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ABSTRACT: To date, numerous genetic variants have been identified as associated with diverse phenotypic traits. However,
identified associations generally explain only a small proportion of trait heritability and the predictive power of models
incorporating only known-associated variants has been small. Multiple regression is a popular framework in which to consider
the joint effect of many genetic variants simultaneously. Ordinary multiple regression is seldom appropriate in the context of
genetic data, due to the high dimensionality of the data and the correlation structure among the predictors. There has been a
resurgence of interest in the use of penalised regression techniques to circumvent these difficulties. In this paper, we focus
on ridge regression, a penalised regression approach that has been shown to offer good performance in multivariate prediction
problems. One challenge in the application of ridge regression is the choice of the ridge parameter that controls the amount
of shrinkage of the regression coefficients. We present a method to determine the ridge parameter based on the data, with the
aim of good performance in high-dimensional prediction problems. We establish a theoretical justification for our approach,
and demonstrate its performance on simulated genetic data and on a real data example. Fitting a ridge regression model to
hundreds of thousands to millions of genetic variants simultaneously presents computational challenges. We have developed
an R package, ridge, which addresses these issues. Ridge implements the automatic choice of ridge parameter presented in
this paper, and is freely available from CRAN.
Genet Epidemiol 37:704–714, 2013. Published 2013 Wiley Periodicals, Inc.∗
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Introduction

In modern biomedical studies, technological developments
mean that data sets are now much larger than those con-
sidered in the past. The analysis of these high-dimensional
data sets presents computational and statistical challenges.
Specifically in genetics, genome-wide single nucleotide poly-
morphism (SNP) genotyping simultaneously types up to one
million SNPs, and imputation can increase SNP density fur-
ther. In the related fields of metabolomics and proteomics,
information is captured about hundreds of thousands or mil-
lions of variables.

In this paper, we are interested in the use of genetic infor-
mation to predict either a continuous or a binary phenotype.
Both of these outcome types arise in clinical settings. In the
latter case, we consider both the problem of classification
and the estimation of the probability of each of the two pos-
sible outcomes. We evaluate our method using SNP genotype
data; however, the methods discussed here could usefully be
applied to any high-dimensional regression setting.
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Genetic Risk Prediction

Recent developments and improvements in genotyping
technology have led to an increase in the availability of genetic
information. As genotyping becomes easier and cheaper,
there is a growing interest in the use of genetic informa-
tion to predict future phenotypes, and in particular in the
prediction of disease phenotypes. The aim of genetic pre-
diction is to construct a model to predict the phenotype
of interest using the genotype data from individuals for
whom the (potentially future) phenotypic state is unknown.
In a clinical setting, the value of this approach arises be-
cause genotypes are fixed at birth, but disease symptoms
may not become apparent until later in life. If individu-
als who are at high genetic risk could be identified before
symptoms become apparent, targeted interventions could be
used with the aim of delaying or preventing the onset of
disease. Drug response is known to be genetically hetero-
geneous [Goldstein, 2005], and the ability to predict drug
response based on genetic information would also be valu-
able as it would enable the tailoring of optimally effective
treatments.

Genome-wide association studies in particular have led
to the identification of numerous genetic variants as associ-
ated with diverse phenotypic presentations [Hindorff et al.,
2009]. Existing approaches that use genetic information to
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predict disease risk have focussed on the exploitation of these
established genetic associations. In these risk prediction mod-
els, genetic variants that have been identified as associated
with the phenotype of interest in previous association stud-
ies are incorporated into a risk prediction model. A simple
count of risk variants may be used, or each variant may be
weighted by the strength of the association, measured for ex-
ample using the log-odds ratio. Associated risk variants may
be incorporated into the risk prediction model instead of or
in addition to clinical risk factors such as sex, age or family
history.

Complex traits often exhibit moderate to high heritability.
However, genetic variants identified in association studies
as associated with complex traits often combine to explain
only a small proportion of the overall heritability of that trait
[Eichler et al., 2010]. In prediction problems, when iden-
tified associated genetic variants are incorporated in risk
prediction models, either instead of or in addition to es-
tablished clinical risk factors, overall predictive performance
has been disappointing. The inclusion of genetic risk fac-
tors offers little or no improvement in disease risk prediction
compared to clinical risk factors alone. A plausible hypoth-
esis for the genetic architecture of complex diseases is that
the genetic contribution results from many risk variants each
with small effect size. Therefore, interest has turned to the
development of prediction models that incorporate many
more genetic variants, up to and including all typed vari-
ants in a whole-genome regression. Genotype data are high-
dimensional, and usually consist of many more predictors
than observations. Further, genetic variants can be highly
correlated due to linkage disequilibrium. These properties
of genetic data mean that traditional multiple regression ap-
proaches cannot be applied. There has been a growing interest
in the use of penalised regression approaches to the analy-
sis of genetic data [Abraham et al., 2013; Ayers and Cordell,
2010]. Ridge regression (RR) is one such penalised regression
approach.

RR was originally proposed as a means of estimating re-
gression coefficients with smaller mean-square error than
their least squares counterparts when predictors are corre-
lated [Hoerl and Kennard, 1970]. RR is one of a family of pe-
nalised regression methods, other popular methods include
Lasso regression [Tibshirani, 1996] and the Elastic Net [Zou
and Hastie, 2005b]. The latter is a weighted combination
of the Lasso and ridge penalties. Among penalised regres-
sion approaches, RR has been shown to offer good predictive
performance [Frank and Friedman, 1993]. One challenge in
applying penalised regression methods is the choice of
the shrinkage parameter, or parameters, which control the
amount of shrinkage of the regression coefficients. In RR,
a number of numerical and data-driven methods have been
proposed, but no consensus method provides a universally
optimum choice. It is the problem of the choice of the shrink-
age parameter in RR for high-dimensional data that we ad-
dress in this paper.

