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Abstract
Species distribution models (SDM) can be valuable for identifying key habitats for con-
servation management of threatened taxa, but anthropogenic habitat change can 
undermine SDM accuracy. We used data for the Red Siskin (Spinus cucullatus), a critically  
endangered bird and ground truthing to examine anthropogenic habitat change as a 
source of SDM inaccuracy. We aimed to estimate: (1) the Red Siskin’s historic distribu-
tion in Venezuela; (2) the portion of this historic distribution lost to vegetation degra-
dation; and (3) the location of key habitats or areas with both, a high probability of 
historic occurrence and a low probability of vegetation degradation. We ground-
truthed 191 locations and used expert opinion as well as landscape characteristics to 
classify species’ habitat suitability as excellent, good, acceptable, or poor. We fit a 
Random Forest model (RF) and Enhanced Vegetation Index (EVI) time series to evalu-
ate the accuracy and precision of the expert categorization of habitat suitability. We 
estimated the probability of historic occurrence by fitting a MaxLike model using 88 
presence records (1960–2013) and data on forest cover and aridity index. Of the 
entire study area, 23% (20,696 km2) had a historic probability of Red Siskin occurrence 
over 0.743. Furthermore, 85% of ground-truthed locations had substantial reductions 
in mean EVI, resulting in key habitats totaling just 976 km2, in small blocks in the west-
ern and central regions. Decline in Area of Occupancy over 15 years was between 
40% and 95%, corresponding to an extinction risk category between Vulnerable and 
Critically Endangered. Relating key habitats with other landscape features revealed 
significant risks and opportunities for proposed conservation interventions, including 
the fact that ongoing vegetation degradation could limit the establishment of reintro-
duced populations in eastern areas, while the conservation of remaining key habitats 
on private lands could be improved with biodiversity-friendly agri-  and silviculture 
programs.
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1  | INTRODUCTION

One of the most promising applications of species distribution mod-
eling (SDM) for conservation management is ranking areas by esti-
mated habitat quality (Kramer-Schadt, Revilla, & Wiegand, 2005). This 
use of SDM assumes that areas with high probabilities of occurrence 
predict high-quality habitats (Franklin, 2010). However, species are 
not always present where high occurrence probabilities are predicted 
(Peterson et al., 2011). This mismatch between modeled predictions 
and field observations may result from problems with the SDM it-
self, such as conceptual errors (e.g., when models do not include 
biogeographical barriers or biotic interactions), limitations in variable 
selection (due a poor understanding of factors driving species dis-
tribution or use of outdated presence information with respect to 
environmental predictors used (Peterson et al., 2011). However, in 
other cases, this mismatch may be driven by anthropogenic processes 
such as increased poaching and overexploitation (Sánchez-Mercado 
et al., 2014) or land transformation due urban or agricultural devel-
opment. For these reasons, field validation of SDM predictions is rec-
ommended; however, it is often not performed (Greaves, Mathieu, & 
Seddon, 2006).

The most frequent strategy for validating SDM predictions in the 
field is searching for the species of concern in areas with high values 
of predicted occurrence probabilities: Detections are interpreted as a 
confirmation of high-quality habitat (Bosso, Rebelo, Garonna, & Russo, 
2013; Rebelo & Jones, 2010). However, if land cover transformation is 
gradual then, species detection is still possible where habitat has been 
partly degraded but not lost. Such “snapshot detections” of species 
occurrence may generate a misleading picture of relative habitat qual-
ity, which in turn could have disastrous consequences if, for example, 
the model is used to identify areas for the reintroduction of captive-
bred endangered species (Lahoz-Monfort, Guillera-Arroita, & Wintle, 
2014). In such situations, a more nuanced, nonbinary approach to field 
validation is essential. On the other hand, lack of detection can be 
noninformative if the species is temporarily absent from high-quality 
habitat due to seasonal movements or has suffered strong declines 
due to habitat-unrelated threats such as poaching or other forms of 
wildlife extraction.

Clearly, validating SDM based only on species detections could 
be inappropriate in areas threatened by vegetation degradation and 
wildlife extraction. We therefore developed a new approach for field 
validation when a mismatch between model results and simple de-
tection is likely. In this study, we used historical presence records 
for the Red Siskin (Spinus cucullatus), a low-abundance, Critically 
Endangered, and little-studied bird, to examine the combined util-
ity of species distribution models and ground truthing via this new 
approach, to improve identification of key habitats for conserva-
tion interventions. The Red Siskin, a small Neotropical finch, is a 

