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Abstract
Species	distribution	models	(SDM)	can	be	valuable	for	identifying	key	habitats	for	con-
servation	 management	 of	 threatened	 taxa,	 but	 anthropogenic	 habitat	 change	 can	
	undermine	SDM	accuracy.	We	used	data	for	the	Red	Siskin	(Spinus cucullatus),	a	critically	 
endangered	bird	and	ground	truthing	to	examine	anthropogenic	habitat	change	as	a	
source	of	SDM	inaccuracy.	We	aimed	to	estimate:	(1)	the	Red	Siskin’s	historic	distribu-
tion	in	Venezuela;	(2)	the	portion	of	this	historic	distribution	lost	to	vegetation	degra-
dation;	and	(3)	the	 location	of	key	habitats	or	areas	with	both,	a	high	probability	of	
historic	 occurrence	 and	 a	 low	 probability	 of	 vegetation	 degradation.	 We	 ground-	
truthed	191	locations	and	used	expert	opinion	as	well	as	landscape	characteristics	to	
classify	 species’	 habitat	 suitability	 as	 excellent,	 good,	 acceptable,	 or	 poor.	We	 fit	 a	
Random	Forest	model	(RF)	and	Enhanced	Vegetation	Index	(EVI)	time	series	to	evalu-
ate	the	accuracy	and	precision	of	the	expert	categorization	of	habitat	suitability.	We	
estimated	the	probability	of	historic	occurrence	by	fitting	a	MaxLike	model	using	88	
presence	 records	 (1960–2013)	 and	 data	 on	 forest	 cover	 and	 aridity	 index.	Of	 the	
	entire	study	area,	23%	(20,696	km2)	had	a	historic	probability	of	Red	Siskin	occurrence	
over	0.743.	Furthermore,	85%	of	ground-	truthed	locations	had	substantial	reductions	
in	mean	EVI,	resulting	in	key	habitats	totaling	just	976	km2,	in	small	blocks	in	the	west-
ern	and	central	 regions.	Decline	 in	Area	of	Occupancy	over	15	years	was	between	
40%	and	95%,	corresponding	to	an	extinction	risk	category	between	Vulnerable	and	
Critically	Endangered.	Relating	key	habitats	with	other	 landscape	 features	 revealed	
significant	risks	and	opportunities	for	proposed	conservation	interventions,	including	
the	fact	that	ongoing	vegetation	degradation	could	limit	the	establishment	of	reintro-
duced	populations	in	eastern	areas,	while	the	conservation	of	remaining	key	habitats	
on	 private	 lands	 could	 be	 improved	with	 biodiversity-	friendly	 agri-		 and	 silviculture	
programs.
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1  | INTRODUCTION

One	of	the	most	promising	applications	of	species	distribution	mod-
eling	 (SDM)	 for	 conservation	management	 is	 ranking	areas	by	esti-
mated	habitat	quality	(Kramer-	Schadt,	Revilla,	&	Wiegand,	2005).	This	
use	of	SDM	assumes	that	areas	with	high	probabilities	of	occurrence	
predict	 high-	quality	habitats	 (Franklin,	 2010).	However,	 species	 are	
not	always	present	where	high	occurrence	probabilities	are	predicted	
(Peterson	et	al.,	2011).	This	mismatch	between	modeled	predictions	
and	 field	 observations	may	 result	 from	problems	with	 the	 SDM	 it-
self,	 such	 as	 conceptual	 errors	 (e.g.,	 when	 models	 do	 not	 include	
biogeographical	barriers	or	biotic	interactions),	limitations	in	variable	
selection	 (due	 a	 poor	 understanding	 of	 factors	 driving	 species	 dis-
tribution	 or	 use	 of	 outdated	 presence	 information	with	 respect	 to	
environmental	 predictors	 used	 (Peterson	 et	al.,	 2011).	 However,	 in	
other	cases,	this	mismatch	may	be	driven	by	anthropogenic	processes	
such	as	 increased	poaching	and	overexploitation	(Sánchez-	Mercado	
et	al.,	2014)	or	 land	transformation	due	urban	or	agricultural	devel-
opment.	For	these	reasons,	field	validation	of	SDM	predictions	is	rec-
ommended;	however,	it	is	often	not	performed	(Greaves,	Mathieu,	&	
Seddon,	2006).

The	most	frequent	strategy	for	validating	SDM	predictions	in	the	
field	is	searching	for	the	species	of	concern	in	areas	with	high	values	
of	predicted	occurrence	probabilities:	Detections	are	interpreted	as	a	
confirmation	of	high-	quality	habitat	(Bosso,	Rebelo,	Garonna,	&	Russo,	
2013;	Rebelo	&	Jones,	2010).	However,	if	land	cover	transformation	is	
gradual	then,	species	detection	is	still	possible	where	habitat	has	been	
partly	degraded	but	not	 lost.	 Such	 “snapshot	detections”	of	 species	
occurrence	may	generate	a	misleading	picture	of	relative	habitat	qual-
ity,	which	in	turn	could	have	disastrous	consequences	if,	for	example,	
the	model	is	used	to	identify	areas	for	the	reintroduction	of	captive-	
bred	endangered	species	(Lahoz-	Monfort,	Guillera-	Arroita,	&	Wintle,	
2014).	In	such	situations,	a	more	nuanced,	nonbinary	approach	to	field	
validation	 is	 essential.	On	 the	 other	 hand,	 lack	 of	 detection	 can	 be	
noninformative	if	the	species	is	temporarily	absent	from	high-	quality	
habitat	 due	 to	 seasonal	movements	or	 has	 suffered	 strong	declines	
due	to	habitat-	unrelated	threats	such	as	poaching	or	other	forms	of	
wildlife	extraction.

Clearly,	validating	SDM	based	only	on	species	detections	could	
be	inappropriate	in	areas	threatened	by	vegetation	degradation	and	
wildlife	extraction.	We	therefore	developed	a	new	approach	for	field	
validation	when	a	mismatch	between	model	results	and	simple	de-
tection	 is	 likely.	 In	 this	 study,	we	 used	 historical	 presence	 records	
for	 the	 Red	 Siskin	 (Spinus cucullatus),	 a	 low-	abundance,	 Critically	
Endangered,	 and	 little-	studied	 bird,	 to	 examine	 the	 combined	 util-
ity	of	species	distribution	models	and	ground	truthing	via	this	new	
approach,	 to	 improve	 identification	 of	 key	 habitats	 for	 conserva-
tion	 interventions.	 The	 Red	 Siskin,	 a	 small	 Neotropical	 finch,	 is	 a	

