
Frontiers in Immunology | www.frontiersin.

Edited by:
Varun Sasidharan Nair,

Helmholtz Association of German
Research Centers (HZ), Germany

Reviewed by:
Mangge Zou,

Helmholtz Association of German
Research Centers (HZ), Germany

Manpreet Kaur,
Albert Einstein College of Medicine,

United States

*Correspondence:
Xueyu Dai

daixueyu@shsmu.edu.cn
Bin Li

binli@shsmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 09 April 2022
Accepted: 03 June 2022
Published: 08 July 2022

Citation:
Xu Z, Jiang X, Dai X and Li B (2022)

The Dynamic Role of FOXP3+

Tregs and Their Potential
Therapeutic Applications

During SARS-CoV-2 Infection.
Front. Immunol. 13:916411.

doi: 10.3389/fimmu.2022.916411

REVIEW
published: 08 July 2022

doi: 10.3389/fimmu.2022.916411
The Dynamic Role of FOXP3+

Tregs and Their Potential
Therapeutic Applications
During SARS-CoV-2 Infection
Zhan Xu1†, Xue Jiang1†, Xueyu Dai1* and Bin Li1,2,3,4*

1 Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care
Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2 Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary
Hospital, Department of Integrated TCM and Western Medicine, Shanghai Skin Disease Hospital, Tongji University School of
Medicine, Shanghai, China, 3 Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of
Traditional Chinese Medicine, Shanghai, China, 4 Shenzhen Key Laboratory of Immunity and Inflammatory Diseases,
Shenzhen, China

Coronavirus disease 2019 (COVID-19) has been raging all around the world since the
beginning of 2020, and leads to acute respiratory distress syndrome (ARDS) with strong
cytokine storm which contributes to widespread tissue damage and even death in severe
patients. Over-activated immune response becomes one of the characteristics of severe
COVID-19 patients. Regulatory T cells (Treg) play an essential role in maintaining the
immune homeostasis, which restrain excessive inflammation response. So FOXP3+ Tregs
might participate in the suppression of inflammation caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection. Besides suppressive function, tissue
resident Tregs are also responsible for tissue repair. In this review, we mainly summarize
the latest research focusing on the change of FOXP3+ Tregs in the COVID-19 patients,
discuss the relationship between disease severity and number change of Tregs and
speculate the potential role of FOXP3+ Tregs during SARS-CoV-2 infection. Furthermore,
we introduce some potential Treg-based therapies to improve patients’ outcomes, which
include small molecular drugs, antibody drugs, CAR-Treg and cytokine treatment. We
hope to reduce tissue damage of severe COVID-19 patients and offer better prognosis
through Treg-based therapy.

Keywords: Treg, FOXP3, COVID-19, SARS-CoV-2, Treg-based therapy
INTRODUCTION

Tregs are a CD4+ T cell subset which express high level of CD25 (high-affinity interleukin 2 receptor
alpha) and forkhead box P3 (FOXP3) (1, 2). In the 1970s, Gershon and Kondo found that T cells
owned suppressive function besides defense function through thymus-removed experiment on mice
(3). Until the early of 2000s, researchers discovered IL-2 and its high affinity receptor CD25 were
essential for the generation and maintenance of Treg subsets (4). In 2001, foxp3 was firstly identified
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as an essential transcriptional factor gene for keeping immune
homeostasis in the Scurfy mouse (5). In 2003, Sakaguchi and his
team first brought up and proved that FOXP3 was essential to the
development and function of Tregs (1). The mutation of FOXP3
will lead to immune dysregulation, polyendocrinopathy,
enteropathy, X-linked syndrome (IPEX), along with severe
autoimmune diseases like enteropathy, type 1 diabetes (T1D),
dermatitis and other autoimmune diseases (6). Tregs are mainly
categorized into two groups, one is natural Tregs (nTreg) which
develop in thymus (7), the other is named as induced Tregs
(iTreg) which are converted from naïve CD4+ T cells and could
be generated both in vivo and in vitro (8). FOXP3+ Tregs are
responsible for keeping immune tolerance, which can prevent
allergic and other kinds of autoimmune diseases (9) as well as
inhibit the anti-tumor or anti-pathogen immune responses (10).