particularly appropriate system in which to develop these alterna-
tive methods because it has been largely extirpated from its historic 
range across Venezuela, eastern Colombia, and Trinidad (Rodríguez, 
García-Rawlins, & Rojas-Suárez, 2015). Currently, the species per-
sists in a few isolated populations within Venezuela and in a recently 
discovered small disjunct population in Guyana (Robbins, Braun, & 
Finch, 2003). The Red Siskin is listed as Endangered globally and 
Critically Endangered in Venezuela as a result of historic overex-
ploitation for the specialized pet trade, and captive breeding and re-
introduction have been recommended as management interventions; 
however, habitat loss is thought to be an important threat, although 
data are scan (Rodríguez-Clark et al., 2015).The natural habitat of 
the Red Siskin in Venezuela includes primarily tropical premontane 
humid and dry forests (Coats & Phelps, 1985) the latter of which 
are among the most threatened ecosystems globally and are endan-
gered in Venezuela due to conversion for urbanization and agricul-
ture (Rodríguez, Rojas-Suárez, & Giraldo Herández, 2010). To date, 
there has been no systematic assessment to determine the amount 
and location of remaining high-quality habitat for Red Siskins, nor the 
threat of deterioration those habitats face.

The conservation action plan for the Red Siskin in Venezuela 
proposed by the Red Siskin Initiative recommends the eventual res-
toration of this species via reintroductions into suitable habitat, in 
areas where the original threats—trapping and habitat loss—have 
been controlled (http://www.redsiskin.org/). To accurately identify 
areas that can support viable populations, it is necessary to under-
stand the relationship between Red Siskin habitat requirements and 
these landscape units, as well as to assess how these units have 
changed over time. Here, we use a representative dataset of pres-
ence records and species distribution models (SDMs) based on max-
imum likelihood to estimate the historic probability of occurrence of 
the Red Siskin in Venezuela. Then, we fit a Random Forest classifi-
cation model (RF) to predict the spatial distribution of current hab-
itat suitability—based on expert ground evaluation—as a response 
to vegetation degradation. We combined SDM and RF results to 
examine the drivers of model mismatch, addressing three basic 
questions about species habitat availability: (1) How extensive was 
the historic distribution of Red Siskins in Venezuela? (2) How wide-
spread is habitat loss as measured by vegetation degradation? and 
(3) Where are remaining key habitats, or areas with both high historic 
occurrence probability and low landscape transformation? In addi-
tion, to demonstrating the usefulness of our approach for identifying 
key habitats for a threatened, elusive, and poorly studied species, 
we also aimed to examine implications for the threat status of the 
species and consider the consequences of our results for the design 
of effective strategies for reintroduction, including habitat conserva-
tion, which may be needed to achieve self-sustaining populations of 
the Red Siskin.
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F IGURE  1  (a) Map of the study area in 
Venezuela. Gray lines represent political 
divisions; gray polygons are the study area 
for habitat and historical occurrence; black 
lines enclose national parks. The most 
relevant national parks are labeled. (b) 
Elevation layer with Red Siskin presence 
records compiled from different sources of 
data. Gray symbols indicate records before 
1960; black symbols indicate records after 
this year. (c) Elevation layer with locations 
in which habitat quality was evaluated. The 
most important geographic features are 
labeled

(b)

(c)

(a)
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2  | METHODS

2.1 | Study area

Although the precise historical range of the Red Siskin is unknown, ex-
pert opinion can be used to identify an appropriate study area that is 
likely to contain this range. Experts agree that the distribution of this 
species in Venezuela is shaped principally by three factors: elevation, 
forest cover, and humidity (Coats & Phelps, 1985; Rivero Mendoza, 
1983). The Red Siskin is thought to use a variety of habitats including 
dry deciduous woodland, mixed deciduous forest, evergreen forest, 
and the savanna-forest ecotone with daily and seasonal movements 
covering several kilometers from humid premontane forest into drier 
semideciduous forest and grassy clearings. Red Siskins use eleva-
tions from 200 to 1500 m (Coats & Phelps, 1985; Hilty, 2003; Rivero 
Mendoza, 2004). Based on these expert habitat descriptions, our ap-
proach for generating the study area polygon was based on estimating 
the Extent of Occurrence using the overlap of three environmental 
variables as proxies for factors describing suitable Red Siskin habitat: 
(1) elevation model (ELEV, 1 km of resolution; CGIAR Institute, 2010); 
(2) proportion of tree cover (TREE, 0.5 km of resolution; Hansen et al., 
2002); and (3) aridity index (AI, 1 km; Zomer, Trabucco, Bossio, van 
Straaten, & Verchot, 2008).

