MEMBRANE LOCALIZATION, AND
SECRETION
Caspase-1 activity is intimately related to the cleavage of
intracellular substrates such as the select IL-1 family members
IL-1β, IL-18, IL-33, and IL-37 (Chan and Schroder, 2020). As
stated above, inflammasome associated caspase-1 can cleave IL-
1β, IL-18, and IL-37 to increase their binding and bioactivity to
their respective cytokine receptors (Thornberry et al., 1992;
Ghayur et al., 1997; Gu et al., 1997; Kumar et al., 2002). In
the case of IL-33, caspase-1 may process the cytokine into a
moiety that is no longer bioactive (Cayrol and Girard, 2009). In
the context of IL-1β and IL-18, cleavage of pro-form cytokine can
change the overall isoelectric point of the protein (Monteleone
et al., 2018). The pro-domain of IL-1β is negatively charged,
whereas the polypeptide corresponding to the mature p17
fragment is positively charged. Thus, cleavage of pro-IL-1β
into IL-1β releases an overall positively charged mature
cytokine that becomes enriched in the inner leaflet of the
plasma membrane through charge-charge interactions with
negatively charged phospholipid headgroups, such as PI(4,5)P2
(Monteleone et al., 2018). Accumulation of IL-1β at the plasma
membrane can facilitate fast release through GSDMD pores or
slow release by underdetermined mechanisms. Caspase-1 also
facilitates the secretion of bioactive IL-1 family cytokines through
regulation of the pore forming protein GSDMD (Kayagaki et al.,
2015; Shi et al., 2015; Evavold et al., 2018; Heilig et al., 2018).

GSDMD pores are recognized to be size and charge-dependent
conduits for the secretion of IL-1 from hyperactivating and
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sublytic inflammasome stimulations (Evavold et al., 2018; Heilig
et al., 2018; Xia et al., 2021). The structure of the human GSDMD
pore was recently determined through cryo-EM of lipid nanodisk
containing oligomerized N-terminal fragments of GSDMD (Xia
et al., 2021). Through charge reversal point mutations in the
context of GSDMD and the cargo mature IL-1β, it was
determined using liposome release assays and sublytic
inflammasome stimulations in reconstituted murine
macrophages that GSDMD allows the enriched release of
mature IL-1β through electrostatic filtering (Xia et al., 2021).
This appears to primarily operate through repulsion of negatively
charged pro-IL-1β from the pore channel as opposed to selective
preference for mature IL-1β.

REGULATION OF GSDMD PORES

All gasdermin family members, except Pejvakin, contain an
N-terminal domain that can form a plasma membrane pore
(Ding et al., 2016). As such, the gasdermin family has been
the subject of recent investigation of unconventional protein
secretion, membrane permeability, and cell death. GSDMD
exists as a latent protein within the cytosol of resting cells
(Kayagaki et al., 2015; Shi et al., 2015). Upon inflammasome
activation, GSDMD is cleaved in a flexible linker region that
contains a caspase cleavage site (Liu et al., 2020; Wang et al.,
2020). Inflammatory caspases (e.g., caspase-1/-4/-5/-11)
recognize GSDMD via an exosite in the C terminal fragment
(Liu et al., 2020; Wang et al., 2020). Caspase-8 can also cleave
GSDMD—possibly during death receptor signaling, alternative
inflammasome activation, TAK1 inhibition, or during Yersinia
infection (Gaidt et al., 2016; Orning et al., 2018; Sarhan et al.,
2018; Donado et al., 2020). While caspase-8 can also be recruited
and activated on ASC assemblies of canonical inflammasomes
(Sagulenko et al., 2013; Vajjhala et al., 2015), this may primarily
occur in contexts where pyroptosis is delayed or defective, such as
genetic deficiencies in caspase-1 and GSDMD (Schneider et al.,
2017; Tsuchiya et al., 2019).