Since the outbreak in 2020, the COVID-19 has raged all over
the world. SARS-CoV-2 is mainly transmitted through
respiratory droplets or aerosols (11). By 27th May 2022, SARS-
CoV-2 had infected more than 527 million people and resulted in
a death of 6.28 million people at least. The SARS-CoV-2
pandemic has led to a serious global public health crisis.
Patients with COVID-19 exhibited the following symptoms
including fever, dry cough, difficulty breathing, diarrhea,
headache, myalgia and joint soreness (12, 13). The chest CT
image of COVID-19 patients showed ground-glass opacity, and
compared with healthy adults, the plasma concentrations of IL-
1b, IL-7, IL-8, IL-9, IL-10, IFN-g, TNF-a, and VEGF of COVID-
19 patients were all upregulated (14). The damage of the SARS-
CoV-2 to the human body is not only related to the viral
infection, but also to the degree of the host immune response
to the virus. The immune system released plenty of pro-
inflammatory cytokines in response to the SARS-CoV-2
invasion, the uncontrolled inflammation would cause tissue
damage in lung, heart, liver and kidney, which possibly leads
to respiratory failure or multiple organ failure (15). Given the
immune suppressive function and tissue repair ability of Tregs,
Tregs are likely to provide protective functions and prevent
cytokine storm. However, Tregs also possibly suppress innate
and adaptive anti-viral immune responses. Consequently, Tregs
may play dual roles during the process of SARS-CoV-2 infection.
SARS-CoV-2 and Immune Response
in COVID-19

SARS-CoV-2 has the characteristics of strong infectivity and
high mutation rate. Since the outbreak, the virus has undergone
several mutant strains, such as Delta (16), Omicron (17) and
other variants. It has been reported that SARS-CoV-2 can
severely impair the immune responses and lead to excessive
inflammatory responses. SARS-CoV-2 belongs to the
coronavirus family which is enveloped single-stranded,
positive-sense RNA viruses, containing 28–34 kb genome (18).
Genome of SARS-CoV-2 contains spike (S), envelope (E),
membrane (M) and nucleocapsid (N) genes to encode the viral
Frontiers in Immunology | www.frontiersin.org 2
structural proteins and other open reading frames to encode
non-structural proteins. During the invasion, S protein of SARS-
CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) of host
cells (13). Other mild human coronaviruses like 229E,
NL63, OC43 and HKU1 only infect the upper respiratory tract
and cause mild symptoms (19). There also exists fatal
human coronaviruses including severe acute respiratory
syndrome coronavirus (SARS-CoV), Middle East respiratory
syndrome coronavirus (MERS-CoV) and SARS-CoV-2 which
can infect the lower respiratory tract and cause severe
pneumonia (20). SARS-CoV-2 invasion to lung cells could lead
to impaired respiratory function, creating a low blood oxygen
and high lactate environment (21). Meanwhile, SARS-CoV-2
invasion would rapidly activate immune response as well.

The human immune system includes innate and adaptive
immunity. Innate immunity acts as the first defender when virus
invades host. When SARS-CoV-2 infects the host cells, the
pattern recognition receptors, such as toll-like receptors (TLRs)
and intracellular RNA sensors RIG-I, will recognize the invasion
of foreign pathogens and induce downstream type I interferon
(IFN) response program which is regarded as the most efficient
cytokine to clear virus (22). Plenty of evidences indicate there
exists strong cytokine storm in the COVID-19 patients, TNF-a
and interleukins like IL-1b, IL-6, IL-8 are mainly secreted by the
epithelial cells, endothelial cells, tissue macrophages and mast
cells, the circulating levels of these cytokines increase acutely in
COVID-19 patients (23, 24). The uncontrolled inflammatory
responses excessively activate immune cells like T-cells,
macrophages and natural killer cells, causing vascular
endothelial damage, alveolar epithelial damage, diffuse alveolar
damage, disseminated intravascular coagulation (DIC),
multiorgan failure and even death in severe patients (25).

During the virus attack, T cells play an essential roles in the
process of antiviral antibody production and cell-mediate
immune response. Lymphopenia with reduced numbers of
CD4+ and CD8+ T cells is an obvious symptom in severe
COVID-19 patients (26). A recent study shows the T cell
numbers are negatively correlated to serum IL-6, IL-10 and
TNF-a concentration, but T cells will restore when IL-6, IL-10
and TNF-a concentrations are decreased in the disease
resolution period (27). During acute stage of COVID-19,
SARS-CoV-2 specific CD8+ T cells exhibit higher levels of
IFN-g, Granzyme B, Perforin, which are associated with
enhanced cytotoxic effector functions (28). CD4+ T cells own
the capacity to differentiate into differently functional subsets
including Th1, Th2, Th17, Treg and T follicular helper cells (Tfh)
(29). Virus-specific CD4+ T cells commonly contains Th1 and
Tfh. Th1 plays antiviral role through secreting IFN-g and other
cytokines (30). Tfh participates in germinal center formation and
sensitizes B cells to produce neutralizing antibody during SARS-
CoV-2 infection (31). Age, gender, racial and/or pre-existing
immunity may all account for the heterogeneity of COVID-19
patients and influence the disease outcomes (32). Differences in
Treg status may be related to the heterogeneity of COVID-19. So,
it is meaningful to focus on the change of FOXP3+ Tregs in the
COVID-19 patients with different severity.
July 2022 | Volume 13 | Article 916411
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Function and Mechanism of Treg: More
Than Immunosuppression