In a comparative study, Abraham et al. [2013] compared
penalised and unpenalised regression methods for prediction

in complex disease. There, the authors found that the sparse
penalised methods that they considered, Lasso and Elastic
Net regression, outperformed other methods for prediction
in diverse disease phenotypes. However, Abraham et al. did
not address the problem of the choice of shrinkage param-
eter or parameters in the penalised regression methods that
they used, nor did was RR among the methods that they
compared.

The improvement in heritability estimates that can be
achieved when all genetic variants, whether associated with
the phenotype of interest or not, are included in the study,
was demonstrated by Yang et al. [2010]. In an investigation
into the heritability of complex traits, Yang et al. demon-
strated that in a population of unrelated individuals, ∼45%
of the variance in human height could be explained by
considering a genome-wide panel of nearly 300,000 com-
mon SNPs. This represents a substantial increase over the
∼5% of phenotypic variance explained by the ∼50 vari-
ants known to be associated with human height. This pro-
vides support for our notion that the inclusion of many
more SNPs in a prediction model will improve predictive
performance. However, Makowsky et al. [2011] cautioned
that the increased proportion of variance explained using
genome-wide SNP data did not translate into validation
samples.

Accounting for linkage disequilibrium among SNPs in
genome-wide association studies using penalised regression
has been investigated both in variable selection [Malo et al.,
2008] and in classification problems [Malovini et al., 2012].
Malo et al. [2008] compared RR with SNP-by-SNP vari-
able selection and standard multiple regression and found
that RR outperformed the unpenalised methods in detect-
ing causally related variables. Malovini et al. [2012] com-
pared a Hierarchical Naive Bayes classifier (HNB), in which
SNPs in LD are considered to be a single latent variable,
to a Naive Bayes classifier (NB) that assumes independence
among the predictors. They found that the HNB performed
equally well or better than NB, and that HNB was par-
ticularly advantageous when analysing genomic regions in
strong LD.

RR and other penalised regression methods have been stud-
ied in the animal and plant breeding literature, where they
are used to predict breeding values based on genetic mark-
ers [Meuwissen et al., 2001]. There, marker panels are typi-
cally smaller than the number of SNPs on a human GWAS
SNP chip, and tuning parameters are often chosen by cross-
validation [Moser et al., 2009]. A review of penalised re-
gression methods used in genomic prediction, from both
frequentist and Bayesian perspectives, can be found in de los
Campos et al. [2013]. In this paper, our aim is to make RR
feasible and useful for risk prediction using genome-wide
SNP data.

We propose a semi-automatic method to guide the choice
of ridge parameter in RR. Our proposed method is valid
when the regression problem comprises more predictors than
observations, and is based on an established technique, that
of Hoerl et al. [1975].
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Methods

Summary of the Proposed Method

We consider data on n individuals, i = 1, . . . , n, where each
individual has been genotyped at p loci, j = 1, . . . , p . Then, X
is the n × p matrix of genotyped variants, standardised such
that X′X is in correlation form. Typically, as in this study, the
genetic variants are SNPs, but other types of variation could
be used. Y = (Y1, . . . , Yn)′ is a n-dimensional vector of phe-
notype measurements that have been centred to have mean
0. When phenotypes are continuous, the linear regression
model is commonly used to model the relationship between
genotypes and a phenotype of interest:

Y = Xβ + ε (1)

β = (β1, . . . , βp )′ is a column vector of p regression coeffi-
cients, one for each genotyped variant, and ε = (ε1, . . . , εn)′

is a vector of independent and identically distributed nor-
mally distributed random errors, E(εi) = 0 and E(ε2

i ) = σ2.
Ridge estimates of the regression coefficients are given by

β̂k = (X′X + kI)–1X′Y (2)

k is the shrinkage parameter, which controls the amount of
shrinkage of the regression coefficients, and I is the identity
matrix. Below, we summarise the method we propose for
determining the shrinkage parameter based on the data. We
denote this shrinkage parameter kr∗ . A theoretical justifica-
tion for our proposed approach is presented at the end of
this Methods section. Readers who are not interested in the
technical details of our method can skip to the simulation
study that follows.

Algorithm to Determine kr ∗

1. Calculate the eigenvectors and eigenvalues of X′X:

X′X = Q�Q′

Here, columns of Q are the eigenvectors of X′X and
� = diag(λ1 ≥ λ2 ≥ . . . ≥ λp –1 ≥ λp ) is a diagonal ma-
trix with diagonal elements the eigenvalues of X′X in
descending order. Of the p diagonal elements of �, at
most t = min(n, p ) are non-zero.

2. Compute the principal components of X as Z = XQ, and
the principal components regression (PCR) coefficients
as

α̂ = �
–1Z′Y (3)

3. For r = 1, . . . , t, compute kr as

kr =
rσ̂2

r

α̂′
rα̂r

where α̂r is the r-length vector of the first r principal com-
ponents regression coefficients, Zr are the first r columns
of Z, and

σ̂2
r =

(Y – Zrα̂r)′(Y – Zrα̂r)

n – r

Among possible r, choose r∗ as the value of r that min-
imises

r –

t∑
j

λ2
j

(λj + kr)2

4. Denote kr using the chosen value of r as kr∗ and use this
in fitting the ridge estimates:

β̂
∗
k∗

r
=

(
X′X + k∗

r I
)

X′Y

The motivation behind the method we propose is to choose
a shrinkage parameter that performs at least as well as, and
often better than, a principal components regression model
with the same degrees of freedom in prediction problems.
Our method has the advantage of improve interpretability of
the fitted coefficients relating genetic variants to phenotype.