Elevation values in Venezuela range from 0 to 4,382 m; we created 
a binomial layer defining as suitable (1) range from 200 to 1500 m, 
and values outside this range as unsuitable (0). Tree cover values in 
northern Venezuela ranged from 0% to 84%; because Red Siskins can 
use several vegetation types with different coverage, we used a broad 
threshold so that we could include a wider range of vegetation cover. 
Thus, we defined as suitable tree cover values (TREE) from 10% to 
100%. Aridity index (AI) represented precipitation availability over at-
mospheric water demand, the ratio of mean annual precipitation, and 
potential evapotranspiration, between the years 1950 and 2000. AI 
values ranged from 1,847 to 26,349, with higher values representing 
more humid conditions. We defined AI values from 2,000 to 6,500 to 
be suitable, which corresponded to semiarid and dry subhumid condi-
tions (Trabucco & Zomer, 2009; Zomer et al., 2008).

For the study area definition and for the analysis of historical prob-
ability of occurrence (see below), we decided to change the spatial res-
olution of all predictive variables to the lowest spatial resolution (1 km) 
to minimize error due to spatial uncertainty in georeferencing historical 
distribution records (Wieczorek & Hijmans, 2004). For that, we aggre-
gated (decreasing the resolution) using nearest-neighbor resampling 
method (by centering). This method is implemented in the function  
resample from raster package in R (Hijmans & Van Etten, 2012).

Finally, we overlapped all binomial layers to define a study area 
within which minimal habitat conditions for Red Siskins were met 
(90,060 km2; Figure 1a).

2.2 | Historical probability of occurrence

We estimated the historical probability of occurrence (ΨH) for the Red 
Siskin within the study area using a compilation of historic and recent 

presence records and models based on maximum likelihood. We first 
made an extensive search for historic and current records of spe-
cies presence from four sources: (1) Global Biodiversity Information 
Facility (GBIF) (2) national and international museums, (3) interviews 
with local ornithologists, and (4) a literature review. For all sources, we 
used keywords in English and Spanish related to all common and sci-
entific names of the species (considering synonyms, alternative spell-
ings, and subspecies) using the list compiled by Encyclopedia of Life 
(www.eol.org): Black Hooded Siskin, Cardenalito, Cardenal, Carduelis 
cucullata, Red Siskin, Spinus cucullatus, Sporagra cucullata.

From GBIF, we obtained 26 records from 1898 to 2010 (most from 
1898; GBIF Secretariat, 2016). We reviewed the bird collections from 
five international museums (American Museum of Natural History, 
Yale Peabody Museum of Natural History, Smithsonian National 
Museum of Natural History, Royal Ontario Museum, and British 
Museum of Natural History), and three local museums (Colección 
Ornitológica Phelps, Museo de Barquisimeto, and Museo de Biología 
de Rancho Grande). From these museums, we compiled 92 records of 
specimens collected from 1847 to 2008. Additionally, 43 presence re-
cords of Red Siskins observed between 1995 and 2013 were reported 
during interviews with six local ornithologists with long-term experi-
ence in Venezuela: Chris Sharpe, Fidel Escola, Gustavo Rodríguez, José 
Gustavo León, Jhonathan Miranda, and David Ascanio.

Finally, we did a systematic review of the scientific literature using 
ISI Web of Knowledge and Google Scholar, using keys words related 
to the species and found seven published works (Coats, 1982; Coats 
& Phelps, 1985; Collar et al., 1992; López, 1991; Phelps & Phelps, 
1963; Rivero Mendoza, 1983, 2004) from which we retrieved 332 re-
cords from 1867 to 1992. In total, we compiled 491 records of species 
presence from 1847 to 2013 (Figure 1b).

We considered a record to be any discrete observation of one or 
more birds with a unique combination of the following information: (1) 
source, (2) coordinates, (3) observation year, (4) sex and development 
stage (adult or juvenile), and (5) quantity reported (number of individ-
uals). For records without specific geographic coordinates, we used 
location descriptions (place names, geographic features, etc.) to assign 
latitude and longitude based on gazetteers (GIS Data Depo, DIVA GIS). 
When contrasting coordinates were provided by each gazetteer, we 
calculated the mean value and error of latitude and longitude. If the 
error was larger than the cell resolution used to project our predic-
tions (1 km2) or if original coordinates had rounded two decimals, we 
discarded the record (Figure 1b).

To estimate the historical probability of occurrence (ΨH) for the 
Red Siskin, we used a maximum likelihood approach based on logis-
tic regression to fit a species distribution model as a function of co-
variates, as implemented in R (“MaxLike”; Royle, Chandler, Yackulic, 
& Nichols, 2012). In addition to the three covariates used to define 
the study area, we also considered the 19 climatic variables in the 
WorldClim dataset as predictors (resolution 1 km; Hijmans, Cameron, 
Parra, Jones, & Jarvis, 2005). We evaluated redundancy and collinear-
ity between all covariables using a hierarchical cluster analysis based 
on Pearson correlation. We defined a cluster as the group of variables 
with correlation <0.6 and selected one covariable for each cluster 

http://www.eol.org
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(Sarle, 1990). Thus, our complete model included the following eight 
variables: aridity index (AI), forest cover (TREE), mean diurnal tempera-
ture range (BIO02), isothermality (BIO03), annual temperature range 
(BIO07), mean temperature of the warmest quarter (BIO10), precip-
itation in the driest quarter (BIO17), and precipitation in the coldest 
quarter (BIO19). We applied a square-transformation to variables with 
considerable skew (TREE, BIO03, BIO10, BIO17, BIO18, and BIO19) 
and standardized all variables to a zero mean and unit variance, as  
recommended for the algorithm implemented (Royle et al., 2012).