Tregs are a subset of CD4+ T cells with immunosuppressive
function and FOXP3 is the specific transcriptional factor of this
subset. CD4+ CD25+ FOXP3+ Tregs account for approximately
10% of CD4+ T cells in human peripheral blood (33). FOXP3+

Tregs are critical for keeping immune tolerance (34). Sakaguchi
lab showed that, transfer of suspensions of CD25+ population-
depleted T cells into athymic nude mice produced autoimmune
disease, while co-transfer with CD4+ CD25+ T cells prevented the
autoimmune disease (2). Currently, FOXP3+ Tregs are also
proved to play essential role in maintaining fetal-maternal
tolerance (35), oral tolerance (36), transplantation tolerance
(37) and even mucosal tissue tolerance (38).

FOXP3+ Tregs keep the immune homeostasis via multiple
mechanisms (Figure 1). Tregs could secrete inhibitory cytokines
including IL-10, IL-35 and TGF-b (39). Furthermore, FOXP3+

Tregs highly expressed CD25 to compete for endogenous IL-2
and induced cytokine deprivation-mediated apoptosis of effector
Frontiers in Immunology | www.frontiersin.org 3
cells (40). Tregs also expressed CD39 which degraded ATP to
AMP and inhibited the maturation of dendritic cells mediated by
ATP (41). Co-expression of CD39 and CD73 on Tregs could
convert ADP into adenosine, and adenosine bound to the
adenosine A2A receptor of effector T cells and thus inhibited
the activation of effector T cells (42). The activation of adenosine
A2A receptor promoted the production of TGF-b while decreased
the expression of IL-6, promoting the generation of Tregs (43).
Tregs could downregulate the expression of costimulatory
molecules CD80 and CD86 on dendritic cells (44). The
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
expression on Tregs led to the reduction of CD86 through
transendocytosis and impaired the activation of antigen-
presenting cells (APCs) (45). Furthermore, via the CTLA-4
induced signaling, Tregs could upregulate the expression level
of indoleamine 2,3-dioxygenase in dendritic cells, leading to the
starvation of effector T cells (46, 47). Moreover, Tregs expressed
lymphocyte activation gene 3 (LAG-3) which competitively
bound to major histocompatibility complex class II (MHC-II)
and restrained the maturation of dendritic cells (DCs) (48).
FIGURE 1 | Treg suppressive mechanisms.Treg could secrete immunosuppressive cytokines including IL-10, TGF-b, and IL-35. In addition, Treg could induce
cytolysis by Granzyme-dependent and Perforin-dependent mechanisms. The CD25 on Treg competitively binds to IL-2 and mediates apoptosis of effector immune
cells through cytokine-deprivation. The interaction of LAG-3 and MHC-II mediates suppression of DC maturation, the interaction of CTLA-4 and CD80/86 mediates
the production of immunosuppressive molecule IDO in DC. CD39 and CD73 facilitate the generation of pericellular adenosine, whose suppressive function is
mediated through A2AR. Treg inhibits B cell activity via the interaction of PD-L1/2 and PD-1.
July 2022 | Volume 13 | Article 916411
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Another important mechanism of Treg-mediated suppression
was the Granzymes-dependent and Perforin-dependent cytolysis
of CD8+ T cells and nature killer cells (49). As for B cells, besides
the apoptosis through Perforin and Granzymes, the binding
between programmed death-1 ligands (PD-L1) of Tregs and
programmed death-1(PD-1) of autoreactive B cells impaired the
proliferation and function of autoreactive B cells (50).