particularly	 appropriate	 system	 in	which	 to	 develop	 these	 alterna-
tive	methods	because	it	has	been	largely	extirpated	from	its	historic	
range	across	Venezuela,	eastern	Colombia,	and	Trinidad	(Rodríguez,	
García-	Rawlins,	 &	 Rojas-	Suárez,	 2015).	 Currently,	 the	 species	 per-
sists	in	a	few	isolated	populations	within	Venezuela	and	in	a	recently	
discovered	 small	 disjunct	 population	 in	Guyana	 (Robbins,	Braun,	&	
Finch,	 2003).	 The	 Red	 Siskin	 is	 listed	 as	 Endangered	 globally	 and	
Critically	 Endangered	 in	 Venezuela	 as	 a	 result	 of	 historic	 overex-
ploitation	for	the	specialized	pet	trade,	and	captive	breeding	and	re-
introduction	have	been	recommended	as	management	interventions;	
however,	habitat	loss	is	thought	to	be	an	important	threat,	although	
data	 are	 scan	 (Rodríguez-	Clark	 et	al.,	 2015).The	 natural	 habitat	 of	
the	Red	Siskin	 in	Venezuela	 includes	primarily	 tropical	premontane	
humid	 and	 dry	 forests	 (Coats	 &	 Phelps,	 1985)	 the	 latter	 of	which	
are	among	the	most	threatened	ecosystems	globally	and	are	endan-
gered	 in	Venezuela	due	to	conversion	for	urbanization	and	agricul-
ture	 (Rodríguez,	Rojas-	Suárez,	&	Giraldo	Herández,	2010).	To	date,	
there	has	been	no	systematic	assessment	to	determine	the	amount	
and	location	of	remaining	high-	quality	habitat	for	Red	Siskins,	nor	the	
threat	of	deterioration	those	habitats	face.

The	 conservation	 action	 plan	 for	 the	 Red	 Siskin	 in	 Venezuela	
proposed	by	the	Red	Siskin	Initiative	recommends	the	eventual	res-
toration	of	 this	 species	via	 reintroductions	 into	suitable	habitat,	 in	
areas	 where	 the	 original	 threats—trapping	 and	 habitat	 loss—have	
been	 controlled	 (http://www.redsiskin.org/).	 To	 accurately	 identify	
areas	that	can	support	viable	populations,	 it	 is	necessary	to	under-
stand	the	relationship	between	Red	Siskin	habitat	requirements	and	
these	 landscape	 units,	 as	well	 as	 to	 assess	 how	 these	 units	 have	
changed	over	time.	Here,	we	use	a	representative	dataset	of	pres-
ence	records	and	species	distribution	models	(SDMs)	based	on	max-
imum	likelihood	to	estimate	the	historic	probability	of	occurrence	of	
the	Red	Siskin	in	Venezuela.	Then,	we	fit	a	Random	Forest	classifi-
cation	model	(RF)	to	predict	the	spatial	distribution	of	current	hab-
itat	 suitability—based	 on	 expert	 ground	 evaluation—as	 a	 response	
to	 vegetation	 degradation.	We	 combined	 SDM	 and	 RF	 results	 to	
examine	 the	 drivers	 of	 model	 mismatch,	 addressing	 three	 basic	
questions	about	species	habitat	availability:	 (1)	How	extensive	was	
the	historic	distribution	of	Red	Siskins	in	Venezuela?	(2)	How	wide-
spread	 is	habitat	 loss	as	measured	by	vegetation	degradation?	and	
(3)	Where	are	remaining	key	habitats,	or	areas	with	both	high	historic	
occurrence	probability	 and	 low	 landscape	 transformation?	 In	addi-
tion,	to	demonstrating	the	usefulness	of	our	approach	for	identifying	
key	 habitats	 for	 a	 threatened,	 elusive,	 and	 poorly	 studied	 species,	
we	also	aimed	to	examine	 implications	for	the	threat	status	of	the	
species	and	consider	the	consequences	of	our	results	for	the	design	
of	effective	strategies	for	reintroduction,	including	habitat	conserva-
tion,	which	may	be	needed	to	achieve	self-	sustaining	populations	of	
the	Red	Siskin.

K E Y W O R D S

endangered	species,	random	forest,	species	distribution	models,	Venezuela
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F IGURE  1  (a)	Map	of	the	study	area	in	
Venezuela.	Gray	lines	represent	political	
divisions;	gray	polygons	are	the	study	area	
for	habitat	and	historical	occurrence;	black	
lines	enclose	national	parks.	The	most	
relevant	national	parks	are	labeled.	(b)	
Elevation	layer	with	Red	Siskin	presence	
records	compiled	from	different	sources	of	
data.	Gray	symbols	indicate	records	before	
1960;	black	symbols	indicate	records	after	
this	year.	(c)	Elevation	layer	with	locations	
in	which	habitat	quality	was	evaluated.	The	
most	important	geographic	features	are	
labeled

(b)

(c)

(a)
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2  | METHODS

2.1 | Study area

Although	the	precise	historical	range	of	the	Red	Siskin	is	unknown,	ex-
pert	opinion	can	be	used	to	identify	an	appropriate	study	area	that	is	
likely	to	contain	this	range.	Experts	agree	that	the	distribution	of	this	
species	in	Venezuela	is	shaped	principally	by	three	factors:	elevation,	
forest	cover,	and	humidity	 (Coats	&	Phelps,	1985;	Rivero	Mendoza,	
1983).	The	Red	Siskin	is	thought	to	use	a	variety	of	habitats	including	
dry	deciduous	woodland,	mixed	deciduous	 forest,	 evergreen	 forest,	
and	the	savanna-	forest	ecotone	with	daily	and	seasonal	movements	
covering	several	kilometers	from	humid	premontane	forest	into	drier	
semideciduous	 forest	 and	 grassy	 clearings.	 Red	 Siskins	 use	 eleva-
tions	from	200	to	1500	m	(Coats	&	Phelps,	1985;	Hilty,	2003;	Rivero	
Mendoza,	2004).	Based	on	these	expert	habitat	descriptions,	our	ap-
proach	for	generating	the	study	area	polygon	was	based	on	estimating	
the	Extent	of	Occurrence	using	 the	overlap	of	 three	environmental	
variables	as	proxies	for	factors	describing	suitable	Red	Siskin	habitat:	
(1)	elevation	model	(ELEV,	1	km	of	resolution;	CGIAR	Institute,	2010);	
(2)	proportion	of	tree	cover	(TREE,	0.5	km	of	resolution;	Hansen	et	al.,	
2002);	and	 (3)	aridity	 index	 (AI,	1	km;	Zomer,	Trabucco,	Bossio,	van	
Straaten,	&	Verchot,	2008).