The primary role of inflammatory caspases and caspase-8 in
activating GSDMD is releasing the pore forming N terminal
fragment from the auto-inhibitory C terminal domain (Ding
et al., 2016; Liu et al., 2019). However, in certain contexts
such as gut inflammation, full length GSDMD may mediate
the unconventional secretion of IL-1β (Bulek et al., 2020). This
study did not see robust cleavage of GSDMD by immunoblot
assay but noted a genetic requirement of GSDMD for IL-1β
release. Other studies have found that sublytic stimulations, such
as infections withmutant S. aureus, may cleave GSDMD for IL-1β
secretion below the limit of detection by immunoblot (Evavold
et al., 2018; Bjanes et al., 2021). Thus, determining whether full
length gasdermins might truly form membrane pores awaits
further characterization—though there is evidence that point
mutations in GSDMD at the binding interface between the N
and C terminus can relieve autoinhibition and cause membrane
binding and pore formation by the full-length protein (Liu et al.,
2019). Either the removal of an inhibitory post-translational
modification or addition of an activating modification may

alter GSDMD pore formation through the function of the
C-terminal autoinhibitory domain, the accessibility of the
caspase cleavage site, or membrane binding and
oligomerization potential of the N-terminal domain. Indeed,
GSDMD was recently described to be modified by host
metabolites at cysteine residues in the N-terminus (Humphries
et al., 2020; Bambouskova et al., 2021). These modifications
appear to block the cleavage of full length GSDMD by
inflammatory caspases thus limiting GSDMD oligomerization
and pore formation (Humphries et al., 2020; Bambouskova et al.,
2021). Of note, one of these cysteine residues has also been
implicated in oligomerization of a GSDMD pore after cleavage
(Liu et al., 2016a; Rathkey et al., 2018; Hu et al., 2020; Humphries
et al., 2020). Use of non-specific cysteine modifying agents, such
as necrosulfanamide and disulfiram, can covalently modify
cysteine 192 that may sterically hinder the ability of GSDMD
N-terminal fragments to oligomerize (Rathkey et al., 2018; Hu
et al., 2020). Moreover, the change of the corresponding cysteine
to alanine or more conservatively to serine can impact
oligomerization and cell death in 293T cells (Liu et al., 2016a;
Hu et al., 2020; Humphries et al., 2020). Recent work from our
group has determined that reactive oxygen species (ROS)
metabolites can enhance GSDMD pore formation that requires
cysteine 192 (Devant et al., 2022). More work is required to
delineate the role of post-translational modifications (PTMs) in
regulating gasdermin function.

The N-terminal fragment of GSDMD has affinity for
negatively charged phospholipids such as phosphatidylserine
and PI(4,5)P2 found in the inner leaflet of the plasma
membrane (Liu et al., 2016a; Ding et al., 2016). Furthermore,
GSDMD can bind to other negatively charged lipids, such as
cardiolipin, that is present in bacterial or mitochondrial
membranes (Aglietti et al., 2016; Liu et al., 2016a; Ding et al.,
2016; Sborgi et al., 2016). GSDMDmediates lysis of bacteria after
intracellular expression or treatment of liquid cultures and has
recently been shown to target mitochondria in the context of
pyroptosis (Liu et al., 2016a; Ding et al., 2016). How GSDMD
accesses cardiolipin, which is normally found on the inner
membranes of intact mitochondria and is topologically hidden
by the bacterial cell wall, has not been determined. Cardiolipin
becomes externalized after stress (Iyer et al., 2013; Elliott et al.,
2018), so GSDMDmay target damaged or stressed mitochondria
and bacteria.