To fit the occurrence model, we used only the 88 georeferenced 
presence records from 1960 or later, because our covariates were built 
with data from this date or later. The MaxLike approach assumed that 
detectability was constant over the study area (Royle et al., 2012). 
Sampling effort was extensive enough over time (56 years) to have 
detected the species in the areas considered if it was present, leav-
ing detection probability sufficiently uniform to meet this assumption. 
However, MaxLike also assumed that sampling was random, which 
clearly was not the case, even though our dataset included almost all 
known sources of records. Thus, to surmount this problem, we applied 
a random sampling to the reports and repeatedly partitioned them into 
two independent subsets: an occurrence probability calibration sub-
set and an occurrence validation subset (see details below; Franklin, 
2010). The calibration subset was used to fit SDMs as described below 
and consisted of 66 reports (75% of the data). The validation subset 
(22 reports) was used to validate SDM performance. We repeated this 
two-way partitioning five times, which created replicates allowing us 
to directly evaluate data heterogeneity (Peterson et al., 2011).

To select the “best” MaxLike occurrence probability model, we 
then fit different combinations of the eight covariates described above 
to each of the five replicate calibration data subsets. Our first model 
(mdl1) contained linear terms for all eight variables. The second (mdl2) 
included only climatic variables, and the third model (mdl3) was the 
most reduced, including only forest cover and aridity index, which have 
been proposed by experts to be the most important variables affecting 
Red Siskin occurrence (Rivero Mendoza, 2004). The “best” model was 
considered to be the one that both converged and had the lowest AICc 
in the most replicates (Table 1; Burnham & Anderson, 2002).

We used evaluate and threshold functions from dismo package in 
R (Fielding & Bell, 1997) to (1) select the replicates of the best model 
with the best performance to built spatial prediction, and (2) select 
the threshold of historic probability of occurrence at which Red Siskin 
presence is the highest (TΨH). Model prediction was evaluated based 
on correlation coefficient (cor), Area Under the Receiver Operator 
Curve (AUC), and maximizing the sum of sensitivity and specificity 
(maxSSS) using as pseudoabsences 88 points that were randomly 
selected from the northern part of the country, but outside of the 
study area for the Red Siskin. We selected the replicates 1, 2, and 5, 
which had the highest values of AUC, cor, and maxSSS to built the 
spatial prediction (Table 2). We used the mean value of statistic “max 
kappa” (predicted value at which kappa is highest; Liu, Berry, Dawson, 
& Pearson, 2005) of selected replicates as criteria to set TΨH (0.743). 
To built the spatial prediction, we used the predict function of maxlike 
package (Royle et al., 2012) and a raster stack of the same predictive 

variables disaggregated at a resolution of 250 m to produce a map that 
were comparable with our other predictions (see below).

2.3 | Ground-truthing and vegetation time 
series analysis

We randomly selected 90 points within the study area (Figure 1c) 
to perform ground truthing of habitat suitability. At each point, we 
walked transects of 1.5 km, which we laid on the roads nearest to 
the point. Along each transect, we stopped every 500 m, resulting in 
270 “evaluation locations” in total (90 random points * 3 stops per 
point). However, several of these evaluation locations were in areas 
that were either inaccessible or in areas with high risk to the personal 
security of field teams. We, therefore, systematically discarded 79 lo-
cations present in dangerous or inaccessible areas, resulting in a total 
of 191 evaluation locations.

From July 2015 to March 2016, two of us, including an expert or-
nithologist with 5 years’ experience studying Red Siskins in the field 
(JM) and an experienced assistant (ST), visited each evaluation loca-
tion and classified it into one of four categories of habitat suitabil-
ity for Red Siskin breeding (excellent, good, acceptable, poor), based 
on geographic characteristics (elevation, slope), and vegetation type 
(forest, shrubs, and pasture) that are considered important according 
to expert accounts and own field experience (Coats & Phelps, 1985; 
Rivero Mendoza, 1983, 2004). Locations with “excellent” suitability 
were those with mosaic of forests surrounded by shrubs, located at 
medium elevations (500–800 m) and steep slopes (>60%). Locations 

TABLE  1 Statistical support (AICc values), and convergence 
status for three models of red siskin occurrence, fit with MaxLike to 
five replicate data subsets