Elevation	values	in	Venezuela	range	from	0	to	4,382	m;	we	created	
a	binomial	 layer	defining	as	 suitable	 (1)	 range	 from	200	 to	1500	m,	
and	values	outside	 this	 range	as	unsuitable	 (0).	Tree	cover	values	 in	
northern	Venezuela	ranged	from	0%	to	84%;	because	Red	Siskins	can	
use	several	vegetation	types	with	different	coverage,	we	used	a	broad	
threshold	so	that	we	could	include	a	wider	range	of	vegetation	cover.	
Thus,	we	defined	 as	 suitable	 tree	 cover	values	 (TREE)	 from	10%	 to	
100%.	Aridity	index	(AI)	represented	precipitation	availability	over	at-
mospheric	water	demand,	the	ratio	of	mean	annual	precipitation,	and	
potential	 evapotranspiration,	between	 the	years	1950	and	2000.	AI	
values	ranged	from	1,847	to	26,349,	with	higher	values	representing	
more	humid	conditions.	We	defined	AI	values	from	2,000	to	6,500	to	
be	suitable,	which	corresponded	to	semiarid	and	dry	subhumid	condi-
tions	(Trabucco	&	Zomer,	2009;	Zomer	et	al.,	2008).

For	the	study	area	definition	and	for	the	analysis	of	historical	prob-
ability	of	occurrence	(see	below),	we	decided	to	change	the	spatial	res-
olution	of	all	predictive	variables	to	the	lowest	spatial	resolution	(1	km)	
to	minimize	error	due	to	spatial	uncertainty	in	georeferencing	historical	
distribution	records	(Wieczorek	&	Hijmans,	2004).	For	that,	we	aggre-
gated	 (decreasing	 the	 resolution)	 using	 nearest-	neighbor	 resampling	
method	 (by	 centering).	This	method	 is	 implemented	 in	 the	 function	 
resample	from	raster	package	in	R	(Hijmans	&	Van	Etten,	2012).

Finally,	we	overlapped	all	 binomial	 layers	 to	define	a	 study	area	
within	 which	 minimal	 habitat	 conditions	 for	 Red	 Siskins	 were	 met	
(90,060	km2;	Figure	1a).

2.2 | Historical probability of occurrence

We	estimated	the	historical	probability	of	occurrence	(ΨH)	for	the	Red	
Siskin	within	the	study	area	using	a	compilation	of	historic	and	recent	

presence	records	and	models	based	on	maximum	likelihood.	We	first	
made	 an	 extensive	 search	 for	 historic	 and	 current	 records	 of	 spe-
cies	presence	from	four	sources:	 (1)	Global	Biodiversity	 Information	
Facility	(GBIF)	(2)	national	and	international	museums,	(3)	interviews	
with	local	ornithologists,	and	(4)	a	literature	review.	For	all	sources,	we	
used	keywords	in	English	and	Spanish	related	to	all	common	and	sci-
entific	names	of	the	species	(considering	synonyms,	alternative	spell-
ings,	and	subspecies)	using	the	list	compiled	by	Encyclopedia	of	Life	
(www.eol.org):	 Black	Hooded	 Siskin, Cardenalito, Cardenal, Carduelis 
cucullata,	Red	Siskin,	Spinus cucullatus, Sporagra cucullata.

From	GBIF,	we	obtained	26	records	from	1898	to	2010	(most	from	
1898;	GBIF	Secretariat,	2016).	We	reviewed	the	bird	collections	from	
five	 international	 museums	 (American	 Museum	 of	 Natural	 History,	
Yale	 Peabody	 Museum	 of	 Natural	 History,	 Smithsonian	 National	
Museum	 of	 Natural	 History,	 Royal	 Ontario	 Museum,	 and	 British	
Museum	 of	 Natural	 History),	 and	 three	 local	 museums	 (Colección	
Ornitológica	Phelps,	Museo	de	Barquisimeto,	and	Museo	de	Biología	
de	Rancho	Grande).	From	these	museums,	we	compiled	92	records	of	
specimens	collected	from	1847	to	2008.	Additionally,	43	presence	re-
cords	of	Red	Siskins	observed	between	1995	and	2013	were	reported	
during	interviews	with	six	local	ornithologists	with	long-	term	experi-
ence	in	Venezuela:	Chris	Sharpe,	Fidel	Escola,	Gustavo	Rodríguez,	José	
Gustavo	León,	Jhonathan	Miranda,	and	David	Ascanio.

Finally,	we	did	a	systematic	review	of	the	scientific	literature	using	
ISI	Web	of	Knowledge	and	Google	Scholar,	using	keys	words	related	
to	the	species	and	found	seven	published	works	(Coats,	1982;	Coats	
&	 Phelps,	 1985;	 Collar	 et	al.,	 1992;	 López,	 1991;	 Phelps	 &	 Phelps,	
1963;	Rivero	Mendoza,	1983,	2004)	from	which	we	retrieved	332	re-
cords	from	1867	to	1992.	In	total,	we	compiled	491	records	of	species	
presence	from	1847	to	2013	(Figure	1b).

We	considered	a	record	to	be	any	discrete	observation	of	one	or	
more	birds	with	a	unique	combination	of	the	following	information:	(1)	
source,	(2)	coordinates,	(3)	observation	year,	(4)	sex	and	development	
stage	(adult	or	juvenile),	and	(5)	quantity	reported	(number	of	individ-
uals).	 For	 records	without	 specific	 geographic	 coordinates,	we	 used	
location	descriptions	(place	names,	geographic	features,	etc.)	to	assign	
latitude	and	longitude	based	on	gazetteers	(GIS	Data	Depo,	DIVA	GIS).	
When	contrasting	coordinates	were	provided	by	each	gazetteer,	we	
calculated	the	mean	value	and	error	of	 latitude	and	longitude.	 If	the	
error	was	 larger	 than	 the	cell	 resolution	used	 to	project	our	predic-
tions	(1	km2)	or	if	original	coordinates	had	rounded	two	decimals,	we	
discarded	the	record	(Figure	1b).

To	 estimate	 the	 historical	 probability	 of	 occurrence	 (ΨH)	 for	 the	
Red	Siskin,	we	used	a	maximum	likelihood	approach	based	on	logis-
tic	regression	to	fit	a	species	distribution	model	as	a	function	of	co-
variates,	 as	 implemented	 in	 R	 (“MaxLike”;	 Royle,	 Chandler,	Yackulic,	
&	Nichols,	2012).	 In	addition	 to	 the	 three	covariates	used	 to	define	
the	 study	 area,	we	 also	 considered	 the	 19	 climatic	 variables	 in	 the	
WorldClim	dataset	as	predictors	(resolution	1	km;	Hijmans,	Cameron,	
Parra,	Jones,	&	Jarvis,	2005).	We	evaluated	redundancy	and	collinear-
ity	between	all	covariables	using	a	hierarchical	cluster	analysis	based	
on	Pearson	correlation.	We	defined	a	cluster	as	the	group	of	variables	
with	 correlation	 <0.6	 and	 selected	 one	 covariable	 for	 each	 cluster	

http://www.eol.org
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(Sarle,	1990).	Thus,	our	complete	model	included	the	following	eight	
variables:	aridity	index	(AI),	forest	cover	(TREE),	mean	diurnal	tempera-
ture	range	(BIO02),	 isothermality	(BIO03),	annual	temperature	range	
(BIO07),	mean	temperature	of	the	warmest	quarter	 (BIO10),	precip-
itation	in	the	driest	quarter	(BIO17),	and	precipitation	in	the	coldest	
quarter	(BIO19).	We	applied	a	square-	transformation	to	variables	with	
considerable	skew	(TREE,	BIO03,	BIO10,	BIO17,	BIO18,	and	BIO19)	
and	 standardized	 all	 variables	 to	 a	 zero	mean	 and	 unit	 variance,	 as	 
recommended	for	the	algorithm	implemented	(Royle	et	al.,	2012).