FOXP3+ Tregs not only play essential role in the maintenance
of immune homeostasis, but also play an indispensable role in
regulating tissue homeostasis, inflammation and repair when
resident in non-lymphoid tissues (51). The tissue resident Tregs
own diverse functions, appeared in multiple sites including
Frontiers in Immunology | www.frontiersin.org 4
adipose tissue, cardiac muscle, skeletal muscle, lung, liver,
central nervous system, skin and other tissues (51, 52).
Recently we have revealed that insulin signaling induced the
transition of visceral adipose tissue Tregs from CD73hiST2lo

subset into a CD73loST2hi subset through the HIF-1a/Med23-
PPARg axis and thus influenced beige fat production (53). The
lung-resident Tregs are responsible for keeping immune
tolerance and tissue repair (Figure 2). By using an influenza
virus infection model, the researchers unveiled memory Tregs
offered protective function during secondary encounters with
pathogens (54). Another study of influenza virus infection
showed at the early stage of lung injury, under the stimulation
FIGURE 2 | Lung resident Treg plays protective role under acute lung injury. Besides suppressing the excessive inflammatory response and keeping immune
tolerance under the condition of acute lung injury, lung resident Tregs also produce Amphiregulin under the stimulation of IL-18 or alarmin IL-33 during lung injury by
viral infection. Amphiregulin is crucial for Treg cell-mediated tissue repair.
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of IL-18 or alarmin IL-33, a group of IL18R+ Tregs would expand
and produce tissue-repair protein Amphiregulin under a TCR
independent manner (55). Moreover, Helios+ Treg cells were
selectively recruited to lung tissues after influenza virus infection
and enhanced the suppressive function on virus specific CD8+ T
cells (56). Interestingly, when Tregs co-cultured with primary
type II alveolar cells (AT2), AT2 cell proliferation directly
increased via a CD103-dependent manner (57). However,
during acute lung injury, the increased high-mobility group
box 1 (HMGB1) impaired the expression of FOXP3 and
CTLA-4 in lung resident Tregs through TLR4 and reduced
Tregs immunosuppressive function, accelerating the lung
injury (58).

Post-translational modifications (PTMs) of FOXP3 influence
the stability and function of FOXP3, thereby altering the
function and plasticity of Tregs (59). We have also unveiled
some PTMs of FOXP3 in our previous work. Under the
stimulation of lipopolysaccharide (LPS) and pro-inflammatory
cytokines, Treg function was disrupted due to the K48-linked
polyubiquitination degradation of FOXP3 by E3 ubiquitin ligase
Stub1 (60). In contrast, E3 ubiquitin ligase MDM2 enhanced the
Treg suppressive function through stabilizing FOXP3 in mouse
(61). Ubiquitination of FOXP3 is reversible so deubiquitination
is also critical for the function of FOXP3. USP21 prevented
FOXP3 from proteasomal degradation through deubiquitination
and enhanced FOXP3 stability, thus maintaining the expression
of Treg signature genes (62). Additionally, we also proved USP44
stabilized FOXP3 by removing K48-linked ubiquitin
modifications and maintained function of Tregs (63).
Phosphorylation is another PTM of FOXP3, we demonstrated
PIM1 kinase phosphorylated FOXP3 at S422 in human Tregs,
and PIM1-specific inhibitor enhanced Treg suppressive activity
by promoting FOXP3 DNA binding activity (64). Moreover, we
found Kaempferol could enhance the suppressive function of
Tregs via inhibiting the PIM1-mediated FOXP3 phosphorylation
and increased protein level of FOXP3 (65). Similarly, small
molecule inhibitor of PIM2 kinase also enhanced the function
of Tregs by decreasing the phosphorylation of FOXP3 (66).
PARP-1 negatively regulated the suppressive function of Tregs
via FOXP3 poly(ADP-ribosyl)ation, PARP-1 inhibitors could
promote FOXP3 stabilization and enhance Treg suppressive
function (67). Besides the PTMs of FOXP3, the interaction of
DBC1 and FOXP3 promoted the degradation of FOXP3 and
weakened the suppressive function of Tregs (68). In conclusion,
partner proteins or PTMs of FOXP3 are critical for Treg stability,
plasticity and functions. Therefore, small molecules targeting the
PTMs or partner-interactions of FOXP3 have the potentiality to
be developed into drugs for COVID-19 therapy.
The Change of Treg in SARS-CoV-2
Patients: A Controversial Topic

Previous study has shown that upon acute lung injury (ALI),
lung-infiltrated Tregs are strongly induced to resolve lung injury
and offer tissue repair (69–71). So, under the violent cytokine
Frontiers in Immunology | www.frontiersin.org 5
storm and lung epithelium damage caused by COVID-19, Tregs
might be required to prevent tissue injury.