Model Replicate AICc Convergence

mdl1 = TREE + AI + BIO02 + BIO03 + BIO07 + BIO10 + BIO17 + BIO
19

1 647.982 No

2 647.691 No

3 635.865 No

4 635.463 No

5 695.351 No

mdl2 = BIO02 + BIO03 + BIO07 + BIO10 + BIO17 + BIO19

1 650.621 No

2 642.334 No

3 633.761 No

4 634.553 No

5 692.630 No

mdl3 = TREE + AI

1 696.733 Yes

2 676.306 Yes

3 677.510 Yes

4 678.468 Yes

5 738.753 Yes
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with “good” suitability had forest surrounded by shrubs, but also by 
pastures or crops, had medium elevation and moderate slopes (20–
30%). “Acceptable” areas were composed mostly of shrubs and pas-
tures at low elevations (200–400 m) and moderate slopes. Finally, 
“poor” suitability areas consisted of transformed vegetation (pastures, 
urbanized areas) at low elevations (<100 m) and slopes <10%, or fully 
forested areas with no surrounding shrubs or fields, at extremely steep 
slopes. At each evaluation location, one person recorded landscape 
characteristics while the Red Siskin expert categorized overall habi-
tat suitability for species breeding. We then graphically examined the 
agreement between expert classification and landscape characteris-
tics evaluated (Fig. S1).

We next evaluated the accuracy and precision of habitat suit-
ability categories by relating them with recent Enhanced Vegetation 
Index time series (EVI). We used the MODIS Vegetation Index Product 
Series Collection 5 (MOD13Q1, version 5; Land Processes Distributed 
Active Archive Center - LP DAAC, 2014), which is available at 250 m 
of spatial resolution, and 16-day of temporal resolution (from February 
2000 to June 2015). EVI measures chlorophyll concentration in can-
opy vegetation and permits meaningful comparisons of seasonal and 
interannual changes in vegetation growth and activity (Huete et al., 
2002). The MODIS EVI product is computed from atmospherically 
corrected bidirectional surface reflectances that have been masked 
for water, clouds, heavy aerosols, and cloud shadows (Land Processes 
Distributed Active Archive Center – LP DAAC, 2014). The EVI value 
(where 0 indicated no vegetation and 1 indicated vegetation satu-
ration) is the result of “compositing” algorithm in which, several EVI 
images, over 16 days time interval, are merge to create a single cloud-
free image EVI map with minimal atmospheric and sun-surface-sensor 
angular effects.

We used the quality assurance flags (MODLAND_QA) to rank EVI 
observations (combination of localities and time periods): 37% of the 
observation had high quality, 47% had median quality, and 16% had 
poor quality (Land Processes Distributed Active Archive Center (LP 
DAAC), 2014). For all the analysis, we used the mean values of the 
observations with the highest quality available and discarded poor-
quality observations unless necessary.

In order to relate the subjective habitat suitability classifica-
tion with the measured EVI phenology, we fit a random forest 

classification model (RF). We implemented RF in the randomForest 
package in R (Liaw & Wiener, 2002). For each ground-truthing lo-
cation, we coded the expert’s suitability assessment as an ordinal 
variable with four categories and used the 23 values of the EVI phe-
nology as explanatory variables. We built each classification tree 
with a training dataset containing 63% of records sampled randomly 
with replacement from the original data and containing a random 
subset of five predictor variables selected from the full set of pre-
dictor variables. We resampled records to create 50,000 classifica-
tion trees in our RF. To evaluate the classification power of RF, we 
used the remaining 40% of records (i.e., “out-of-bag” observations, 
OOB). An estimate of the misclassification error rate was calculated 
for each OOB observation and averaged over all trees in the forest 
(Cutler, Edwards, & Beard, 2007). As the response variable was an 
ordinal variable, the OOB confusion matrix could overstate the clas-
sification error of the final RF model between contiguous categories. 
Therefore, we applied a matrix of ordered weights to recalculate the 
OOB (Piccarreta, 2008).

We visualized the spatial distribution of habitat with current op-
timal suitability using the predict function of randomForest package 
(Liaw & Wiener, 2002) and a raster stack of predictive variables (EVI 
16-day values for the year 2014) at a resolution of 250 m. Due to 
the inherent uncertainty in subject classifications and the resulting 
high RF classification error, we transformed the outcome of the 
prediction from a matrix of RF votes per category into a numerical 
value per pixel using single-step category weights (0 for “poor,” 3 
for “excellent”). The resulting map represents an index based on the 
weighted average of habitat suitability predictions in each 250 m 
cell.