Adapted algorithm for binary traits

Binary outcomes often arise in biomedical studies, where
they represent, for example, disease cases and healthy con-
trols. For binary traits we use an adapted version of the pre-
vious algorithm, based on the logistic regression model, as
follows:

1. Calculate the principal components of X as in steps 1–2
of the algorithm for continuous traits.

2. For r = 1, . . . , t, compute kr as

kr =
r

α̂′
rα̂r

Here, α̂ is the r-length vector of the first r principal
components logistic regression (PCLR) coefficients, as
in Aguilera et al. [2006]. Briefly, PCLR coefficients are
computed using a subset of the principal components of
the predictors as covariates in a logistic regression model.

3. Calculate the degrees of freedom of the ridge logistic
regression model fitted using kr as the shrinkage param-
eter, and choose the number of PCs, r∗, to minimise the
difference between r and the degrees of freedom of the
corresponding fitted ridge logistic regression model.

4. Use the corresponding shrinkage parameter kr∗ in a ridge
logistic regression model fitted on the full data set in its
original orientation.

Details of ridge logistic regression are given in the next
section and in Supplementary Appendix C.

Theoretical Justification

The method we propose is developed based on a pop-
ular choice of the ridge parameter that was proposed by
[Hoerl et al., 1975], which we denote kHKB after the au-
thors who proposed it. Here, β̂ are the ordinary least squares
(OLS) regression coefficients, equivalent to equation (2) with
k = 0. Hoerl et al. proposed the following choice of ridge
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parameter:

kHKB =
p σ̂2

β̂
′
β̂

(4)

where

σ̂2 =
(Y – Xβ̂)′(Y – Xβ̂)

n – p

When p > n, kHKB is not defined, because it is dependent on
the ordinary least squares regression (OLSR) coefficients β̂

that are themselves not defined when the data have more pre-
dictors than observations. When p < n, kHKB can equivalently
be written

kHBK =
p σ̂2

α̂′α̂

In a generalised RR, individual shrinkage parameters are as-
signed to each of the principal components in the linear
model. Then, kHKB is motivated as the harmonic mean of
the ‘ideal’ generalised ridge estimator in terms of minimis-
ing mean square error of the coefficient estimates. Hoerl
et al. explain their choice of the harmonic mean as a way to
preventing the small αj , which have little predicting power,
leading to too large a a shrinkage parameter as would happen
if the arithmetic mean were to be used. We observed that α̂

in this estimator are the principal components regression co-
efficients defined in equation (3). In a simulation study with
p < n, we investigated the use of r ≤ p principal components
in computing kr . In Supplementary Appendix A and Supple-
mentary Fig. S1 we demonstrate that when the signal-to-noise
ratio is not too low, estimates of β̂ with smaller mean squared
error are obtained using kr with r < p than when using kHKB.

With evidence that using kr with r < p as a shrinkage es-
timator can result in improved estimates of β̂ compared to
when kHKB is used, our method is naturally extensible to data
with more predictors than observations (p > n). We need to
determine whether inclusion of all nonzero PCs results in
estimates with smallest prediction error or whether smaller
prediction error is obtained when using the first r PCs, r < n.
We evaluated this using simulation studies. The details of the
simulations are given in the Simulation Study section, where
we evaluate the performance of RR using kr∗ in comparison
to other penalised regression methods. Ŷi is the predicted
phenotype of the ith individual using the fitted coefficients.
Where data have continuous outcomes, we evaluated perfor-
mance in terms of mean prediction squared error (PSE).

PSE =
1

n

n∑
i=1

(Yi – Ŷi)
2 (5)

Where data have binary outcomes, we used mean classifi-
cation error (CE), as in Le Cessie and Houwelingen [1992]:

CEi =

⎧⎪⎪⎨
⎪⎪⎩

0 Yi = 0, π̂(xi) < 0.5 or Yi = 1, π̂(xi) > 0.5
1

2
π̂(xi) = 0.5

1 Yi = 1, π̂(xi) < 0.5 or Yi = 0, π̂(xi) > 0.5

(6)

Here, π̂(xi) is the estimated probability that the ith individual
is a case based on his genotypes, that is pr(Yi = 1|xi). We take
the average CE:

Average CE =
1

n

n∑
i=1

CEi (7)

In Table 1, we report average PSE when kr is calculated us-
ing different numbers of PCs, in simulated genetic data with
more predictors than observations. In a principal component
decomposition, PCs are arranged by the decreasing amount
of overall variability explained by each component. However,
in each simulation replicate, the amount of overall variabil-
ity in the predictors explained by each PC will vary due to
the different correlation structure among the predictors. To
be able to summarise results across simulation replicates, in-
stead of comparing results at different values of r, we calculate
the proportion of variance explained by PCs included in the
calculation of kr and use this when summarising predictive
performance across simulation replicates. We see that mini-
mum PSE is obtained when fewer than the maximum num-
ber of PCs are used to compute kr . Table 1 shows prediction
squared error or classification error at different proportions
of variance explained. MAX: r is the maximum number of
PCs where the corresponding eigenvalues are nonzero. CV:
kr with r chosen using the cross-validated PRESS statistic
[De Iorio et al., 2008]; kr∗ is as described previously. We see
from columns 1–5 of Table 1 that the best predictive perfor-
mance is obtained when somewhat fewer than the maximum
number of PCs is used to compute kr . Of the rules we inves-
tigated, kr∗ offers marginally best predictive performance.