Several studies have reported the potential relationship
between Treg and COVID-19 severity. Some research found
the phenomenon of increasing proportion of Tregs or higher
expression of Treg functional markers. For instance, a study
revealed that higher proportion of CD25+ FOXP3+ Tregs among
CD4+ T cells, increased mean fluorescence intensity (MFI) of
FOXP3 and higher expression of activated Treg markers like
KLRG1 and PD-1 in severe COVID-19 patients which all
reverted to the baseline in the recovered patients (72).
Similarly, another study demonstrated that, in critical COVID-
19 patients, the frequency, the proliferation as well as the protein
abundance of FOXP3, CTLA-4, GITR and ICOS of CD25+

CD127− FOXP3+ Tregs enhanced, along with their increasing
suppressive function (73). In the bronchoalveolar lavage fluid
(BALF) of COVID-19 ARDS patients, researchers found elevated
Tregs and Th17 cells while declining T-cell populations (74).
Interestingly, proportion of CD25+ CD127− Tregs among the
total CD4+ T cells and expression of CTLA-4 on Tregs increased
in the prolonged SARS-CoV-2 positivity patients, compared with
clinical recovery cohort and healthy donor cohort (75). Notably,
the change of Tregs mainly reflected in the ascending percentage
but not the absolute numbers, and COVID-19 patients were
characterized by increasing percentage of naïve Tregs (CD45RA+

CCR7+) and central memory Tregs (CD45RA− CCR7+) with
robust expression of PD-1 (76). In addition, on 5 days post-
infected (dpi), the CD4+ FOXP3+ Tregs of lung and PBMC
exhibited an increasing trend in the nonhuman primate model of
COVID-19 progression (77). Increase of the cell proportion and
functional markers’ abundance possibly bring stronger
suppression function of Tregs, but more research is required
for this hypothesis.

The proportion change of Tregs in COVID-19 is still
controversial, possibly due to the biphasic roles of Tregs during
the process of viral infection. Several studies have reported the
decrease of Tregs in the COVID-19 patients. For instance, a study
reported that, compared with non-ICU hospitalized groups, the
frequency of Tregs of ICU hospitalized patients was markedly
decreased along with the Th17/Treg ratio significantly increased,
the researchers also found the inhibitory function of the Tregs
from ICU patients was impaired through the suppression assay
(78). Another study also reported similar increase of Th17/Treg
ratio in COVID-19 patients’ PBMC, which was related to poorer
prognosis and lower abundance of Treg-relevant cytokines like IL-
10 and TGF-b (79). Moreover, a single-cell transcriptomic analysis
of viral antigen-reactive CD4+ T cells from 40 COVID-19 patients
got the conclusion that SARS-CoV-2-reactive Tregs were
dramatically reduced in hospitalized COVID-19 patients, while
the proportions of cytotoxic follicular helper cells and cytotoxic T
helper cells responding to SARS-CoV-2 were increased (80). Other
study highlighted that, compared to mild or moderate subjects, the
absolute number of total lymphocytes of severe COVID-19
patients was reduced and the amount of Tregs was negatively
correlated to viral load, suggesting reduced Tregs stood for
increased risk of worsening during the hospitalization (81). A
July 2022 | Volume 13 | Article 916411
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study in Wuhan showed severe COVID-19 patients presented
decreased regulatory T cells (CD3+ CD4+ CD25+ CD127low)
proportion (82). Another study, taking advantage of CyTOF to
analyze PBMCs of COVID-19 patients, reported that Tregs ratio
increased during the progression from mild to severe condition
but declined during the progression to critical condition,
suggesting there was a dynamic change of Tregs during the
progression of COVID-19 (83). Interestingly, a study analyzed
the transcriptomes of CD4+ T cells of COVID-19 patients and
found out CD25 was significantly upregulated in CD4+ T cells, but
the proportion of FOXP3+ cells in CD4+ CD25+ T cells of severe
patients is significantly reduced compared with moderate patients,
the increasing expression of CD25 was correlated to the
upregulation of FURIN which could promote the invasion of
SARS-CoV-2 into lung epithelial cells (84). In the children infected
with SARS-CoV-2, Tregs apparently declined during the acute
phase and reverted to the baseline when recovered (85).
Interestingly, a high-dimensional flow cytometry analysis of the
severe COVID-19 airway indicated reduced Treg frequency
compared with healthy control (86), suggesting that the function
of lung resident Tregs was possibly impaired in severe COVID-19
cases. It has been known that Tregs could lose its stability in vitro
under the stimulation of pro-inflammatory cytokines like IL-6
(87). So, under the inflammatory environment caused by COVID-
19, abundant IL-6, IL-1 and IL-23 might induce the expression of
RORgt and downregulate FOXP3 (88), leading to the reduction of
Tregs in COVID-19 patients.