EVI also allows the meaningful comparison of seasonal and inter-
annual changes in vegetation growth and activity. We therefore used 
the time series of EVI data to describe changes in the mean and vari-
ance of EVI values within the period studied at each evaluation loca-
tion. Changes in local vegetation did not occur simultaneously for all 
evaluation locations. Thus, we used the method proposed by Chen and 
Gupta (2000) to estimate the most likely point of significant change 
in mean and variance in each time series (i.e., the change point), as 
implemented in the function cpt.meanvar from package changepoint 
in R (v 2.2.1; R Development Core Team, 2015). We compared mean 

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

Number of 
presence records

17 18 17 18 17

Number of 
absences records

70 70 70 70 70

AUC 0.770 0.733 0.734 0.664 0.747

cor 0.374 0.346 0.333 0.210 0.333

maxSSS 0.589 0.391 0.240 0.103 0.240

Max kappa 0.786 0.692 0.544 0.139 0.751

AUC = area under the curve of Receiver Operating Characteristic. cor = correlation coefficient. max-
SSS = maximizing the sum of sensitivity and specificity. Max kappa = prediction value at which kappa 
statistic is the highest.

TABLE  2 Performance indices for the 
best model of Red Siskin occurrence 
(mdl3), fit with MaxLike to five replicate 
data subsets
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EVI values before (prior mean EVI) and after (current mean EVI) the 
change point for each series, but considered only the current values to 
calculate the EVI phenology (multi-year median values for each 16-day 
period) at each site.

2.4 | Identifying key habitats

Finally, we overlapped the historic probability of occurrence (from our 
SDM) and current habitat suitability predictions (from our RF) to iden-
tify “key habitats,” or areas with both high historic occurrence prob-
ability and excellent habitat suitability. To identify key habitats, we 
multiplied the values of both predictions to generate an overlap index 
that ranged from 0 to 2.248, with 0 indicating low historic probability 
of occurrence and low habitat quality and values close to 2 indicat-
ing high values for both conditions. We also performed an extinction 
risk assessment using the criterion of population reduction based on 
an estimated decline in Area of Occupancy (AOO) and habitat quality 
(criterion A2c; IUCN, 2012). We estimated AOO based on the num-
ber of cells containing key habitats and calculated the percentage of 
reduction in this area with respect to the historically suitable area 
for Red Siskins (i.e., areas with ΨH > 0.743). We also calculated AOO 
when key habitats were defined to include both “good” and “excel-
lent” habitat suitability, to take into account uncertainty in Red Siskin 
habitat use.

3  | RESULTS

3.1 | Spatial distribution of habitat with current 
optimal conditions

The majority of the evaluation locations (85%) had a substantial re-
duction in mean EVI values over the last 15 years (Figure 2). These 
changes were similar across different categories of habitat quality 
(chi-square = 4.707; df = 3; p = .195). For 60% of the evaluation lo-
cations, this change occurred before 2011. Locations classified with 
optimal habitat suitability (“good” and “excellent”) consistently had 
historic mean EVI values >0.4. Although for these same locations, cur-
rent mean EVI values were substantially lower, they were still above 
0.4. Locations classified with suboptimal habitat suitability (acceptable 
and poor) were more heterogeneous, with EVI values from 0.3 to 0.6, 
but mostly below the mean values of the optimal habitats (Figure 2).

The overall corrected classification error rate of the RF model was 
33.2%, with lowest classification error for “excellent” (22.1%) largest 
for “acceptable” (57.1%). Habitats classified as “good” were predicted 
in a wide area within the study area (35,494 km2, 39% of study area), 
while “excellent” habitat (3,127 km2, 3% of study area) were clus-
tered in the western part of the country, in the lowlands of the Sierra 
de Perijá and along the southern slope of the Cordillera de Mérida 
(Figure 3a). Other small and more dispersed blocks of “excellent” hab-
itat were predicted in the center-west as well as in the east. Habitat 
with suboptimal conditions (“poor” and “acceptable”) was focused in 
three large blocks (55,307 km2, 61%) in the west, center, and east of 
the country.

3.2 | Historical probability of occurrence

Presence records before 1960 (25 records) were located mostly in the 
western part of the country, while more recent sightings (94) were 
evenly distributed across the center and west (Figure 1b).

The best model for historic probability of occurrence was mdl3 
(containing only the aridity index and forest cover). Alternative models 
containing other climatic variables did not converge due to scarcity 
of records (Table 1). Our estimates of historical occurrence probability 
were based on the three replicates of mdl3 that had good predictive 
accuracy (Table 2). The area with the highest occurrence probabilities 
(ΨH > 0.743) covered 20,696 km

2 and was concentrated toward the 
center and north of the Coastal Cordillera. In the west, small fragments 
with high probability were observed toward the south, along the north 
slope of the Andean Cordillera and Serranía de Portuguesa, and along 
the eastern coast of Lake Maracaibo (Serranía del Empalado). To the 
east, there were also discontinuous fragments around the Turimiquire 
Massif and west of the Araya Península (Figure 3b).