With evidence from Table 1 that computing kr using r < t
gives rise to coefficient estimates with smaller prediction error
than when the maximum number of PCs is used, we use the
following arguments to justify our rule (see step 3 of the
Algorithm presented earlier) to determine the number of
components, r∗, to use in computing kr∗ . Regression models
including PCR, RR and OLSR all result in models in which
the fitted outcomes can be related to the observed ones via a
projection matrix or ‘hat’ matrix:

Ŷ = HY (8)

In OLSR, RR and PCR, H is of the form

H = XGX′ (9)

The definition of G, and thus H, depends on the model be-
ing fitted. In OLSR, G = (X′X)–1 and Ŷ = X(X′X)–1X′Y = Xβ̂.
Both RR and PCR use G that approximates (X′X)–1 in a dif-
ferent way [Brown, 1993]. In RR, G = (X′X + kIp )–1 where k
is the ridge parameter and Ip is the p -dimensional identity
matrix.

In PCR, G is given by

G =

r∑
j =1

(1/λj )qj q′
j
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Table 1. Prediction squared error (PSE) or classification squared error (CSE) in out-of-sample prediction using r with different
proportions of variance explained

Proportion of variance explained by PCs used to compute kr (%) RR parameter

10 50 70 90 MAX CV kr∗
Continuous outcomes (mean PSE) 1.24 1.23 1.23 1.27 3.20 1.24 1.23

(sd) (0.06) (0.05) (0.05) (0.06) (0.87) (0.05) (0.05)
Binary outcomes (mean CE) 0.46 0.47 0.47 0.47 0.47 0.47 0.46

(sd) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)

MAX, r is the maximum number of PCs where the corresponding eigenvalues are non-zero; CV, r chosen using cross-validated PRESS statistic; kr∗ : r chosen based on degrees of
freedom (see main text); SD, standard deviation.

where qj is the j th column of Q. For models that can be
written in this form, PSE can be decomposed as:

PSE = σ2 +
tr(HH′)

n
σ2 +

b′b
n

(10)

where b = Xβ – Xβ̂ is the bias, the distance between the fitted
estimates and the true ones. The first term measures the (un-
avoidable) noise in Y, the second measures variance in the
prediction estimates. In Supplementary Appendix B, we dis-
cuss tr(H) and tr(HH′) as definitions of effective degrees of
freedom for the model and for variance, respectively. There,
we show that among different definitions of degrees of free-
dom, using tr(HH′) in computing kr results in coefficient
estimates closest to the OLS estimates.

In OLSR, tr(HH′) = p , the number of parameters in the
regression fit. The aim in penalised regression is to reduce the
variance by allowing the introduction of a little bias, keeping
the overall PSE lower than that of OLSR. In PCR, tr(HH′) = r,
the number of components used in the penalised regression
fit.

In RR, it is straightforward to find a shrinkage parameter k
such that tr(HH′) = r where r is any specified value, by noting

that tr(HH′) =
∑p

j =1
λ2

j

(λj +k)2 and using numerical methods to

find k. Thus, we can compare PCR and RR in terms of predic-
tion squared error, equation (10), when the variance in the
prediction estimates is forced to be equal to r in both models.
With common error variance σ2 across models, we are only
interested in the bias term and we can find an expression for
this also, by noting that:

b = [X – XGX′X]β (11)

In OLSR, the estimates are unbiased (b = 0). In a simulation
study with β known, we can compare the bias in RR and PCR
when the variance of the fitted Ŷ in each model is fixed such
that tr(HH′) = r.

In PCR, the coefficients of the first r PCs are their least
squares counterparts; the coefficients of the remaining com-
ponents are set to zero. Thus the bias is the difference between
zero and the least squares estimate of the coefficient of the
r + 1 . . . tth components, where t = min(n, p ) is the maxi-
mum number of PCs. In RR the bias is more ‘spread out’
among the t components as the least squares estimate of each
coefficient is ‘shrunk’ by λj

λj +k .

We illustrate this using a simulation study. The patterns of
predictors and coefficients used by Zou and Hastie [2005a]
are used here. Although these are not genetic data, they do
cover a range of parameter values and correlation structures,
enabling us to illustrate the bias-variance decomposition of
the PSE. The four regression scenarios are detailed in Sup-
plementary Table S1.

In Figure 1, we plot b′b/n using b defined as in equa-
tion (11) for r = 1, . . . , t. We see that for regression scenar-
ios (1), (3) and (4) in Supplementary Table S1, the bias is
typically lower for RR than for PCA. The only scenario in
which PCA has lower bias than RR is scenario (2), where
there is moderate correlation among the predictors but all
the coefficients have the same effect size, a situation that
is unlikely to arise in genetic data. We can see the smooth
decrease in the bias with RR whereas in PCR the bias de-
creases in a stepwise manner, with each step corresponding
to the inclusion of one more component in the model. As
r approaches t, the fitted coefficients approach their least
squares counterparts and the bias approaches 0, its value in
OLSR.