To	fit	the	occurrence	model,	we	used	only	the	88	georeferenced	
presence	records	from	1960	or	later,	because	our	covariates	were	built	
with	data	from	this	date	or	later.	The	MaxLike	approach	assumed	that	
detectability	was	 constant	 over	 the	 study	 area	 (Royle	 et	al.,	 2012).	
Sampling	 effort	was	 extensive	 enough	 over	 time	 (56	years)	 to	 have	
detected	the	species	 in	 the	areas	considered	 if	 it	was	present,	 leav-
ing	detection	probability	sufficiently	uniform	to	meet	this	assumption.	
However,	MaxLike	 also	 assumed	 that	 sampling	was	 random,	which	
clearly	was	not	the	case,	even	though	our	dataset	included	almost	all	
known	sources	of	records.	Thus,	to	surmount	this	problem,	we	applied	
a	random	sampling	to	the	reports	and	repeatedly	partitioned	them	into	
two	 independent	subsets:	an	occurrence	probability	calibration	sub-
set	and	an	occurrence	validation	subset	 (see	details	below;	Franklin,	
2010).	The	calibration	subset	was	used	to	fit	SDMs	as	described	below	
and	consisted	of	66	reports	(75%	of	the	data).	The	validation	subset	
(22	reports)	was	used	to	validate	SDM	performance.	We	repeated	this	
two-	way	partitioning	five	times,	which	created	replicates	allowing	us	
to	directly	evaluate	data	heterogeneity	(Peterson	et	al.,	2011).

To	 select	 the	 “best”	 MaxLike	 occurrence	 probability	 model,	 we	
then	fit	different	combinations	of	the	eight	covariates	described	above	
to	each	of	the	five	replicate	calibration	data	subsets.	Our	first	model	
(mdl1)	contained	linear	terms	for	all	eight	variables.	The	second	(mdl2)	
included	only	climatic	variables,	and	 the	 third	model	 (mdl3)	was	 the	
most	reduced,	including	only	forest	cover	and	aridity	index,	which	have	
been	proposed	by	experts	to	be	the	most	important	variables	affecting	
Red	Siskin	occurrence	(Rivero	Mendoza,	2004).	The	“best”	model	was	
considered	to	be	the	one	that	both	converged	and	had	the	lowest	AICc	
in	the	most	replicates	(Table	1;	Burnham	&	Anderson,	2002).

We	used	evaluate	and	threshold	functions	from	dismo	package	in	
R	(Fielding	&	Bell,	1997)	to	(1)	select	the	replicates	of	the	best	model	
with	 the	best	performance	 to	built	 spatial	 prediction,	 and	 (2)	 select	
the	threshold	of	historic	probability	of	occurrence	at	which	Red	Siskin	
presence	is	the	highest	(TΨH).	Model	prediction	was	evaluated	based	
on	 correlation	 coefficient	 (cor),	 Area	 Under	 the	 Receiver	 Operator	
Curve	 (AUC),	 and	maximizing	 the	 sum	 of	 sensitivity	 and	 specificity	
(maxSSS)	 using	 as	 pseudoabsences	 88	 points	 that	 were	 randomly	
selected	 from	 the	 northern	 part	 of	 the	 country,	 but	 outside	 of	 the	
study	area	for	the	Red	Siskin.	We	selected	the	replicates	1,	2,	and	5,	
which	had	 the	highest	values	of	AUC,	 cor,	 and	maxSSS	 to	built	 the	
spatial	prediction	(Table	2).	We	used	the	mean	value	of	statistic	“max	
kappa”	(predicted	value	at	which	kappa	is	highest;	Liu,	Berry,	Dawson,	
&	Pearson,	2005)	of	selected	replicates	as	criteria	to	set	TΨH	(0.743).	
To	built	the	spatial	prediction,	we	used	the	predict	function	of	maxlike 
package	(Royle	et	al.,	2012)	and	a	raster	stack	of	the	same	predictive	

variables	disaggregated	at	a	resolution	of	250	m	to	produce	a	map	that	
were	comparable	with	our	other	predictions	(see	below).

2.3 | Ground- truthing and vegetation time 
series analysis

We	 randomly	 selected	 90	 points	 within	 the	 study	 area	 (Figure	1c)	
to	perform	ground	 truthing	of	habitat	 suitability.	At	 each	point,	we	
walked	 transects	 of	 1.5	km,	which	we	 laid	 on	 the	 roads	 nearest	 to	
the	point.	Along	each	transect,	we	stopped	every	500	m,	resulting	in	
270	 “evaluation	 locations”	 in	 total	 (90	 random	points	 *	3	 stops	per	
point).	However,	several	of	these	evaluation	locations	were	in	areas	
that	were	either	inaccessible	or	in	areas	with	high	risk	to	the	personal	
security	of	field	teams.	We,	therefore,	systematically	discarded	79	lo-
cations	present	in	dangerous	or	inaccessible	areas,	resulting	in	a	total	
of	191	evaluation	locations.

From	July	2015	to	March	2016,	two	of	us,	including	an	expert	or-
nithologist	with	5	years’	experience	studying	Red	Siskins	 in	the	field	
(JM)	and	an	experienced	assistant	 (ST),	visited	each	evaluation	 loca-
tion	 and	 classified	 it	 into	 one	 of	 four	 categories	 of	 habitat	 suitabil-
ity	for	Red	Siskin	breeding	 (excellent,	good,	acceptable,	poor),	based	
on	geographic	 characteristics	 (elevation,	 slope),	 and	vegetation	 type	
(forest,	shrubs,	and	pasture)	that	are	considered	important	according	
to	expert	accounts	and	own	field	experience	(Coats	&	Phelps,	1985;	
Rivero	Mendoza,	 1983,	 2004).	 Locations	with	 “excellent”	 suitability	
were	those	with	mosaic	of	 forests	surrounded	by	shrubs,	 located	at	
medium	elevations	 (500–800	m)	and	steep	slopes	 (>60%).	Locations	

TABLE  1 Statistical	support	(AICc	values),	and	convergence	
status	for	three	models	of	red	siskin	occurrence,	fit	with	MaxLike	to	
five	replicate	data	subsets

