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Audronė Marozienė 1, Mindaugas Lesanavičius 1, Elisabeth Davioud-Charvet 2 ,
Alessandro Aliverti 3 , Philippe Grellier 4 , Jonas Šarlauskas 1 and Narimantas Čėnas 1,*
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Abstract: With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the
malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum
ferredoxin:NADP+ oxidoreductase (Pf FNR) of a series of nitrofurans and nitrobenzenes (n = 23),
and their ability to inhibit P. falciparum glutathione reductase (Pf GR). The reactivity of nitroaromatics
in Pf FNR-catalyzed reactions increased with their single-electron reduction midpoint potential (E1

7).
Nitroaromatic compounds acted as non- or uncompetitive inhibitors towards Pf GR with respect to
NADPH and glutathione substrates. Using multiparameter regression analysis, we found that the
in vitro activity of these compounds against P. falciparum strain FcB1 increased with their E1

7 values,
octanol/water distribution coefficients at pH 7.0 (log D), and their activity as Pf GR inhibitors. Our data
demonstrate that both factors, the ease of reductive activation and the inhibition of Pf GR, are important
in the antiplasmodial in vitro activity of nitroaromatics. To the best of our knowledge, this is the
first quantitative demonstration of this kind of relationship. No correlation between antiplasmodial
activity and ability to inhibit human erythrocyte GR was detected in tested nitroaromatics. Our data
suggest that the efficacy of prooxidant antiparasitic agents may be achieved through their combined
action, namely inhibition of antioxidant NADPH:disulfide reductases, and the rapid reduction by
single-electron transferring dehydrogenases-electrontransferases.

Keywords: nitroaromatics; Plasmodium falciparum; ferredoxin:NADP+ oxidoreductase; glutathione
reductase; enzyme inhibition

1. Introduction

The emergence of the resistance of the malaria parasite Plasmodium falciparum to available drugs
(e.g., chloroquine or artemisinin [1]) has resulted in the demand for new antimalarial agents and in a
better understanding of their mechanisms of action. P. falciparum is particularly vulnerable to oxidative
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stress, that is, to enhanced generation of reactive oxygen species (ROS), which may be caused by the
absence of the antioxidant enzymes catalase and glutathione peroxidase [2].

The antibacterial and antiparasitic activity of nitroaromatic compounds (ArNO2) is well known.
In addition to a number of nitroheterocyclic drugs such as nifurtimox and benznidazole that have been
used against Chagas disease and sleeping sickness since the 1970s, a new 5-nitroimidazole derivative,
fexinidazole, has recently been approved for a treatment against sleeping sickness [3]. Frequently,
the therapeutic action of ArNO2 is attributed to single-electron reduction into their anion radicals
(ArNO2

−), which in turn undergo redox cycling with the formation of ROS, or to their two/four-electron
reduction into hydroxylamines (ArNHOH), able to modify DNA [4–6]. The single-electron reduction of
ArNO2 is commonly performed by flavoenzymes dehydrogenases- electrontransferases, which possess
natural single-electron acceptors, such as heme- or FeS-proteins [7–10]. However, there is a relative
lack of information about the enzymes responsible for these reactions in parasites. Another point of
view is that in trypanosomatids and Leishmania spp., a possible mode of ArNO2 action is the inhibition
of the antioxidant flavoenzyme trypanothione reductase (TR) [11–16]. In this case, nitroaromatics
also undergo TR-catalyzed redox cycling. In schistosomatids, a possible target of ArNO2 and other
aromatic electron-deficient compounds is thioredoxin glutathione reductase [17,18].

A number of nitrofurans, nitrobenzenes, nitroimidazoles, and 4-nitrobenzothiadiazole were shown
to possess in vitro antiplasmodial activity at micromolar or lower concentrations [19–23]; however, the
mechanisms of their action remain poorly understood. The activity of a series of nitrobenzenes and
nitrofurans roughly increased with their single-electron reduction midpoint potential (redox potential of
ArNO2/ArNO2