In Figure 2 we plot the fitted RR coefficients with different
values of r used to compute kr . These plots are taken from
one simulation replicate with continuous outcomes. r∗, the

number of components that minimises r –
∑t

j
λ2

j

(λj +kr)2 is indi-

cated and a causal variant is highlighted. We see that choosing

r to minimise r –
∑t

j
λ2

j

(λj +kr )2 results in a shrinkage parameter

in a region of the ridge trace where the RR coefficients are
stable and do not change much with further increases in the
number of principal components. We evaluate this rule in
comparison to competing methods using simulation studies
in the next section.

The theoretical justification for our method in the case of
binary traits derives from the use of ridge logistic regression
(as opposed to linear RR). The logistic regression model is
commonly used to model the effect of one or more predictors
on a binary response. When predictors are highly correlated
or high-dimensional, maximum likelihood estimation of lo-
gistic regression coefficients may have large variance. When
predictors are exactly correlated, or there are more predic-
tors than observations, maximum likelihood estimates are
not defined.

Ridge logistic regression has been proposed as a means
of addressing these difficulties. Schaefer et al. [1984] intro-
duced a ‘Ridge type’ estimator and demonstrated that, when

708 Genetic Epidemiology, Vol. 37, No. 7, 704–714, 2013
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Figure 1. Bias ( b′b
n ) in PCR and RR in regression scenarios (1), (2), (3), and (4) (Supplementary Table S1), at different values of r .
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indicates that our proposed method of choosing the number of compo-
nents chooses a ridge parameter in the region where ridge estimates
stabilise. The black line indicates a causal variant. Plotted are the first
100 SNPs of the 20,000 in one simulation replicate, with continuous
outcomes.

predictor variables are collinear, this will result in coeffi-
cient estimates with smaller mean squared error than the
maximum likelihood estimates. The ‘Ridge type’ estimator
proposed by Schaefer et al. [1984] is

k =
p

β̂
′
β̂

(12)

Here, β̂ are maximum likelihood estimates of the logistic
regression coefficients. We extended the approach that we
used to compute kr∗ in linear RR to logistic RR. We use
increasing numbers of PCs in a PCLR [Aguilera et al., 2006]
to compute the shrinkage parameter. For a PCLR using r
components, the corresponding penalty is calculated as

kr =
r

α̂′
rα̂r

where α̂r is the vector of r regression coefficients computed
using PCLR. In both linear and logistic RR, the number of
components used to compute the shrinkage parameter is
based on the degrees of freedom of the regression fit. To
estimate the effective degrees of freedom of the logistic re-
gression model, we used the trace of the square of the hat
matrix, which in the logistic RR model is calculated as:

H =
(

X′WX + kI
)–1

X′WX

where W = diag(π̂(xi)(1 – π̂(xi))). π̂(xi) are the fitted proba-
bilities. These are the probabilities under the logistic model,
computed using the fitted coefficients obtained at the last
iteration of the optimisation algorithm. Details of logistic re-
gression are discussed in Supplementary Appendix C. As in
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linear RR, we compute the effective degrees of freedom for
variance as tr(HH′).

Simulation Study

We used simulated data to compare the predictive perfor-
mance of RR models fitted using kr∗ to that of competing re-
gression approaches that can be applied to high-dimensional
data.

Simulated Data

Simulated SNP data were generated using the software
FREGENE [Chadeau-Hyam et al., 2008; Hoggart et al., 2007]
as a panmictic population of 21,000 haplotypes. We used a
region of approximately 7 Mb, containing 20,000 SNPs with
minor allele frequency (MAF) > 1%. FREGENE simulates the
evolution of haplotypes forward-in-time, with mutation and
selection parameters that can be specified when the program
is run. The simulated data we used are available for download
(http://www.ebi.ac.uk/projects/BARGEN/) and details of the
simulation are described in Chadeau-Hyam et al. [2008].
Genotypes are coded as 0, 1, 2 for minor allele count.

Genotype and corresponding phenotype data were simu-
lated with both continuous and binary outcomes, analysed
using linear and logistic regression, respectively. Each repli-
cate consisted of 1,000 training individuals and 500 test indi-
viduals, and results were averaged over 10 replicates. Causal
SNPs were selected from those SNPs in the MAF range
10–15%, following the common-disease common-variant
hypothesis for complex diseases. Data were generated and
analysed as follows:

� Continuous outcomes analysed using linear regression.
Two hundreds SNPs with MAF 10–15% were randomly se-
lected to be causal SNPs; these causal SNPs were assigned an
effect size drawn from a uniform distribution U[0.05, 0.1].
All other SNPs were given an effect size of 0. Thus the vector
of effect sizes, β, of length 20,000, contained 200 non-zero
elements. Genotypes were generated by summing two ran-
domly selected haplotypes. An additive genetic model was
assumed. Following such a model, responses were gener-

ated as Y = Xβ + ε, ε
iid∼ N (0, 1). Model performance was

evaluated using PSE, equation (5), over the test data.
� Binary outcomes analysed using the logistic model. Two

hundreds SNPs with MAF 10–15% were randomly selected
to be causal SNPs; these causal SNPs were assigned an ef-
fect size, or log odds ratio, drawn from a uniform distribu-
tion U[0.1, 0.5]. Case-control outcomes were generated by
randomly selecting two haplotypes that were summed to
generate a simulated genotype. An additive genetic model
was assumed. Following such a model, the probability of an
individual with that genotype being a case was generated as
Pr(Yi = 1|xi) = exp(–5 + x′

iβ)/(1 + exp(–5 + x′
iβ)), and that

individual’s case-control status was determined randomly
according to this probability. This process was repeated un-
til the required (equal) number of cases and controls was

obtained. For the data with binary outcomes, predictive
performance is reported in two ways. First, we use classifi-
cation error, as in equation (6). Second, we report the Brier
score [Brier, 1950], a measure of the accuracy of the pre-
dictions. The Brier score takes values between 0 and 1, with
smaller values indicating more accurate predictions. The
reported Brier score is the average over the 10 replicates.