Model Replicate AICc Convergence

mdl1	=	TREE	+	AI	+	BIO02	+	BIO03	+	BIO07	+	BIO10	+	BIO17	+	BIO
19

1 647.982 No

2 647.691 No

3 635.865 No

4 635.463 No

5 695.351 No

mdl2	=	BIO02	+	BIO03	+	BIO07	+	BIO10	+	BIO17	+	BIO19

1 650.621 No

2 642.334 No

3 633.761 No

4 634.553 No

5 692.630 No

mdl3	=	TREE	+	AI

1 696.733 Yes

2 676.306 Yes

3 677.510 Yes

4 678.468 Yes

5 738.753 Yes
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with	“good”	suitability	had	forest	surrounded	by	shrubs,	but	also	by	
pastures	or	 crops,	had	medium	elevation	and	moderate	 slopes	 (20–
30%).	 “Acceptable”	areas	were	composed	mostly	of	shrubs	and	pas-
tures	 at	 low	 elevations	 (200–400	m)	 and	 moderate	 slopes.	 Finally,	
“poor”	suitability	areas	consisted	of	transformed	vegetation	(pastures,	
urbanized	areas)	at	low	elevations	(<100	m)	and	slopes	<10%,	or	fully	
forested	areas	with	no	surrounding	shrubs	or	fields,	at	extremely	steep	
slopes.	At	 each	 evaluation	 location,	 one	 person	 recorded	 landscape	
characteristics	while	 the	Red	Siskin	expert	 categorized	overall	 habi-
tat	suitability	for	species	breeding.	We	then	graphically	examined	the	
agreement	between	expert	 classification	and	 landscape	characteris-
tics	evaluated	(Fig.	S1).

We	 next	 evaluated	 the	 accuracy	 and	 precision	 of	 habitat	 suit-
ability	categories	by	 relating	 them	with	 recent	Enhanced	Vegetation	
Index	time	series	(EVI).	We	used	the	MODIS	Vegetation	Index	Product	
Series	Collection	5	(MOD13Q1,	version	5;	Land	Processes	Distributed	
Active	Archive	Center	-		LP	DAAC,	2014),	which	is	available	at	250	m	
of	spatial	resolution,	and	16-	day	of	temporal	resolution	(from	February	
2000	to	June	2015).	EVI	measures	chlorophyll	concentration	in	can-
opy	vegetation	and	permits	meaningful	comparisons	of	seasonal	and	
interannual	 changes	 in	vegetation	 growth	 and	 activity	 (Huete	 et	al.,	
2002).	 The	MODIS	 EVI	 product	 is	 computed	 from	 atmospherically	
corrected	 bidirectional	 surface	 reflectances	 that	 have	 been	masked	
for	water,	clouds,	heavy	aerosols,	and	cloud	shadows	(Land	Processes	
Distributed	Active	Archive	Center	–	LP	DAAC,	2014).	The	EVI	value	
(where	 0	 indicated	 no	 vegetation	 and	 1	 indicated	 vegetation	 satu-
ration)	 is	 the	 result	of	 “compositing”	algorithm	 in	which,	 several	EVI	
images,	over	16	days	time	interval,	are	merge	to	create	a	single	cloud-	
free	image	EVI	map	with	minimal	atmospheric	and	sun-	surface-	sensor	
angular	effects.

We	used	the	quality	assurance	flags	(MODLAND_QA)	to	rank	EVI	
observations	(combination	of	localities	and	time	periods):	37%	of	the	
observation	had	high	quality,	47%	had	median	quality,	and	16%	had	
poor	 quality	 (Land	 Processes	Distributed	Active	Archive	 Center	 (LP	
DAAC),	2014).	For	all	 the	analysis,	we	used	 the	mean	values	of	 the	
observations	with	 the	 highest	 quality	 available	 and	 discarded	 poor-	
quality	observations	unless	necessary.

In	 order	 to	 relate	 the	 subjective	 habitat	 suitability	 classifica-
tion	 with	 the	 measured	 EVI	 phenology,	 we	 fit	 a	 random	 forest	

classification	model	 (RF).	We	 implemented	RF	 in	 the	 randomForest 
package	 in	R	 (Liaw	&	Wiener,	2002).	For	each	ground-	truthing	 lo-
cation,	we	 coded	 the	 expert’s	 suitability	 assessment	 as	 an	 ordinal	
variable	with	four	categories	and	used	the	23	values	of	the	EVI	phe-
nology	 as	 explanatory	 variables.	We	 built	 each	 classification	 tree	
with	a	training	dataset	containing	63%	of	records	sampled	randomly	
with	 replacement	 from	 the	 original	 data	 and	 containing	 a	 random	
subset	of	 five	predictor	variables	selected	from	the	full	set	of	pre-
dictor	variables.	We	resampled	records	to	create	50,000	classifica-
tion	trees	 in	our	RF.	To	evaluate	the	classification	power	of	RF,	we	
used	the	remaining	40%	of	records	(i.e.,	“out-	of-	bag”	observations,	
OOB).	An	estimate	of	the	misclassification	error	rate	was	calculated	
for	each	OOB	observation	and	averaged	over	all	trees	in	the	forest	
(Cutler,	Edwards,	&	Beard,	2007).	As	 the	 response	variable	was	an	
ordinal	variable,	the	OOB	confusion	matrix	could	overstate	the	clas-
sification	error	of	the	final	RF	model	between	contiguous	categories.	
Therefore,	we	applied	a	matrix	of	ordered	weights	to	recalculate	the	
OOB	(Piccarreta,	2008).

We	visualized	the	spatial	distribution	of	habitat	with	current	op-
timal	suitability	using	the	predict	function	of	randomForest	package	
(Liaw	&	Wiener,	2002)	and	a	raster	stack	of	predictive	variables	(EVI	
16-	day	values	for	the	year	2014)	at	a	resolution	of	250	m.	Due	to	
the	inherent	uncertainty	in	subject	classifications	and	the	resulting	
high	 RF	 classification	 error,	 we	 transformed	 the	 outcome	 of	 the	
prediction	from	a	matrix	of	RF	votes	per	category	into	a	numerical	
value	 per	 pixel	 using	 single-	step	 category	weights	 (0	 for	 “poor,”	 3	
for	“excellent”).	The	resulting	map	represents	an	index	based	on	the	
weighted	 average	 of	 habitat	 suitability	 predictions	 in	 each	 250	m	
cell.