Of the area with the best historically suitable area for Red Siskins 
(ΨH > 0.743), only 4,686 km

2 (23%) was protected in a Venezuelan 
national park. The most valuable unprotected habitats were in the 
western region, including areas in the northern Sierra de Perijá, along 
the west coast of Lake Maracaibo and in the mountains of Falcón and 
Lara. In the northeast, there was also a wide continuous area with high 
probabilities on unprotected lands (Figure 3b).

3.3 | Key habitats

Key habitats, defined as areas with both high historic occurrence 
probabilities and currently “excellent” suitability, covered just 
976 km2 and occurred in the western and central regions (northern 
end of the Sierra de Perijá, lowlands of Sierra de El Empalado, and the 
Coastal Cordillera), forming small blocks (Figure 3c). Only three small 

F IGURE  2 Changes in EVI during from 2000 to 2015 for each 
evaluation location within the Red Siskin study area. The abscissa 
indicates the mean EVI value before the inflection point defined 
for each evaluation location. The ordinate reflects the mean EVI 
value after the inflection point. The four habitat quality classes are 
indicated

Poor
Acceptable
Good
Excellent
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national parks (San Esteban, Macarao, and Henri Pittier) and one natu-
ral monument (Pico Codazzi), included portions of these key habitats 
(279 km2), while the remaining areas did not have protected status. 
If key habitats were expanded to include both “good” and “excellent” 
areas, their area increased by an order of magnitude, to 12,274 km2.

If the present Area Of Occupancy (AOO) was presumed to consist 
of key habitats (976 km2), this represented a decline of 95% of the his-
toric range (20,696 km2 with ΨH > 0.743). This decline corresponded 
to the risk category of Critically Endangered (A2c; IUCN, 2012). In 
contrast, if expanded key habitat (12,274 km2) was considered, the de-
cline was 40%, which corresponded to the risk category of Vulnerable.

4  | DISCUSSION

4.1 | Key habitats

Our approach of combining species distribution models and 
Random Forest models proved to be useful in revealing substan-
tial mismatch between historical predictions and present condi-
tions, and identifying key habitats for Red Siskin conservation, or 
areas with historically high occurrence probabilities and currently 
optimal habitat suitability, for Red Siskin conservation. We were 

able to identify areas with suitable environmental and ecological 
conditions for species occurrence, as well as areas where ongoing 
land transformation has negatively affected the species’ historical 
habitat. There is a high probability of finding new populations of 
Red Siskin within the 20,696 km2 with the highest predictive scores 
for historical occurrence. However, vegetation degradation within 
threatened habitats, such as dry forests (Rodríguez et al., 2010), 
has likely further reduced the area of suitable habitats for this spe-
cies. For the Red Siskin, this reduction represented a loss between 
40% and 95%, resulting in a IUCN category between Vulnerable 
and Critically Endangered for criterion A2c (IUCN, 2012). Given the 
scarcity of records throughout this range, it is furthermore possible 
that the actual area occupied by the species is far less than the area 
available. This is likely because we hypothesize that in addition to 
habitat loss, we suspect the Red Siskin has suffered what is known 
as a “high-abundance-biased” or HAB decline (Rodríguez, 2002): 
Individuals were likely removed from the geographic range not ran-
domly or evenly from across the range, but rather in a way that was 
biased toward high-abundance areas. This is because trappers seem 
to have been specialized, and interested in this species in particular, 
and so likely searched for and trapped it precisely in the areas that 
they were most likely to find it.

F IGURE  3  (a) Spatial distribution of 
the current habitat quality predictions 
based on EVI time series and the random 
forest classification model. (b) Historic 
probability of occurrence for Red Siskins in 
Venezuela derived from replicates of the 
best performing MaxLike model. (c) Overlap 
between historic occurrence probability 
and current habitat quality. Gray lines 
represent political boundaries in each panel
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Our analysis provides the first quantitative evidence that in addition 
to overexploitation, land transformation may also be driving the extir-
pation of Red Siskins in Venezuela, and also reveals that ongoing habitat 
transformation could limit the establishment of reintroduced popula-
tions there (Figure   3a and c). The distribution of key habitats corre-
sponded well to the conservation status described by Coats and Phelps 
(1985): The western region had a greater extent of suitable habitat than 
the central region and may harbor the largest remaining populations, 
while populations of eastern Venezuela seem to have been extirpated. 
Coats and Phelps attributed this extirpation of eastern Red Siskin pop-
ulations to extensive exploitation for the cage bird trade. Indeed, trap-
pers have reported thousands of individuals smuggled from eastern 
Venezuela to the nearby island of Curacao (Coats & Phelps, 1985) and 
unsustainable trapping may still occur in this region (Dessene & Strahl, 
1991; Marín-Espinoza, Guevara-Vallera, Prieto-Arcas, Muñoz-Gil, & 
Carvajal-Moreno, 2011). However, these areas are also the ones most 
affected by vegetation change. Our estimated large reduction in suit-
able areas for Red Siskins reflects years of constant land transformation, 
which implies a generalized degradation of vegetation, affecting habi-
tats across the board, regardless of their suitability as Red Siskin habitat. 
Although habitats with optimal conditions have thus far retained some 
forest cover (EVI values above 0.4), the ongoing degradation observed 
suggests that remaining blocks with optimal habitat conditions could 
also be degraded in the short-to-medium term, reducing the availability 
of suitable habitat for this critically endangered species even more.