In both the simulation studies and the evaluation of the
method using real data that follows, training genotypes were
standardised to correlation form, and in the continuous case
the responses were centred, prior to model fitting, as de-
scribed in methods section. Coefficients were returned to the
scale of the original data when the model was evaluated on
test data.

Simulation Study Results

We compared the performance of RR using kr∗ to four
competing methods of fitting prediction models to high di-
mensional data:

1. We used traditional multiple linear or logistic regres-
sion, which requires that a subset of SNPs be selected
for inclusion in the model. To select which SNPs to in-
clude, univariate linear or logistic regression was used
to estimate the strength of association of each predictor
variable with the outcome. A proportion of the pre-
dictor variables that were most strongly associated with
the outcome in univariate tests were included in a mul-
tiple regression model. When predictors were exactly
correlated and both predictors cannot be included in a
multiple regression model simultaneously, only the first
predictor by SNP position was included. Because in real
applications the number of causal variables is not known
a priori, we evaluated the predictive performance when
a range of proportions of predictors were included in the
multiple regression.

2. RR with the ridge parameter chosen using 10-fold cross-
validation (RR-CV).

3. HyperLasso regression (HL, Hoggart et al. [2008]) is a
penalised regression method that simultaneously con-
siders all predictor variables in a high-dimensional re-
gression problem. HyperLasso was originally applied to
the problem of identifying causal variables when pre-
dictors are correlated, but it was shown that by using
a less stringent threshold for inclusion of predictors in
the model, HyperLasso could be used to address the
problem of prediction. In order to obtain good predic-
tive performance, it is necessary to relax the penalty so
that sufficient coefficients are estimated as non-zero. The
penalty in HyperLasso regression is such that, among
a group of correlated predictors, only one coefficient
will be estimated as non-zero. This is a disadvantage
in prediction using genetic data, where several corre-
lated predictors, for example in one LD block, may con-
tain information that is useful for prediction even if if
they are not all causal variables. HyperLasso requires the
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Table 2. Performance in out-of-sample prediction in simulated data using different methods to fit prediction models

Univariate RR-CV HL EN RR-kr∗

% of SNPs ranked by univariate P -value 0.1% 0.5% 1% 3% 4%
Continuous outcomes (mean PSE) 1.51 1.55 1.54 2.21 3.93 1.22 2.41 3.26 1.23

(sd) (0.10) (0.11) (0.11) (0.54) (1.34) (0.05) (0.31) (0.21) (0.05)
Binary outcomes (mean CE) 0.49 0.48 0.49 0.49 0.49 0.46 0.50 0.48 0.46

(sd) (0.03) (0.03) (0.03) (0.03) (0.01) (0.03) (0.03) (0.04) (0.03)
Binary outcomes (Brier score) 0.26 0.28 0.31 0.37 0.41 0.25 0.30 0.27 0.25

(sd) (0.01) (0.02) (0.06) (0.06) (0.05) (0.005) (0.06) (0.04) (0.003)

RR-CV, RR with the shrinkage parameter chosen using 10-fold cross-validation; HL, HyperLasso; EN, Elastic Net; RR-kr∗ , RR with the shrinkage parameter kr∗ .

specification of two parameters to control the amount of
shrinkage. Following Eleftherohorinou et al. [2009] the
shape parameter in HyperLasso regression was fixed to
3.5 and the penalty parameter was chosen using 10-fold
cross-validation. The penalised coefficients fitted using
the parameters chosen using cross-validation were used
to evaluate prediction performance.

4. Elastic net (EN, Zou and Hastie [2005b]) is a penalised
regression method that combines the ridge and Lasso
penalties. EN requires two parameters, one to control
the relative weights of the ridge and Lasso penalties and
one to control the amount of shrinkage. EN models
were fitted using the R package glmnet [Friedman et al.,
2010] and the parameters were chosen using 10-fold
cross-validation.

Results are presented in Table 2. In this regression problem,
which is a realistic simulation of risk prediction in genetic
data, RR outperforms the competing penalised regression
methods, EN and HL. Using univariate variable selection fol-
lowed by multiple regression, the best performance was ob-
tained when the number of predictors included in the model
was equal to the number of non-zero regression coefficients
when the data were generated, a proportion that would not be
known in practice. In HyperLasso regression, CV to choose
the penalty parameter was computationally demanding. We
found in order to obtain the best predictive performance a
relaxed penalty was necessary. CV to choose the parameters
for the elastic net showed that that more than half of the
time the alpha parameter was set to zero, which makes EN
equivalent to RR [Friedman et al., 2010]. The CV choice of
the parameter that controls the amount of shrinkage of the
regression coefficients resulted in a large parameter being
chosen, implying strong shrinkage. Together, the CV choice
of EN parameters results in the equivalent of an RR with the
regression coefficients shrunk close to zero. This reflects the
structure of the data with many predictors of small effect.
RR-CV and RR-kr∗ offer approximately equivalent predictive
performance. Although 10-fold CV is feasible for a data set
of this size, fitting an RR model on GW data (as in the real
data example that follows) using the coordinate descent al-
gorithm (see Supplementary Appendix C) took so long as to
make cross-validation on GW data infeasible. (On an iMac
with a 2.8 GHz Intel Core i7 processor and 16 GB of RAM,
running R 2.15.1 (64-bit) and GSL-1.14 fitting an RR model
to genome-wide SNP data consisting SNP data on 4,727 indi-

viduals at 336,044 SNPs took approximately 20 h.) Thus the
method we propose is computationally more straightforward
than competing penalised regression methods, is applicable
when the number of predictors exceeds the number of ob-
servations, and offers predictive performance that matches
that of 10-fold CV, whilst being computationally feasible for
genome-wide SNP data. In simulated data with binary out-
comes, we report the Brier score as a measure of prediction
accuracy. Again we see that RR outperforms the competing
methods, and we reiterate the reduced computational time
taken to choose the ridge parameter using our automatic
method compared to using cross-validation.