− couple, E1
7) [19], thus demonstrating a possible relationship between the compound’s

ease of reductive activation and antiplasmodial activity. The antimalarial activity of nitrothiophenes
was also attributed to the formation of ROS [24]. On the other hand, nitroaromatic compounds inhibit
antioxidant flavoenzyme glutathione reductase from various sources [19,23,25,26]. Since P. falciparum
glutathione reductase (Pf GR) plays a key role in the antioxidant defense of the parasite [2,27,28],
it is believed that its inhibitors may act as efficient antiplasmodial agents. Pf GR is a 2 × 55 kD
homodimer containing FAD and catalytic disulfide in each subunit, which catalyzes the reduction of
glutathione (GSSG) at the expense of NADPH [29]. Human erythrocyte host glutathione reductase
(HGR) possesses 45% amino acid sequence identity with Pf GR and its role in the parasite survival is a
matter of debate. Both Pf GR and HGR are inhibited by aromatic electron-deficient compounds which
were observed to bind at the dimer interface [27,28]. Our previous study demonstrated the absence of
relationship between the antiplasmodial activity of nitroaromatic compounds and their efficacy as
HGR inhibitors [19]. However, the relationship between the Pf GR inhibition and the antiplasmodial
activity of nitroaromatics has not been studied so far.

Extending our previous studies [19,30], here we demonstrate that the in vitro antiplasmodial
activity of nitroaromatic compounds partly correlates with their efficacy as Pf GR inhibitors, and partly
with their reactivity with single-electron transferring P. falciparum ferredoxin:NADP+ oxidoreductase
(Pf FNR). Given the data currently available, Pf FNR may act as the most efficient generator of ArNO2

free radicals in Plasmodium.

2. Results

2.1. Relationship between Antiplasmodial Activity of Nitroaromatic Compounds and Their Single-Electron
Reduction Midpoint Potential

The toxicity of nitroaromatic compounds against mammalian cells and bacteria often increases
with their single-electron reduction midpoint potential (redox potential of ArNO2/ArNO2

− couple, E1
7).

The relationship ∆log IC50/∆E1
7 ~ −10 V−1, where IC50 is the compound concentration for 50% cell

survival or, in the case of bacteria or parasites, for 50% growth inhibition, indicates that the main factor of
cytotoxicity is redox cycling and oxidative stress [4,8,31]. Indeed, the rates of single-electron reduction
of ArNO2 by flavoenzymes dehydrogenases-electrontransferases, such as NADPH:cytochrome P-450
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reductase, ferredoxin:NADP+ oxidoreductase, and NO-synthase that initiate their redox cycling,
increase with E1

7 of oxidants, and are relatively insensitive to their structure [7–10].
In this work, we used a series of nitroaromatic compounds (Figure 1, Table 1) with available

E1
7 values. For a major part of them, the IC50 values against the chloroquine-resistant P. falciparum

strain FcB1 and the inhibition efficacy against HGR were characterized in a previous work [19].
Among the examined compounds, the representatives of vinylquinoline-substituted nitrofurans
(IIIa–IIIh, Figure 1) possess well-promising diverse properties such as inhibition of trypanothione
reductase, that is, the potential trypanocidal activity [12] as well as bactericidal and antitumor in vitro
activity [32,33], the latter property gaining increasing interest [34]. Nitrobenzenes, nitrofurantoin,
and nifuroxime (compounds 1–9,12,14,23, Table 1) were used as model compounds. Table 1 reports
the IC50 values of compounds against P. falciparum strain FcB1, their E1

7 values, and their calculated
octanol/water distribution coefficients (log D). Importantly, the IC50 values for several nitroaromatic
compounds obtained in separate studies were sufficiently close (Table 1). For quantitative analysis,
when available, data obtained within the current work were used. The regression analysis of the log
IC50 versus E1

7 relationship yielded a ratio ∆log IC50/∆E1
7 = −8.37 ± 1.25 V−1 (r2 = 0.6802) (Figure S1,

Supplementary Materials). The dependence of log IC50 on log D is poorly expressed (r2 = 0.2913,
Figure S2 Supplementary Materials). However, an introduction of compound log D as a second
independent variable resulted in some improvement of the correlation:

log IC50 = −(0.65 ± 0.44) - (7.39 ± 1.34) E1
7 - (0.12 ± 0.07) log D, (r2 = 0.7193) (1)
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Table 1. Single-electron reduction midpoint potentials (E1
7) of nitroaromatic compounds, their

concentrations for 50% Plasmodium falciparum growth inhibition (IC50), their calculated octanol/water
distribution coefficients at pH 7.0 (log D), and their apparent bimolecular reduction rate constants by
Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (Pf FNR) (kcat/Km).