EVI	also	allows	the	meaningful	comparison	of	seasonal	and	inter-
annual	changes	in	vegetation	growth	and	activity.	We	therefore	used	
the	time	series	of	EVI	data	to	describe	changes	in	the	mean	and	vari-
ance	of	EVI	values	within	the	period	studied	at	each	evaluation	loca-
tion.	Changes	in	local	vegetation	did	not	occur	simultaneously	for	all	
evaluation	locations.	Thus,	we	used	the	method	proposed	by	Chen	and	
Gupta	 (2000)	to	estimate	the	most	 likely	point	of	significant	change	
in	mean	and	variance	 in	each	 time	 series	 (i.e.,	 the	change	point),	 as	
implemented	 in	 the	 function	 cpt.meanvar	 from	package	 changepoint 
in	R	(v	2.2.1;	R	Development	Core	Team,	2015).	We	compared	mean	

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

Number	of	
presence	records

17 18 17 18 17

Number	of	
absences	records

70 70 70 70 70

AUC 0.770 0.733 0.734 0.664 0.747

cor 0.374 0.346 0.333 0.210 0.333

maxSSS 0.589 0.391 0.240 0.103 0.240

Max	kappa 0.786 0.692 0.544 0.139 0.751

AUC	=	area	under	the	curve	of	Receiver	Operating	Characteristic.	cor	=	correlation	coefficient.	max-
SSS	=	maximizing	the	sum	of	sensitivity	and	specificity.	Max	kappa	=	prediction	value	at	which	kappa	
statistic	is	the	highest.

TABLE  2 Performance	indices	for	the	
best	model	of	Red	Siskin	occurrence	
(mdl3),	fit	with	MaxLike	to	five	replicate	
data	subsets
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EVI	values	before	 (prior	mean	EVI)	and	after	 (current	mean	EVI)	 the	
change	point	for	each	series,	but	considered	only	the	current	values	to	
calculate	the	EVI	phenology	(multi-	year	median	values	for	each	16-	day	
period)	at	each	site.

2.4 | Identifying key habitats

Finally,	we	overlapped	the	historic	probability	of	occurrence	(from	our	
SDM)	and	current	habitat	suitability	predictions	(from	our	RF)	to	iden-
tify	“key	habitats,”	or	areas	with	both	high	historic	occurrence	prob-
ability	 and	excellent	 habitat	 suitability.	 To	 identify	 key	habitats,	we	
multiplied	the	values	of	both	predictions	to	generate	an	overlap	index	
that	ranged	from	0	to	2.248,	with	0	indicating	low	historic	probability	
of	occurrence	and	 low	habitat	quality	and	values	close	to	2	 indicat-
ing	high	values	for	both	conditions.	We	also	performed	an	extinction	
risk	assessment	using	the	criterion	of	population	reduction	based	on	
an	estimated	decline	in	Area	of	Occupancy	(AOO)	and	habitat	quality	
(criterion	A2c;	IUCN,	2012).	We	estimated	AOO	based	on	the	num-
ber	of	cells	containing	key	habitats	and	calculated	the	percentage	of	
reduction	 in	 this	 area	 with	 respect	 to	 the	 historically	 suitable	 area	
for	Red	Siskins	(i.e.,	areas	with	ΨH	>	0.743).	We	also	calculated	AOO	
when	key	habitats	were	defined	to	 include	both	 “good”	and	“excel-
lent”	habitat	suitability,	to	take	into	account	uncertainty	in	Red	Siskin	
habitat	use.

3  | RESULTS

3.1 | Spatial distribution of habitat with current 
optimal conditions

The	majority	of	 the	evaluation	 locations	 (85%)	had	a	substantial	 re-
duction	 in	mean	EVI	values	over	 the	 last	15	years	 (Figure	2).	These	
changes	 were	 similar	 across	 different	 categories	 of	 habitat	 quality	
(chi-	square	=	4.707;	df	=	3;	p	=	.195).	 For	 60%	of	 the	 evaluation	 lo-
cations,	this	change	occurred	before	2011.	Locations	classified	with	
optimal	 habitat	 suitability	 (“good”	 and	 “excellent”)	 consistently	 had	
historic	mean	EVI	values	>0.4.	Although	for	these	same	locations,	cur-
rent	mean	EVI	values	were	substantially	lower,	they	were	still	above	
0.4.	Locations	classified	with	suboptimal	habitat	suitability	(acceptable	
and	poor)	were	more	heterogeneous,	with	EVI	values	from	0.3	to	0.6,	
but	mostly	below	the	mean	values	of	the	optimal	habitats	(Figure	2).

The	overall	corrected	classification	error	rate	of	the	RF	model	was	
33.2%,	with	lowest	classification	error	for	“excellent”	(22.1%)	largest	
for	“acceptable”	(57.1%).	Habitats	classified	as	“good”	were	predicted	
in	a	wide	area	within	the	study	area	(35,494	km2,	39%	of	study	area),	
while	 “excellent”	 habitat	 (3,127	km2,	 3%	 of	 study	 area)	 were	 clus-
tered	in	the	western	part	of	the	country,	in	the	lowlands	of	the	Sierra	
de	Perijá	 and	 along	 the	 southern	 slope	 of	 the	Cordillera	 de	Mérida	
(Figure	3a).	Other	small	and	more	dispersed	blocks	of	“excellent”	hab-
itat	were	predicted	in	the	center-	west	as	well	as	in	the	east.	Habitat	
with	suboptimal	conditions	(“poor”	and	“acceptable”)	was	focused	in	
three	large	blocks	(55,307	km2,	61%)	in	the	west,	center,	and	east	of	
the	country.

3.2 | Historical probability of occurrence

Presence	records	before	1960	(25	records)	were	located	mostly	in	the	
western	part	of	 the	 country,	while	more	 recent	 sightings	 (94)	were	
evenly	distributed	across	the	center	and	west	(Figure	1b).

The	 best	model	 for	 historic	 probability	 of	 occurrence	was	mdl3	
(containing	only	the	aridity	index	and	forest	cover).	Alternative	models	
containing	other	 climatic	variables	 did	 not	 converge	due	 to	 scarcity	
of	records	(Table	1).	Our	estimates	of	historical	occurrence	probability	
were	based	on	the	three	replicates	of	mdl3	that	had	good	predictive	
accuracy	(Table	2).	The	area	with	the	highest	occurrence	probabilities	
(ΨH	>	0.743)	 covered	20,696	km

2	 and	was	concentrated	 toward	 the	
center	and	north	of	the	Coastal	Cordillera.	In	the	west,	small	fragments	
with	high	probability	were	observed	toward	the	south,	along	the	north	
slope	of	the	Andean	Cordillera	and	Serranía	de	Portuguesa,	and	along	
the	eastern	coast	of	Lake	Maracaibo	(Serranía	del	Empalado).	To	the	
east,	there	were	also	discontinuous	fragments	around	the	Turimiquire	
Massif	and	west	of	the	Araya	Península	(Figure	3b).