Implementation

We have developed an R package, ridge, which imple-
ments our method (available from CRAN: http://cran. r-
project. org/web/packages/ridge). This package addresses the
computational challenges that arise when fitting RR models
to high-dimensional data such as genome-wide SNP data.
For data sets that are too large to read into R, code written
in C is provided and the corresponding R functions take file
names as arguments. This circumvents the need to read large
data sets into the R workspace whilst retaining a user-friendly
interface to the code.

Logistic RR is performed using the CLG algorithm [Genkin
et al., 2007]. CLG is a cyclic coordinate descent algorithm
that updates each coefficient in turn, holding the other co-
efficients fixed until convergence is reached. This removes
the need to repeatedly manipulate an entire data matrix at
once and makes logistic RR feasible even when the data con-
tain hundreds of thousands of predictor variables. The CLG
algorithm is described in Supplementary Appendix C.

Application to Bipolar Disorder Data

We evaluated our method using real SNP data taken from
two GWAS of Bipolar Disorder (BD). BD is a complex neu-
robehavioural phenotype, characterised by episodes of mania
and depression. The lifetime prevalence of BD is estimated
to be in the region of 1%, and the heritability of BD has been
estimated to be as high as 85% [McGuffin et al., 2003]. A
number of loci have been identified as associated with BD;
however replication studies have not always been successful
[Alsabban et al., 2011]. It is thought that many genes of small
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effect contribute to the liability to develop BD. This hypothe-
sis has been offered as an explanation for the underwhelming
findings from BD GWAS [Serretti and Mandelli, 2008].

We used data from the WTCCC [WTCCC, 2007] to fit
models to predict BD status. We evaluated these models us-
ing an independent test data set, a GWAS of BD from the
Genetic Association Information Network (GAIN) [Smith
et al., 2009].

Before the model was fitted and evaluated, data were pre-
processed and quality control checks were performed follow-
ing the documented procedures accompanying each data set.
Briefly, individuals and genotype calls that had been iden-
tified as poor quality by the WTCCC were removed from
the data. Missing genotypes were imputed using Impute2
[Howie et al., 2009], with genotypes with the highest poste-
rior probability being used in the analysis. For the GAIN data,
only individuals with European ancestry and unambiguous
phenotype were used in the test data. Pre-imputation quality
control (QC) involved removing one of each of pairs of indi-
viduals identified as related in the data, removing invariant
SNPs, SNPs with call rate < 98%, and SNPs with Hardy–
Weinberg P -value < 1e–4. Individuals identified as outliers
by the program EIGENSTRAT [Price et al., 2006] were re-
moved from their respective data sets.

Following quality control, the WTCCC data comprised
1,841 cases and 2,886 controls, and the GAIN data comprised
995 cases and 1,025 controls. Following QC, genotypes will
still be of variable quality. It would be possible to extend our
approach to handle probabilistic genotype scores [Marchini
et al., 2007]. In order to evaluate the predictive models, it
was necessary to have the same predictors (SNPs) in both
the training and test data sets. Approximately 300,000 auto-
somal SNPs that were common to both data sets were used
in the analysis. PLINK v1.07 [http://pngu.mgh.harvard.edu/
purcell/plink/, Purcell et al. [2007]] was used for pre-
imputation quality control and data preparation steps.

Having obtained directly typed and imputed SNPs such
that we had the same SNPs in the two data sets, predictive
models were fitted. In these data with a binary outcome, the
logistic model was used to describe the relationship between
genotypes and disease status.

In performing variable selection followed by multiple re-
gression, instead of including a pre-defined proportion of all
predictor variables in the multiple regression model, we chose
a significance threshold (P -value cutoff) for a variable to be
included. We evaluated predictive performance at a range of
P -value thresholds. The number of SNPs that reached each
significance threshold investigated is presented in Table 3.

Inspection of the SNPs with smallest univariate P -values in
our results revealed that these are not the top hits reported
by the WTCCC [WTCCC, 2007]. Studies have found identi-
fied significant associations that are in accordance with our
results [Oh et al., 2012]. Oh et al. assumed that the difference
between their results and those presented by the WTCCC
was due to ‘unreported genotype calling errors’. We make no
such assumptions. Our aim in this study was to evaluate the
performance of the method we propose when compared to
other methods that could be used to fit prediction models
using genome-wide SNP data, and we do not feel that this
discrepancy between our findings and those of the WTCCC
invalidates our results. In HyperLasso regression, as before,
we fixed the shape parameter as 3.5 and chose the penalty
parameter using 10-fold cross-validation.