At the plasma membrane, GSDMD pores can mediate calcium
flux from the hypercalcemic extracellular space into the
hypocalcemic cytosol (Martín-Sánchez et al., 2016; Russo
et al., 2016; Rühl et al., 2018). As IL-1β and GSDMD both
localize to PI(4,5)P2-containing regions of the plasma
membrane (Liu et al., 2016a; Monteleone et al., 2018), the
formation of a GSDMD pore may allow a transient release of
calcium that promotes removal of membrane enriched IL-1β
through the action of PLC-γ cleavage of PI(4,5)P2 into DAG.
During this transient removal of IL-1β from the membrane,
PI(4,5)P2 metabolism by PLC may also mediate
conformational changes of the pore to limit the amount of IL-
1β that is released (Santa Cruz Garcia et al., 2022). Sustained
calcium flux is a trigger for membrane repair processes, such as
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lysosomal exocytosis or ESCRTIII-dependent membrane
blebbing, to remove compromised sections of the plasma
membrane (Cooper and McNeil, 2015; Rühl et al., 2018).
Moreover, this calcium flux mediates the rapid conformational
opening or closing of GSDMD through a mechanism that may
involve metabolism of phospholipids [e.g., PI3K formation of
PI(4,5)P2 and PI(3,4,5)P3 or degradation of these species to DAG
by calcium-dependent phospholipases such as PLC-γ] (Santa
Cruz Garcia et al., 2022). Therefore, ion flux and lipid
metabolism may regulate GSDMD pore formation and the
rate of secretion of mature IL-1β.

Downstream of GSDMD cleavage, the Ragulator-Rag protein
complex, which controls mTOR signaling, is required for
GSDMD oligomerization and pore formation (Evavold et al.,
2021). The role of Ragulator-Rag in GSDMD regulation was
linked to the production of ROS metabolites, which are necessary
to promote GSDMD oligomer formation and pyroptosis
(Evavold et al., 2021). How ROS metabolites affect GSDMD
pore formation is still unknown, but they could directly affect
GSDMD cysteine residues either through addition of activating
PTMs or removal of inactivating PTMs. In support of this model,
our recent work has determined that oxidation state of cysteines
in the N terminus of GSDMD are drastically different in RagA-
deficient cells that do not form pores compared to wild type
macrophages (Devant et al., 2022). Moreover, defects in GSDMD
pore formation in RagA-deficient cells could be rescued through
diverse ROS inducers (Devant et al., 2022). Beyond these
indications that ROS may directly regulate GSDMD
oligomerization within living cells, ROS may mediate
additional indirect effects on related cellular processes such as
autophagy or oxidation of host membranes. Additional studies
are required to determine the mechanisms by which ROS can
affect GSDMD pores.

GSDMD-INDEPENDENT IL-1 SECRETION

GSDMD mediates membrane permeability and IL-1 secretion
during acute inflammasome signaling (Evavold et al., 2018; Heilig
et al., 2018). Permeabilization of the plasma membrane by
alternate means is often sufficient to encourage secretion of
IL-1 that is independent or secondary to GSDMD. Physical
disruption of the membrane is sufficient to mediate IL-1
release secondary to cell lysis after treatment with uric acid
crystals (Rashidi et al., 2019). In GSDMD- or caspase-1-
deficient cells, long term inflammasome stimulation can lead
to IL-1 secretion that is dependent on GSDME or subsequent
membrane rupture and likely involves a slow induction of
apoptotic signaling (Schneider et al., 2017; Heilig et al., 2020;
Zhou and Abbott, 2021). GSDME, like GSDMD, can form
membrane pores in both stressed mitochondria and the
plasma membrane to facilitate either direct release of IL-1 or
the initiation of membrane lysis (Rogers et al., 2017; Wang et al.,
2017; Rogers et al., 2019). GSDME requires the activation of
apoptotic executioner caspases such as caspase-3/-7 for
processing into an N-terminal pore forming fragment (Rogers
et al., 2017; Wang et al., 2017). Like GSDMD, GSDME may also

promote IL-1αmaturation via calcium flux and calpain activation
(Aizawa et al., 2020). Thus, the primary channels in myeloid cells
that mediate IL-1 secretion after inflammasome signaling or
caspase-8 activation are GSDMD and GSDME.