Of	the	area	with	the	best	historically	suitable	area	for	Red	Siskins	
(ΨH	>	0.743),	 only	 4,686	km

2	 (23%)	was	 protected	 in	 a	Venezuelan	
national	 park.	 The	 most	 valuable	 unprotected	 habitats	 were	 in	 the	
western	region,	including	areas	in	the	northern	Sierra	de	Perijá,	along	
the	west	coast	of	Lake	Maracaibo	and	in	the	mountains	of	Falcón	and	
Lara.	In	the	northeast,	there	was	also	a	wide	continuous	area	with	high	
probabilities	on	unprotected	lands	(Figure	3b).

3.3 | Key habitats

Key	 habitats,	 defined	 as	 areas	 with	 both	 high	 historic	 occurrence	
probabilities	 and	 currently	 “excellent”	 suitability,	 covered	 just	
976	km2	 and	occurred	 in	 the	western	and	central	 regions	 (northern	
end	of	the	Sierra	de	Perijá,	lowlands	of	Sierra	de	El	Empalado,	and	the	
Coastal	Cordillera),	forming	small	blocks	(Figure	3c).	Only	three	small	

F IGURE  2 Changes	in	EVI	during	from	2000	to	2015	for	each	
evaluation	location	within	the	Red	Siskin	study	area.	The	abscissa	
indicates	the	mean	EVI	value	before	the	inflection	point	defined	
for	each	evaluation	location.	The	ordinate	reflects	the	mean	EVI	
value	after	the	inflection	point.	The	four	habitat	quality	classes	are	
indicated

Poor
Acceptable
Good
Excellent
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national	parks	(San	Esteban,	Macarao,	and	Henri	Pittier)	and	one	natu-
ral	monument	(Pico	Codazzi),	included	portions	of	these	key	habitats	
(279	km2),	while	 the	 remaining	areas	did	not	have	protected	status.	
If	key	habitats	were	expanded	to	include	both	“good”	and	“excellent”	
areas,	their	area	increased	by	an	order	of	magnitude,	to	12,274	km2.

If	the	present	Area	Of	Occupancy	(AOO)	was	presumed	to	consist	
of	key	habitats	(976	km2),	this	represented	a	decline	of	95%	of	the	his-
toric	range	(20,696	km2	with	ΨH	>	0.743).	This	decline	corresponded	
to	 the	 risk	 category	 of	 Critically	 Endangered	 (A2c;	 IUCN,	 2012).	 In	
contrast,	if	expanded	key	habitat	(12,274	km2)	was	considered,	the	de-
cline	was	40%,	which	corresponded	to	the	risk	category	of	Vulnerable.

4  | DISCUSSION

4.1 | Key habitats

Our	 approach	 of	 combining	 species	 distribution	 models	 and	
Random	Forest	models	 proved	 to	 be	 useful	 in	 revealing	 substan-
tial	 mismatch	 between	 historical	 predictions	 and	 present	 condi-
tions,	 and	 identifying	key	habitats	 for	Red	Siskin	 conservation,	or	
areas	with	 historically	 high	occurrence	 probabilities	 and	 currently	
optimal	 habitat	 suitability,	 for	 Red	 Siskin	 conservation.	We	 were	

able	 to	 identify	 areas	 with	 suitable	 environmental	 and	 ecological	
conditions	for	species	occurrence,	as	well	as	areas	where	ongoing	
land	 transformation	has	negatively	affected	 the	species’	historical	
habitat.	 There	 is	 a	 high	 probability	 of	 finding	 new	populations	 of	
Red	Siskin	within	the	20,696	km2	with	the	highest	predictive	scores	
for	historical	occurrence.	However,	vegetation	degradation	within	
threatened	 habitats,	 such	 as	 dry	 forests	 (Rodríguez	 et	al.,	 2010),	
has	likely	further	reduced	the	area	of	suitable	habitats	for	this	spe-
cies.	For	the	Red	Siskin,	this	reduction	represented	a	loss	between	
40%	 and	 95%,	 resulting	 in	 a	 IUCN	 category	 between	 Vulnerable	
and	Critically	Endangered	for	criterion	A2c	(IUCN,	2012).	Given	the	
scarcity	of	records	throughout	this	range,	it	is	furthermore	possible	
that	the	actual	area	occupied	by	the	species	is	far	less	than	the	area	
available.	This	 is	 likely	because	we	hypothesize	that	 in	addition	to	
habitat	loss,	we	suspect	the	Red	Siskin	has	suffered	what	is	known	
as	 a	 “high-	abundance-	biased”	 or	 HAB	 decline	 (Rodríguez,	 2002):	
Individuals	were	likely	removed	from	the	geographic	range	not	ran-
domly	or	evenly	from	across	the	range,	but	rather	in	a	way	that	was	
biased	toward	high-	abundance	areas.	This	is	because	trappers	seem	
to	have	been	specialized,	and	interested	in	this	species	in	particular,	
and	so	likely	searched	for	and	trapped	it	precisely	in	the	areas	that	
they	were	most	likely	to	find	it.

F IGURE  3  (a)	Spatial	distribution	of	
the	current	habitat	quality	predictions	
based	on	EVI	time	series	and	the	random	
forest	classification	model.	(b)	Historic	
probability	of	occurrence	for	Red	Siskins	in	
Venezuela	derived	from	replicates	of	the	
best	performing	MaxLike	model.	(c)	Overlap	
between	historic	occurrence	probability	
and	current	habitat	quality.	Gray	lines	
represent	political	boundaries	in	each	panel
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Our	analysis	provides	the	first	quantitative	evidence	that	in	addition	
to	overexploitation,	land	transformation	may	also	be	driving	the	extir-
pation	of	Red	Siskins	in	Venezuela,	and	also	reveals	that	ongoing	habitat	
transformation	 could	 limit	 the	 establishment	of	 reintroduced	popula-
tions	 there	 (Figure	 	3a	 and	 c).	The	distribution	of	 key	habitats	 corre-
sponded	well	to	the	conservation	status	described	by	Coats	and	Phelps	
(1985):	The	western	region	had	a	greater	extent	of	suitable	habitat	than	
the	central	 region	and	may	harbor	 the	 largest	 remaining	populations,	
while	populations	of	eastern	Venezuela	seem	to	have	been	extirpated.	
Coats	and	Phelps	attributed	this	extirpation	of	eastern	Red	Siskin	pop-
ulations	to	extensive	exploitation	for	the	cage	bird	trade.	Indeed,	trap-
pers	 have	 reported	 thousands	 of	 individuals	 smuggled	 from	 eastern	
Venezuela	to	the	nearby	island	of	Curacao	(Coats	&	Phelps,	1985)	and	
unsustainable	trapping	may	still	occur	in	this	region	(Dessene	&	Strahl,	
1991;	 Marín-	Espinoza,	 Guevara-	Vallera,	 Prieto-	Arcas,	 Muñoz-	Gil,	 &	
Carvajal-	Moreno,	2011).	However,	these	areas	are	also	the	ones	most	
affected	by	vegetation	change.	Our	estimated	 large	reduction	 in	suit-
able	areas	for	Red	Siskins	reflects	years	of	constant	land	transformation,	
which	implies	a	generalized	degradation	of	vegetation,	affecting	habi-
tats	across	the	board,	regardless	of	their	suitability	as	Red	Siskin	habitat.	
Although	habitats	with	optimal	conditions	have	thus	far	retained	some	
forest	cover	(EVI	values	above	0.4),	the	ongoing	degradation	observed	
suggests	 that	 remaining	blocks	with	optimal	habitat	 conditions	 could	
also	be	degraded	in	the	short-	to-	medium	term,	reducing	the	availability	
of	suitable	habitat	for	this	critically	endangered	species	even	more.