Regression coefficients were estimated using RR with
shrinkage parameter kr∗ . In order to prevent local regions of
high linkage disequilibrium (LD) overwhelming the principal
components, the training data were thinned to 1 SNP every
100 kb before choosing the number of principal components
and computing kr∗ . This thinning of the data was evaluated in
the simulation studies in the previous section, but thinning
did not affect predictive performance in that case (results not
shown). Fitted coefficients were subsequently estimated on
the full set of SNPs. Results comparing the predictive perfor-
mance of our proposed method with that of models based on
univariate tests of significance and models fitted using Hy-
perLasso regression are presented in Table 3. In models fitted
using univariate variable selection followed by multiple re-
gression, relaxing the significance threshold for inclusion of
a SNP in the model quickly led to more SNPs reaching the
threshold than there are observations in the data. With more
predictors than observations, a multiple regression model
cannot be fitted. Thus when using the univariate variable se-
lection approach, we necessarily discard information in the
large number of SNPs that are moderately associated with
outcome. HyperLasso regression presents the problem of the
choice of the two penalty parameters that control the amount
of shrinkage. Choice of the parameters by cross-validation is
computationally intensive, becoming unfeasibly so for large
data sets such as this one. Our method has the advantage
of not requiring cross-validation and offering improved pre-
dictive performance. Again we see that our proposed esti-
mator offers good predictive performance in comparison to
other regression approaches as well as having computational
advantages. Prediction accuracy, measured using the Brier
score, is best in a univariate model containing only the most
strongly associated SNPs (P -value threshold 10–10). However,

Table 3. Performance in out-of-sample prediction using Bipolar Disorder data

Univariate HL RR-kr∗

P -value threshold 10–4 10–5 10–7 10–10

SNPs reaching threshold 346 58 3 2
Mean classification error 0.510 0.489 0.491 0.490 0.492 0.465
Brier score 0.35 0.29 0.28 0.26 0.38 0.29

Logistic RR models were fitted on WTCCC-BD data. Mean classification error and Brier score were computed using the GAIN-BD data.
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this comes at a cost of a larger mean classification error, and
as explained above, discarding many SNPs corresponds to
discarding the information in those SNPs.

In Supplementary Fig. S2 we show a receiver operating
characteristic curve (ROC curve), plotting true positive rate
(TPR) against false positive rate (FPR) as the probability
threshold for classification as a case is varied. We see that
compared to both HyperLasso regression and multiple re-
gression based on univariate variable selection, our method
has higher TPR and lower FPR at all values of the thresh-
old. The ROC curve also demonstrates the challenge of using
genetic data to predict disease status.

Discussion

We have introduced a semi-automatic method to guide
the choice of shrinkage parameter in ridge regression. Our
method is particularly useful when the regression problem
comprises more predictor variables than observations, a situ-
ation that often arises in genetic data. This is because existing
ridge estimators such as that proposed by Hoerl et al. [1975]
cannot be computed in such settings.

Disease risk prediction using genetic information remains
a challenging problem due to the high dimensionality and
correlation structure of the data. RR is a technique that ad-
dresses these difficulties and has been shown to offer good
predictive performance. As we demonstrated using a real data
example, our method can feasibly be applied to genome-wide
SNP data, and this is the setting in which we envisage it will
be used. Although whole-genome sequencing of patients is
not yet routine in the clinic, SNP genotyping is rapidly de-
creasing in cost and could feasibly be applied were prediction
models available. Among penalised regression methods, RR
has been shown to offer good predictive performance. Our
method facilitates the application of RR to genetic data for
the construction of prediction models.

Our method has computational and practical advantages
over competing methods. Because the choice of shrinkage
parameter is semi-automatic, our method does not require
computationally intensive CV. Nor is determination of causal
variables necessary, as is the case when selecting predictor
variables to include in a multivariate model fitted using
OLSR. Using training data to build a model that is subse-
quently used to predict on new data relies on the obvious
assumption that the two samples are drawn from the same
population. The two samples must have in common both the
disease phenotype being studied and the genetic architecture
in terms of number of causal variables and their effect sizes.
This is true of any prediction method and is not a problem
limited to our approach. Prediction performance will degrade
when this assumption is not met, but it can be a difficult as-
sumption to verify, particularly for disease phenotypes with
heterogeneous etiology.

One challenge in the development of prediction models
based on case-control data, as in our real data example, is
that case-control samples contain an overrepresentation of
cases compared to the number in the general population.

Hence, population disease prevalence is implicitly overesti-
mated in the fitted model. Methods have been proposed in
the literature to adjust the baseline disease risk in the fitted
model based on estimates of disease prevalence in the popula-
tion. Proposed methods include intercept adjusted maximum
likelihood estimation [Anderson, 1972; Greenland, 2004] and
case control weighted maximum likelihood estimation [Rose
and van der Laan, 2008]. Both of these methods are reliant
on a good estimate of population disease prevalence, and if
such an estimate were available they could easily be incorpo-
rated in our framework. We note that performing the same
adjustment of baseline risk across all the models being com-
pared would not affect the relative results of the performance
comparison.

Using simulation studies, we demonstrate that our method
outperforms competing penalised regression methods in
terms of prediction error when data comprise more pre-
dictors than observations and there are many causal vari-
ables with small effects, a situation that is representative of
genetic data. We demonstrate the good predictive perfor-
mance our method by using data from two genome-wide
association studies to construct and evaluate a prediction
model.

Because RR is a regression approach, the method can be
extended to include additional, non-genetic covariates. For
example, clinical information or PCs to correct for popu-
lation structure could be included. It would be possible to
extend the approach to investigate higher order interaction
terms, albeit at an increased computational cost. Given the
large number of predictor variables in a GWAS, it may be
necessary to perform a variable selection step before investi-
gating interaction effects.
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