GSDME can be activated in trans by delivery of granules from
CTL and NK cells that contain granzyme B protease (Zhang et al.,
2020a). It is conceivable that granzyme-mediated GSDME
activation could lead to NLRP3 inflammasome activation
through potassium efflux and membrane damage. Other
gasdermin family members exist that may show cell type or
stimulation specific cleavage and pore forming abilities.
Granzyme A may mediate cleavage and activation of GSDMB
(Zhou et al., 2020). As this pore could also mediate potassium
efflux, granzymes may encourage NLRP3 inflammasome
processing and release of IL-1 downstream of GSDMB
activation. Therefore, different cell types and stimulations may
result in the activation of specific gasdermins allowing for release
of IL-1 family members in conjunction with or independent of
inflammasomes.

In the context of necroptotic signaling, RIPK3
phosphorylation of the pore forming protein MLKL causes
membrane damage that can result in cell lysis. This membrane
damage can allow for potassium efflux from the cell leading to
activation of the NLRP3 inflammasome (Conos et al., 2017;
Gutierrez et al., 2017). NLRP3 activation in this context is
required for secretion of bioactive IL-1 primarily through
control of IL-1β cleavage, whereas MLKL permeabilization and
subsequent lysis is sufficient to allow for passive release
independent of GSDMD (Gutierrez et al., 2017). As has been
shown for GSDMD, MLKL membrane damage is negatively
regulated by ESCRTIII-dependent membrane repair processes
(Gong et al., 2017).

Buffering cell culture stimulations or organ explants with
the amino acid glycine has been shown to inhibit lysis in
response to inflammasome activation and ischemia
reperfusion injury (Weinberg et al., 1987; Frank et al., 2000;
Fink and Cookson, 2006). While originally thought to
discourage osmotic pressure on cell membranes, the
discovery of GSDMD and the characterization of the
permissive transport of ions and water across the
membrane suggest that glycine must inhibit lysis
independently of osmotic pressure. Glycine is
experimentally used to separate GSDMD pore formation
from pyroptotic lysis during inflammasome stimulations
(Evavold et al., 2018; Heilig et al., 2018). These experiments
illustrated that IL-1β was able to directly traverse GSDMD
pores on the membrane and did not require membrane rupture
for release. A recent study has discovered that the protein
NINJ1 mediates membrane rupture downstream of diverse
triggers such as GSDMD pore formation, bacterial toxin pore
formation, and late apoptotic signaling that might permit
GSDME pore formation (Kayagaki et al., 2021). Notably,
MLKL activation during necroptotic signaling appears
sufficient to mediate membrane lysis independent of NINJ1.
NINJ1-deficient cells provide additional evidence that
GSDMD can directly convey IL-1β across the plasma
membrane of inflammasome-activated macrophages. Recent
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work suggests that glycine may impinge upon NINJ1
oligomerization and membrane rupture, though evidence of
whether this is a direct effect on NINJ1 or operates on an
unknown activation signal of NINJ1 has not been determined
(Borges et al., 2021). Thus, glycine buffering and NINJ1
deficiency can be used to chemically and genetically
separate IL-1 secretion from lysis in many contexts
(Evavold et al., 2018; Heilig et al., 2018; Bjanes et al., 2021;
Borges et al., 2021; Kayagaki et al., 2021).

TRANSIENT MEMBRANE PERMEABILITY
AND HYPERACTIVATION

Transient membrane permeability may represent a mechanism of
IL-1 secretion (Evavold et al., 2018; Rühl et al., 2018). Recent
work has established that cell death and lysis are not necessary
consequences of inflammasome activation (Chen et al., 2014;
Conos et al., 2016; Gaidt et al., 2016; Wolf et al., 2016; Zanoni
et al., 2016). Cells that secrete IL-1 while maintaining energetic

viability and resisting membrane rupture are considered
hyperactive (Zanoni et al., 2016; Evavold et al., 2018). Certain
cell types such as a neutrophils and dendritic cells demonstrate
intrinsic resistance to pyroptotic lysis that may represent different
membrane reparative capacities, caspase activation dynamics,
and expression levels of pore forming proteins such as
GSDMD (Chen et al., 2014; Zanoni et al., 2016; Boucher et al.,
2018). Some cell types, such as human and porcine blood
monocytes, can release IL-1β without cell death as occurs
during exogenous treatment of cells with PAMPs such as LPS
(Gaidt et al., 2016). However, stimulation of monocytes with
combinations of PAMPs can convert a non-lytic release of IL-1β
to lytic release in a GSDMD- and ROS-dependent manner
(Semino et al., 2018).