The variability of the Treg subsets composition was also
reported in COVID-19 patients. For example, a study reported
that the ratio of CD39+ Tregs in PBMCs was increased with
disease severity in adult patients while the CD39+ Tregs were
decreased in juvenile patients in an age-dependent manner (89).
Another study showed the total Tregs had no change but only
CCR4Hi Tregs in the hospitalized COVID-19 cases were
increased (90). Compared with moderate COVID-19 cases, the
severe cases showed significantly lower proportion of CD45RA+

naive Tregs while a slightly higher proportion of CD45RO+

memory Tregs (91), suggesting the proportion of Treg subsets
might predict the outcome of patients. A similar phenomenon
was also observed in another study, especially in those with
extremely severe COVID-19 compared with mild patients (92).

It was reported lymphopenia was an effective predictor for the
patients suffered with COVID-19, lower blood lymphocyte
percentage indicated poorer outcome (26). There might exist
several potential mechanisms contributing to lymphopenia. The
SARS-CoV-2 RNA was also detected in immune cells through
single cell RNA-seq (93), SARS-CoV-2 might own the capacity to
infect Treg through ACE2-independent receptors (94).
Potential Treg-Based Therapy
in COVID-19

Since Tregs have roles in keeping immune homeostasis and
offering tissue repair, targeting and regulating the function of
Tregs might be a good way for COVID-19 treatment. Cytokine
Frontiers in Immunology | www.frontiersin.org 6
storm and extensive lung damage caused by increased amounts
of proinflammatory cytokines were particularly associated with
disease severity. Although currently there is no specific
therapeutic agent for the human coronavirus disease, some
drugs w i th broad- spec t rum an t i v i r a l a c t i v i t y o r
immunotherapies targeting dysregulated immune responses
have been successfully used. Antiviral drugs such as
remdesivir, favipiravir, ribavirin, as well as chloroquine have
been reported to block SARS-CoV-2 infection and are
undergoing clinical studies (95, 96). Treg-based therapies have
been successfully used in treating autoimmune diseases and solid
organ transplantation and have received initial success, aiming to
ameliorate autoimmunity and restore immune tolerance. There
is evidence that therapy with adoptive transfer of Tregs is helpful
for autoimmune patients (97). This transfer of Tregs has been
demonstrated to resolve fibroproliferation in an animal model of
lung injury (71). IL-10 produced by Tregs plays an antifibrotic
role and significantly contributes to the inhibition on
fibroproliferation (98), suggesting that targeting Tregs could be
a potential strategy to treat pulmonary fibrosis in severe COVID-
19 patients. Currently, scientists are exploring to treat ARDS
patients by infusion with umbilical cord-derived, allogeneic, ex-
vivo expanded polyclonal CD4+ CD25+ Tregs (ClinicalTrials.gov
Identifier: NCT05027815). Plenty of clinical trials working over
the efficacy of Treg in COVID-19 are ongoing, some of which
have achieved promising clinical effects, such as reduced lung
inflammation (99) (ClinicalTrials.gov Identifier: NCT04468971).
Circulating Tregs frequencies in severe COVID-19 patients were
reduced (79, 80, 82), and the loss of Treg function could lead to a
lung hyperinflammatory response. Therefore, increasing Tregs in
blood by the infusion of ex-vivo expanded Tregs could suppress
excessive inflammatory response in the lung and alleviate
lung injury.