Beyond the small size and ongoing degradation of key habitats for 
the Red Siskin, the fact that only a fraction of their area is under protec-
tion is relevant to the potential success of future conservation efforts 
(Figure 3c). Of the 25 protected areas that lie within the study area, just 
six protected Red Siskin habitats with high historic occurrence probabil-
ity (Tapo Caparo, Henri Pittier, Macarao, San Esteban, Guatopo National 
Parks and Pico Codazzi National Monument). However, only three pro-
tected areas in the central region included a small proportion of pres-
ently key habitats (Henri Pittier, Macarao, and San Esteban National 
Parks; Figure 1a and 3c). Interestingly, the objective delineation of key 
habitats described here also helps bring into focus opportunities for 
conservation action. For example, between Henri Pittier and Macarao 
National Parks, a potential corridor includes 200 hectares currently cov-
ered with shade coffee farms. This agroforestry habitat currently faces 
an uncertain future due government price restrictions that make stan-
dard coffee production unprofitable (SUNDE, 2015). The Red Siskin 
Initiative has proposed to apply a proven market-based approach, Bird 
Friendly Coffee® certification (BFC) to these shade coffee farms, which 
would qualify their products as a specialty coffee, free of price restric-
tions (Philpott, Bichier, Rice, & Greenberg, 2007). BFC certification could  
be a means to protect and improve the shade coffee farm habitat pres-
ent in this corridor, preserving a potential reintroduction site for Red 
Siskins that is also prime habitat for migratory birds.

4.2 | Model accuracy

The Random Forest model is used here to transform a subjective 
evaluation of habitat quality into an spatial index of habitat suitability 

for conservation planing. This application assumes that the catego-
ries suggested by experts are indeed predictive of the occurrence 
and viability of the species in the field, and the selected variables 
are good indicators of the expert ranking. This is, however, a dif-
ficult task, given the inherent uncertainty in expert opinions and the 
natural variability in environmental conditions. The accuracy of the 
RF model in predicting habitat suitability categories based on EVI 
time series suggested a moderate overall performance. However, 
the model was better at discerning optimal than suboptimal habitat 
conditions. The largest classification errors occurred in habitats with 
“acceptable” categories, which covered a wide type of vegetation 
conditions. These errors could be due to a lack of understanding 
of habitat requirements for such a rare and little-studied species, 
which could generate an underestimation of the amount of habitat 
available to Red Siskins. However, this error could also reflect the 
capacity of Red Siskins to use transformed habitats, such as eco-
tones of dry deciduous woodlands, shrubby grasslands, and pastures 
(Robbins et al., 2003). The widespread overlap between habitats 
with “acceptable” habitats and areas with high values of historic 
probabilities of occurrence also supports the idea that Red Siskins 
are able to use transformed landscapes. This result underlines the 
importance of conservation actions that reconcile the presence of 
Red Siskin with transformed landscapes. Initiatives that encourage 
biodiversity-friendly agriculture, under a framework of ecoagricul-
tural landscape management (Scherr & McNeely, 2008) might be 
more successful that the traditional paradigm of protected areas, 
where agricultural production and other human activities are seg-
regated from areas managed for biodiversity conservation. Clearly, 
achieving integration between human activities and conservation 
objectives for Red Siskins in Venezuela requires a more detailed 
understanding of temporal and spatial patterns of species habitat 
use. Even more importantly, this will require building capacity for 
rural communities to adopt biodiversity-friendly land management 
(e.g., water source protection, healthy soil management, sustainable 
agroecology) and the promotion of policies that encourage them 
(Brussaard et al., 2010).

Our approach has proven useful for identifying key habitats for a 
threatened and poorly sampled species and also to monitor temporal 
and spatial trends in vegetation transformation within these habitats. 
In the case of the Red Siskin, this approach is only the first step to-
ward identifying suitable habitat for reintroduction, which should be 
refined with additional research focused on breeding and feeding 
ecology, seasonal movements, and the spatial distribution of poaching 
risk (e.g., Sánchez-Mercado, Asmussen, Rodríguez-Clark, Rodríguez, & 
Jedrzejewski, 2016).
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