An increasing set of stimuli has been reported to induce
inflammasome activities and IL-1 release from living
(hyperactive) cells (Shimada et al., 2010; Wolf et al., 2016;
Zanoni et al., 2016; Evavold et al., 2018). It has been noted
that a single inflammasome stimulus can elicit pyroptosis or
hyperactivation within the same cell type that presumably

FIGURE 3 | Host metabolic state dictates the route of IL-1β secretion. A major mechanism of IL-1β secretion involves permeabilization of the plasma membrane.
Inflammasomes can control the maturation of pro-IL-1β into IL-1β in both nutrient replete or nutrient depleted settings. Inflammasomes can release the pore-forming
moiety of GSDMD to encourage membrane permeability for direct secretion and can induce membrane rupture for indirect secretion. Several other membrane
permeabilization strategies are sufficient to secrete IL-1β including other gasdermin family members, necroptotic MLKL, bacterial pore forming toxins, and physical
disruption. An alternate mechanism of IL-1β secretion may exist that involves capture or translocation into a vesicle intermediate during nutrient depleted or proteotoxic
stress settings.
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depends on the strength of inflammasome signaling (Xia et al.,
2021). Cell types may also display varied expression of NINJ1 that
result in different thresholds or propensity for cell lysis. This may
explain why some cell types such as skin keratinocytes display
membrane ballooning after GSDMD and GSDME activation
without appreciable cell lysis (Orzalli et al., 2021).

While more mechanistic studies are necessary to define the
molecular events that determine inflammasome-dependent
activities in dead (pyroptotic) or live (hyperactive) cells,
physiological consequences of these activities have proven
notable. In particular, the cell fate of hyperactivation has
gained attention for its superior ability to activate adaptive
immune responses (Zanoni et al., 2016). By adding the IL-1
family to the repertoire of cytokines secreted by activated DCs,
modulating hyperactivation has implications for next generation
vaccines. Inflammasomes, specifically within hyperactive DCs are
able to speed up the differentiation of antigen specific CD8+

T cells and the production of long-lived memory T resident
memory cells, which are associated with protective immunity in
cancer (Zhivaki et al., 2020). In the context of S. aureus infection,
similar links between cell hyperactivation and protective
immunity have been observed (Sanchez et al., 2017). The
metabolic profile of hyperactive cells is distinct from naïve or
traditionally activated cells, as these cells maintain mitochondrial
oxidative phosphorylation while simultaneously utilizing
glycolytic activities (Wolf et al., 2016; Zanoni et al., 2016; Di
Gioia et al., 2020). In contrast, traditionally activated cells
undergo a shift from oxidative phosphorylation to glycolysis.
These different metabolic activities and maintenance of
mitochondrial polarization may regulate IL-1 secretion,
membrane reparative capacity, and cell death (Di Gioia et al.,
2020). As the host dynamically regulates metabolism under stress
conditions or infection (Pernas, 2021), cells may have evolved
alternative methods to secrete IL-1 beyond direct membrane
pores in order to retain the threat contextualization of secreted
pro-inflammatory IL-1 family members.