Besides the treatment by infusion of exogenous Tregs, raising
Tregs in vivo, such as treatment with cytokines or small molecule
drugs, could be another solution for the treatment of COVID-19
patients. IL-2 is a key survival factor required for the
proliferation and inhibitory functions of Tregs by regulating
the expression of FOXP3 and Treg secreted cytokines (100, 101).
IL-2 binds to CD25 which is highly expressed on the cell surface
of Tregs, activates STAT5 signaling and then influences the
activity of Tregs (101). Low-dose IL-2 therapy has been used
in the clinical treatment of autoimmune diseases such as
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA)
and T1D and achieved excellent effects (100, 102–104). As IL-2
contributes to the development of both Tregs and Th17 cells,
treatment with low concentrations of IL-2 might resolve the
Treg/Th17 imbalance in COVID-19 patients (79, 101, 105).
Actually, a clinical trial with low-dose IL-2 for SARS-CoV-2-
related ARDS was completed last year (ClinicalTrials.gov
Identifier: NCT04357444). Additionally, a phase 3 clinical trial
has been registered recently for cytokines therapy on COVID-19
patients, evaluating the efficacy and safety of treatment with IL-2
or inhibitor of IL-17 (ClinicalTrials .gov Identifier:
NCT04724629). However, the clinical observation showed that
severe and critical patients had higher level of soluble IL-2R,
July 2022 | Volume 13 | Article 916411
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which became a biomarker for early identification of severe
COVID-19 and for predicting the clinical progression (106–
108). The increased levels of soluble IL-2R could potentially
scavenge IL-2, suggesting low-dose IL-2 therapy was not the
optimal regimens for COVID-19 treatment (109). It is reported
that an anti-human IL-2 (hIL-2) antibody can increase the Treg/
Teff (effector T cells) ratio when bound to hIL-2 (110). A
particular IL-2 monoclonal antibody JES6-1 brought selective
expansion of Tregs and inhibited inflammation in mice
experimental autoimmune encephalomyelitis (EAE) model
(111). The imbalance of Tregs versus other immune cells in
vivo results in autoimmune diseases and inflammatory.
Ruxolitinib, a JAK 1/2 inhibitor, was reported to decrease the
frequency of Th17 while increase FOXP3 abundance and Treg
frequency (112). A Phase I/II trial for COVID-19 treatment with
Ruxolitinib was completed in 2021(ClinicalTrials.gov Identifier:
NCT04334044). It’s reported that transient breakdown of Treg
tolerance can activate DCs and induce DCs’ protective adaptive
immunity against SARS-CoV-2 (113), so regulation on Tregs
and DCs might be a promising way for COVID-19 therapy.

Moreover, some small-molecule drugs which could promote
the function of Tregs might be used to resist the cytokine storm
caused by COVID-19. From our laboratory previous study, we
found GSK3 inhibitor SB216763 could enhance the suppressive
function of human iTregs by promoting IL-10 production and
decreasing proinflammatory iTregs (114). Another study
suggested GSK3 inhibition as a potential therapeutic approach
against SARS-CoV-2 (115). PI3K-Akt-mTOR signaling axis was
critical for the development of Tregs (116). Rapamycin, an
inhibitor of mTOR used in the therapy of T1D patients,
promote the expansion of Tregs while inhibit the proliferation
of effector T cells (117, 118). Rapamycin treatment obtained the
potential to prevent the cytokine storm in patients with severe
COVID-19 (119). All-trans retinoic acid (atRA), a metabolite of
vitamin A, was able to facilitate the differentiation of Tregs from
naïve CD4+ T cells and suppressed the de novo generation of
Th17 from naïve CD4+ T cells (120, 121). Besides regulating the
balance of Treg/Th17, atRA could maintain the stability and
function of nTregs under inflammatory environment (122).
AtRA was also reported to exhibit antiviral effect against
SARS-CoV-2 by inhibiting 3CLpro activity (123).

Antigen-specific TCR, which could be redirected towards a
desired antigen, is an option for Treg-based therapy (124). TCR-
Tregs were able to be expanded ex-vivo and functioned more
efficiently than polyclonal Tregs in animal models of T1D, RA
and transplantation (125–127). Targeting specific antigen of
SARS-CoV-2, TCR-Treg therapy could have advantages of
lower dosage but higher efficiency and own the therapeutic
potential in COVID-19 patients. Another strategy is CAR-
Tregs, which have the ability to bind to tissue-specific
autoantigens and specifically focus the suppressive functions
on the diseased site (128). CAR-Treg therapy has been
demonstrated to work well in various preclinical models
including EAE, colitis and experimental allergic asthma (129–
131); and one Phase I/II trial on CAR-Treg therapy in renal
transplantation is ongoing (ClinicalTrials.gov Identifier:
Frontiers in Immunology | www.frontiersin.org 7
NCT04817774). Although CAR-Treg therapy attracts much
attention in a variety of autoimmune diseases and tumor, it
hasn’t been used in COVID-19 treatment yet. The ability of
CAR-Treg to induce immunological tolerance provides the
potential applications of CAR-Treg in SARS-CoV-2 treatment.