No. Compound E1
7 (V) [35] IC50 (µM) [19] log D kcat/Km

(M−1·s−1)

1 Nitrobenzene −0.485 473 ± 113 1.91 5.5 ± 0.8 × 101

2 4-Nitrobenzoic acid −0.425 360 ± 16; 450 ± 70.7 b −1.66 4.5 ± 0.6 × 102

3 CB-1954 −0.380 48.5 ± 5.0 b 0.64 2.8 ± 0.3 × 103

4 4-Nitroacetophenone −0.355 172 ± 8.0 1.47 3.3 ± 0.3 × 103

5 3,5-Dinitrobenzoic acid −0.350 390 ± 17 −1.79 3.9 ± 0.3 × 103

6 1,3-Dinitrobenzene −0.345 50.5 ± 2.4 1.85 2.7 ± 0.3 × 103

7 4-Nitrobenzaldehyde −0.325 79 ± 28 1.63 4.0 ± 0.3 × 103

8 3,5-Dinitrobenzamide −0.311 30.3 ± 3.1; 26.5 ± 6.4 b 0.7 4.9 ± 0.4 × 103

9 1,2-Dinitrobenzene −0.287 11.7 ± 1.1 1.85 1.1 ± 0.2 × 104

10 Nitrofurantoin −0.255 12.9 ± 1.3 −0.25 6.8 ± 0.7 × 104

11 Nifuroxime −0.255 14.7 ± 0.8 −0.34 3.3 ± 0.4 × 104

12 1,4-Dinitrobenzene −0.255 0.26 ± 0.03 1.85 9.3 ± 0.8 × 104

13 2,4,6-Trinitrotoluene −0.253 9.4 ± 7.8 b 2.31 1.3 ± 0.1 × 104

14 N-Methylpicramide −0.247 7.3 ± 1.1 b 1.92 6.8 ± 0.5 × 104

15 Nitrofuran IIIa −0.225 a 17.1 ± 1.5 0.27 4.8 ± 0.5 × 104

16 Nitrofuran IIIb −0.225 a 4.5 ± 0.3 2.64 1.6 ± 0.2 × 105

17 Nitrofuran IIIc −0.225 a 7.4 ± 0.3 2.87 n.d.
18 Nitrofuran IIId −0.225 a 7.4 ± 0.3 3.23 n.d.
19 Nitrofuran IIIe −0.225 a 9.2 ± 0.3 2.24 n.d.
20 Nitrofuran IIIf −0.225 a 11.1 ± 0.4 2.62 n.d.
21 Nitrofuran IIIg −0.225 a 6.4 ± 0.4 2.45 8.3 ± 0.7 × 104

22 Nitrofuran IIIh −0.225 a 4.3 ± 0.3 2.62 n.d.
23 Tetryl −0.191 4.1 ± 0.8 b 1.38 2.0 ± 0.3 × 105

a The E1
7 values are taken from [19], b The values of IC50 determined in this work. n.d., not determined.

This shows that the oxidant potency of nitroaromatics and, to some extent, their lipophilicity play
definite roles in their antiplasmodial activity.

2.2. Single-Electron Reduction of Nitroaromatics by PfFNR and PfGR

To the best of our knowledge, the pathways of reduction of nitroaromatic compounds in P. falciparum
are not yet well understood. Among flavoenzymes dehydrogenases-electrontransferases that can
initiate redox cycling of ArNO2, a potential candidate is ferredoxin:NADP+ oxidoreductase localized
in the apicoplast of the parasites [36,37]. This enzyme plays a significant role in parasite survival,
because the functional analysis of P. falciparum genome revealed a high fitness cost of disruption of its
gene [38]. Table 1 lists the bimolecular reduction rate constants of ArNO2 by Pf FNR (kcat/Km). The kcat

values of the reactions were not determined because of a nearly linear dependence of reaction rate on
ArNO2 concentration except for the most reactive oxidant tetryl (kcat = 27.5 ± 2.0 s−1).