METABOLIC CONTROL OF IL-1
SECRETION

As stated in the prior sections, under nutrient replete conditions a
major mechanism of IL-1 secretion is direct conveyance across
the plasma membrane through GSDMD pores and other
membrane permeabilization strategies (Figure 3). During
metabolic dysfunction or starvation, alternative mechanisms
may mediate IL-1 secretion (Figure 3). IL-1β can be detected
in vesicle intermediates during ER stress and starvation (Dupont
et al., 2011; Zhang et al., 2015; Kimura et al., 2017; Zhang et al.,
2020b). IL-1β can be ubiquitinated, which may encourage
degradation through autophagy and the proteasome or
impinge upon cleavage by inflammatory caspases (Harris
et al., 2011; Ainscough et al., 2014; Eldridge et al., 2017;
Vijayaraj et al., 2021). Autophagy is also known to impinge
upon inflammasome signaling (Saitoh et al., 2008; Shi et al.,
2012; Liu et al., 2016b). Thus, paradoxically autophagic capture of
inflammasomes and cleaved substrates such as of IL-1βmay serve

as a possible mechanism for increased cellular survival by limiting
inflammasome signaling but also promote secretion of low
quantities of IL-1β. As such, mature IL-1β may also be
secreted via autophagic means, but the precise trafficking to
prevent degradation has not been determined (Dupont et al.,
2011; Kimura et al., 2017). During inflammasome activation,
GSDMD may still play a role in autophagic release of IL-1
(Karmakar et al., 2020). In neutrophils, GSDMD is genetically
required for IL-1β release (Heilig et al., 2018; Monteleone et al.,
2018), but this appears to be independent of plasma membrane
localization and pore formation (Karmakar et al., 2020). Instead,
GSDMD targets intracellular granules that may allow for IL-1β
incorporation into secretory granules (Karmakar et al., 2020).
This targeting of secretory granules may allow for a feed forward
amplification loop whereby release of granule proteases into the
cytosol processes additional IL-1β and GSDMD and calcium flux
elicited from the hypercalcemic granules or lysosomes lead to
lysosomal exocytosis (Karmakar et al., 2020). Furthermore,
deficiency of the autophagy component ATG7 diminished IL-
1β in neutrophils suggesting that autophagosomes may also
contribute to secretion in addition to perforated secretory
granules. Disruption of lysosomes by GSDMD may also
explain why autophagosomes may not become degradatory in
certain contexts of IL-1β capture.

Ragulator-Rag is purported to control GSDMD pore
formation via control of GSDMD cleavage during caspase-8
activation in the context of TAK1 inhibition and regulate
GSDMD oligomerization through metabolic control of ROS
production (Evavold et al., 2021; Zheng et al., 2021).
Ragulator-Rag can also mediate repair of endo-membrane
damage as evident after treatment with lysosomal damaging
agents (Jia et al., 2018; Jia et al., 2020). This may invoke direct
activation of macroautophagy as well as indirect upregulation of
lysosome biogenesis and autophagy genes downstream of mTOR
inactivation and subsequent nuclear translocation of de-
phosphorylated TFEB (Sardiello et al., 2009; Settembre et al.,
2011; Efeyan et al., 2013; Jia et al., 2018; Jia et al., 2020). Recent
work has also suggested that mitochondrial dysfunction is sensed
by the Ragulator-Rag complex presumably for autophagic
capture of damaged or stressed mitochondria (Condon et al.,
2021). Ragulator-Rag may be a general regulator of membrane
homeostasis by surveying damaged membranous organelles.
Thus, Ragulator-Rag may act to prevent GSDMD-mediated
membrane damage in many distinct ways ranging from
control of cleavage, oligomerization, and removal of damaged
organelles (Jia et al., 2018; Condon et al., 2021; Evavold et al.,
2021; Zheng et al., 2021).