Beyond	the	small	size	and	ongoing	degradation	of	key	habitats	for	
the	Red	Siskin,	the	fact	that	only	a	fraction	of	their	area	is	under	protec-
tion	is	relevant	to	the	potential	success	of	future	conservation	efforts	
(Figure	3c).	Of	the	25	protected	areas	that	lie	within	the	study	area,	just	
six	protected	Red	Siskin	habitats	with	high	historic	occurrence	probabil-
ity	(Tapo	Caparo,	Henri	Pittier,	Macarao,	San	Esteban,	Guatopo	National	
Parks	and	Pico	Codazzi	National	Monument).	However,	only	three	pro-
tected	areas	in	the	central	region	included	a	small	proportion	of	pres-
ently	 key	habitats	 (Henri	 Pittier,	Macarao,	 and	 San	Esteban	National	
Parks;	Figure	1a	and	3c).	Interestingly,	the	objective	delineation	of	key	
habitats	described	here	 also	helps	bring	 into	 focus	opportunities	 for	
conservation	action.	For	example,	between	Henri	Pittier	and	Macarao	
National	Parks,	a	potential	corridor	includes	200	hectares	currently	cov-
ered	with	shade	coffee	farms.	This	agroforestry	habitat	currently	faces	
an	uncertain	future	due	government	price	restrictions	that	make	stan-
dard	 coffee	 production	 unprofitable	 (SUNDE,	 2015).	The	 Red	 Siskin	
Initiative	has	proposed	to	apply	a	proven	market-	based	approach,	Bird	
Friendly	Coffee®	certification	(BFC)	to	these	shade	coffee	farms,	which	
would	qualify	their	products	as	a	specialty	coffee,	free	of	price	restric-
tions	(Philpott,	Bichier,	Rice,	&	Greenberg,	2007).	BFC	certification	could	 
be	a	means	to	protect	and	improve	the	shade	coffee	farm	habitat	pres-
ent	 in	this	corridor,	preserving	a	potential	reintroduction	site	for	Red	
Siskins	that	is	also	prime	habitat	for	migratory	birds.

4.2 | Model accuracy

The	Random	Forest	model	 is	 used	 here	 to	 transform	 a	 subjective	
evaluation	of	habitat	quality	into	an	spatial	index	of	habitat	suitability	

for	conservation	planing.	This	application	assumes	that	the	catego-
ries	 suggested	by	experts	are	 indeed	predictive	of	 the	occurrence	
and	viability	of	 the	 species	 in	 the	 field,	 and	 the	 selected	variables	
are	 good	 indicators	 of	 the	 expert	 ranking.	 This	 is,	 however,	 a	 dif-
ficult	task,	given	the	inherent	uncertainty	in	expert	opinions	and	the	
natural	variability	in	environmental	conditions.	The	accuracy	of	the	
RF	model	 in	 predicting	 habitat	 suitability	 categories	 based	on	EVI	
time	 series	 suggested	 a	moderate	 overall	 performance.	 However,	
the	model	was	better	at	discerning	optimal	than	suboptimal	habitat	
conditions.	The	largest	classification	errors	occurred	in	habitats	with	
“acceptable”	 categories,	which	 covered	 a	wide	 type	 of	 vegetation	
conditions.	 These	 errors	 could	 be	 due	 to	 a	 lack	 of	 understanding	
of	 habitat	 requirements	 for	 such	 a	 rare	 and	 little-	studied	 species,	
which	could	generate	an	underestimation	of	the	amount	of	habitat	
available	to	Red	Siskins.	However,	 this	error	could	also	reflect	 the	
capacity	 of	 Red	 Siskins	 to	 use	 transformed	 habitats,	 such	 as	 eco-
tones	of	dry	deciduous	woodlands,	shrubby	grasslands,	and	pastures	
(Robbins	 et	al.,	 2003).	 The	 widespread	 overlap	 between	 habitats	
with	 “acceptable”	 habitats	 and	 areas	 with	 high	 values	 of	 historic	
probabilities	of	occurrence	also	supports	the	 idea	that	Red	Siskins	
are	able	 to	use	 transformed	 landscapes.	This	 result	underlines	 the	
importance	of	conservation	actions	 that	 reconcile	 the	presence	of	
Red	Siskin	with	transformed	 landscapes.	 Initiatives	that	encourage	
biodiversity-	friendly	agriculture,	under	a	 framework	of	ecoagricul-
tural	 landscape	 management	 (Scherr	 &	McNeely,	 2008)	 might	 be	
more	 successful	 that	 the	 traditional	 paradigm	 of	 protected	 areas,	
where	 agricultural	 production	 and	other	human	activities	 are	 seg-
regated	from	areas	managed	for	biodiversity	conservation.	Clearly,	
achieving	 integration	 between	 human	 activities	 and	 conservation	
objectives	 for	 Red	 Siskins	 in	 Venezuela	 requires	 a	 more	 detailed	
understanding	 of	 temporal	 and	 spatial	 patterns	 of	 species	 habitat	
use.	 Even	more	 importantly,	 this	will	 require	 building	 capacity	 for	
rural	communities	 to	adopt	biodiversity-	friendly	 land	management	
(e.g.,	water	source	protection,	healthy	soil	management,	sustainable	
agroecology)	 and	 the	 promotion	 of	 policies	 that	 encourage	 them	
(Brussaard	et	al.,	2010).

Our	approach	has	proven	useful	for	identifying	key	habitats	for	a	
threatened	and	poorly	sampled	species	and	also	to	monitor	temporal	
and	spatial	trends	in	vegetation	transformation	within	these	habitats.	
In	the	case	of	the	Red	Siskin,	this	approach	is	only	the	first	step	to-
ward	identifying	suitable	habitat	for	reintroduction,	which	should	be	
refined	 with	 additional	 research	 focused	 on	 breeding	 and	 feeding	
ecology,	seasonal	movements,	and	the	spatial	distribution	of	poaching	
risk	(e.g.,	Sánchez-	Mercado,	Asmussen,	Rodríguez-	Clark,	Rodríguez,	&	
Jedrzejewski,	2016).
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