CTLA-4 is a functional marker of Tregs. It interacts with
CD80 and CD86, two ligands of stimulatory receptor CD28. By
increasing trans-endocytosis and degradation of two ligands,
CTLA-4 reduces co-stimulatory signals for T-cells (45). The
recombinant Fc-fused CTLA-4 protein, Abatacept has been
reported to interfere with T-cell signaling and activation, and
therefore it has been used for several years for the
immunotherapy of many autoimmune diseases (109). Recently,
a clinical trial which uses Abatacept in the therapy of COVID-19
patients has been completed (ClinicalTrials.gov Identifier:
NCT04593940). Researchers from University of Alabama also
have registered a clinical trial for using Abatacept with COVID-
19 vaccination in the therapy (ClinicalTrials.gov Identifier:
NCT05080218). An epidemiological survey indicated that
Abatacept, one of targeted biologic and synthetic disease
modifying anti-rheumatic drugs (tDMARDs), could decrease
incidence of COVID-19 and bring milder symptoms (132).
This provided the basis for using CTLA-4-based therapy in
COVID-19 patients. In addition to CTLA-4, TGF-b, a Treg-
derived immunoregulatory molecule, is also believed as a target
for SARS-CoV-2 treatment. TGF-b could cause the lung fibrosis
and be involved in the fluid homeostasis in the lung (133).
Therefore, blocking TGF-b by neutralization and elimination
TGF-b with antibodies and/or TGF-b inhibitors becomes a
promising approach to protect lungs from the development of
fibrosis (134).

A cohort of research on COVID-19 patients showed that
expression of Notch4 was increased on Tregs and associated with
disease severity, mortality, and recovery. Notch4-amphiregulin
nexus was identified as an assumed target of therapy in viral
respiratory infections, including SARS-CoV-2 and influenza
(135). Pathway of Notch4 and Notch ligand delta-like ligand 4
(DLL4) is shown to increase H3K4me3 around the foxp3 locus to
stabilize FOXP3 expression, which further regulates the
differentiation and function of Tregs (136). These studies
suggest that the interference along the Notch4-DLL4 axis
might be a feasible treatment strategy for relieving of COVID-
19. Furthermore, the dual roles of FOXP3+ Tregs during viral
infection should be reminded. The dynamic changes of Tregs
including proportion, suppression function and FOXP3 stability
under different COVID-19 stage should be well uncovered before
Treg-based therapy.
Conclusion and Prospective

Currently, the changes on the proportion and absolute number
of Tregs under SARS-CoV-2 infection remain debatable. Several
possibilities exist for causing these controversial results. Firstly,
the marker to identify Treg is not unified in different studies,
researchers use different markers to define Tregs. Secondly, the
July 2022 | Volume 13 | Article 916411
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patients in the studies are possibly infected by different variants
of SARS-CoV-2, different variants vary in pathogenicity and
induce different degree of immune response, but most
researchers did not distinguish which variants infected
patients. Thirdly, in different studies, there was no criteria to
define the severity order of patients or to identify the subset of
Tregs. Fourthly, the change of Tregs during COVID-19 is
possibly dynamic, patients might stay at different stage of
COVID-19. Besides the changes on proportion and absolute
number of Tregs in COVID-19 patients, possibly the change on
the suppressive function (stability, plasticity etc.), the
composition of Treg subsets and tissue-specific subsets should
be more noteworthy.

The dual roles of FOXP3+ Treg during antiviral immune
responses should also be noteworthy (Figure 3). It is supposed
that, in the mild cases there exists an ideal balance between the
suppression of FOXP3+ Treg and antiviral immune response,
body can eliminate SARS-CoV-2 while maintaining immune
homeostasis. If the suppressive function of FOXP3+ Tregs is too
strong at the early stage of virus infection, the immune response
of host will be suppressed by Tregs and cannot produce an
Frontiers in Immunology | www.frontiersin.org 8
adequate immune response for viral clearance. Then the virus
will speed up its replication and produce more PAMPs
(Pathogen-associated molecular patterns). The tissue injury
caused by viral infection produces more DAMPs (Damage-
associated molecular pattern), and activates acute immune
response, leading to severe cases. When the immune responses
caused by SARS-CoV-2 are over-activated, which exceed the
suppressive control of FOXP3+ Tregs, the excessive immune
responses will contribute to tissue damage and trigger cytokine
storms, leading to severe cases. Based on this hypothesis, the
introducing time and efficacy of Treg-based therapy should be
critical for COVID-19 treatment, and we hope Treg-based
therapy can help more COVID-19 patients avoid severe cases.
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FIGURE 3 | Treg has dual roles during SARS-CoV-2 infection. The balance between Treg suppressive function for maintaining immune homeostasis and antiviral
immune responses for eliminating SARS-CoV-2 is proposed to be kept well in the mild patients. When this balance is broken, patients will suffer poorer prognosis.
Excessive Treg activity will result in virus persistence, more production of pro-inflammatory DAMPs and PAMPs and exacerbated inflammation. Insufficient Treg
activity will contribute to aggressive inflammatory response with cytokine storm which leads to tissue damage and ARDS. More researches are required to explore
the best time for Treg-based therapy to avoid severe COVID-19 symptom.
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