Autophagic capture and release of mature IL-1β may operate
under diverse metabolic perturbations that could occur in
response to stress or microbial invasion (Tattoli et al., 2012;
Ravindran et al., 2016). Investigation of whether Ragulator-Rag
deficiency, starvation, or other mechanisms of mTOR inhibition
decrease GSDMD-mediated IL-1 release while encouraging
autophagic means of release are needed. Metabolic
perturbations have long been known to affect initiation of cell
death signaling through apoptotic, pyroptotic, and necroptotic
pathways (Zhang et al., 2009; Andersen and Kornbluth, 2013;
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Próchnicki and Latz, 2017; Pajuelo et al., 2018). These metabolic
perturbations may serve as evolutionary hallmarks of threats to the
host such as sterile stressors or pathogenic invasion. Recent studies
have identified nuanced metabolic control of terminal stages of
death pathways as is evident with control of GSDMDat the stage of
cleavage by tricarboxylic acid cycle (TCA) metabolites,
oligomerization by ROS metabolites, and pore conformation by
phospholipid catabolism (Humphries et al., 2020; Bambouskova
et al., 2021; Evavold et al., 2021; Santa Cruz Garcia et al., 2022). As
microbes may also have evolved mechanisms to manipulate these
endogenous metabolic checkpoints, alternative mechanisms of IL-
1 release are crucial to convey threat levels to other cells. IL-1 family
cytokines can poise or prime cells for cell-intrinsic immunity or
detection of higher-level threats (Garlanda et al., 2013; Evavold and
Kagan, 2019). IL-1 family cytokines can also encourage local
inflammation and recruitment of additional innate and adaptive
leukocytes (Garlanda et al., 2013). In addition, IL-1 family
cytokines can reprogram organismal metabolism through fever
(Garlanda et al., 2013). The intersection between host defense and
metabolism is a burgeoning area of investigation. Studies on IL-1
family cytokines as both initiators and responders to host
metabolic state are sure to follow.

CONCLUDING REMARKS AND
OUTSTANDING QUESTIONS

Of the IL-1 family members, IL-1α and IL-1β have been the most
characterized in terms of bioactivity, activation, and secretion.
Based on current evidence for the multi-step regulation of these
prototypical nuclear and cytosolic IL-1 family members, we
speculate that similar mechanisms may exist for the activation
and secretion of other leaderless IL-1 family members.
Specifically, we predict that the crossing of topological
barriers, such as the nuclear and/or plasma membranes,
represents a point of regulation for other IL-1 family
members. Whereas nuclear IL-1 family members may be
constitutively expressed yet confined by an added physical
barrier, cytosolic IL-1 family members may be primarily
regulated by context-dependent transcription and refined
proteolytic cleavage by the secreting cell or other cell types.
Further studies are required to determine the signals that
instruct the nuclear release of IL-1α, IL-33, and IL-37, and in
the case of newly synthesized membrane-bound IL-1α, more
work is required to delineate the mechanisms that instruct the
trafficking to and crossing of the plasma membrane. Perhaps due
to inflammatory nature of secreted IL-1 family cytokines,

compensatory mechanisms regulate IL-1 proteins post-
secretion. For example, decoy receptors, binding proteins, and
inactive IL-1 family structural analogues (termed receptor
antagonists) further buffer the bioactivity of the IL-1 family in
the extracellular space. These buffering systems likely exist to
limit inflammation in the context of homeostatic death processes
and may be upregulated during the resolution phase of
inflammation. Moreover, metabolic control of IL-1 family
cytokines likely constitutes another pathway of regulation.
While intact metabolism may primarily affect IL-1β secretion
via encouraging membrane permeability, alternate routes of
secretion may occur in nutrient deplete contexts or
proteotoxic stress. For instance, translocation or capture of IL-
1β into vesicle intermediates may rely on the metabolic status of
the cell. Analogous metabolic mechanisms may also exist in the
regulation of other IL-1 family members. In terms of membrane
permeabilization strategies employed by the host to secrete IL-1,
GSDMD and GSDME are the best characterized. Recent studies
have begun to discover host or pathogen driven activation
programs for other gasdermin family members. Additional
studies have implicated distinct mechanisms of membrane
permeabilization or rupture mediated through MLKL, NINJ1,
and bacterial pore forming toxins as well as physical disruption as
being sufficient for mediating release of IL-1. Cell type specific or
pathogen specific programs may therefore exist that mediate the
secretion of particular IL-1 family cytokines in response to unique
membrane permeabilization strategies.
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