Figure 2 shows the linear relationship between log kcat/Km and E1
7 of nitroaromatics characterized

by the ratio ∆log (kcat/Km)/∆E1
7 = 11.69 ± 0.73 V−1 (r2 = 0.9408), which mirrors to some extent the

relationship between log IC50 and E1
7 (Equation (1)). Pf FNR catalyzes a single-electron reduction

of ArNO2, as demonstrated by the observation that in the presence of compounds 5,12,14, and 23
(Table 1), the reduction of added cytochrome c takes place at rates that are 140–195% those of NADPH
oxidation. Moreover, the reduction of cytochrome c is 15–25% inhibited by 100 U/mL superoxide
dismutase. The redox cycling of ArNO2 is also evident from the consumption of excess O2 over ArNO2

during the reaction (Figure 3A). However, it is also important to note that Pf FNR-catalyzed formation
of stable products of ArNO2 reduction does not start after complete O2 exhaustion, but takes place at
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[O2] = 40–50 µM after an initial lag time (in the case of N-methylpicramide or nitrofurantoin), or starts
even without delay (in the case of tetryl or p-dinitrobenzene) (Figure 3B).
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Figure 3. (A) Time course of oxygen consumption and (B) spectral changes during reduction of tetryl
(trace 1), 1,4-dinitrobenzene (trace 2), nitrofurantoin (trace 3), and N-methylpicramide (trace 4) by 50 nM
Pf FNR and NADPH-regeneration system under the absence of external oxygen supply. Compound
concentration, 50 µM, absorbance monitored at 420 nm (tetryl), 340 nm (1,4-dinitrobenzene), 420 nm
(nitrofurantoin), and 343 nm (N-methylpicramide). The arrows indicate the time of introduction of
Pf FNR.

Both yeast and erythrocyte GR catalyze the single-electron reduction of nitroaromatics, although
at a low rate [19,25]. Since the formed ArNO2

− undergoes further redox cycling, nitroaromatics are
considered as “subversive substrates“ for GR. Moreover, there is some evidence that redox-active
xenobiotics may be reduced at the NADP(H) binding site of GR [39,40]. It is supposed that the same
reactions catalyzed by trypanothione reductase are at least partly responsible for the trypanocidal
activity of nitrofurans [11]. Among the examined compounds, tetryl oxidized Pf GR most efficiently (kcat

= 5.9 ± 0.5 s−1 and kcat/Km = 7.6 ± 0.8 × 103 M−1
·s−1), with parameters similar to those of HGR oxidation
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(kcat ≥ 5.0 s−1, kcat/Km = 2.0 × 103 M−1
·s−1 [37]). When present, cytochrome c was reduced at rates that

are 170–180% those of NADPH oxidation, through a process partly inhibited by superoxide dismutase.
2,4,6-Trinitrotoluene (TNT) (kcat = 0.2 ± 0.05 s−1, kcat/Km = 150 ± 40 M−1

·s−1), 1,4-dinitrobenzene (kcat

= 0.3 ± 0.07 s−1, kcat/Km = 300 ± 60 M−1
·s−1), and nifuroxime (kcat ≤ 0.06 s−1, kcat/Km ≤ 110 M−1

·s−1)
oxidized Pf GR much more slowly. Other nitroaromatic compounds were even less efficient oxidants of
Pf GR. At their saturating concentrations, the rate of NADPH oxidation was almost indistinguishable
from the intrinsic NADPH-oxidase activity of the enzyme, 0.07 s−1. This is in line with the previously
reported properties of yeast and erythrocyte GR [19,25]. In conclusion, Pf GR-catalyzed redox cycling
of nitroaromatics proceeds with much lower rates than in the analogous reaction of Pf FNR.

2.3. Inhibition of P. falciparum Glutathione Reductase by Nitroaromatic Compounds

Next, we analyzed the inhibition of P. falciparum GR by ArNO2. Pf GR acts through a
“ping-pong“ reaction mechanism with separate reductive and oxidative half-reactions [29]. At saturating
concentrations of substrates, 100 µM NADPH and 1.0 mM GSSG, the catalytic constant (kcat) of PfGR
was 138 ± 4.0 s−1. Nitroaromatic compounds acted on Pf GR as non- or uncompetitive inhibitors
with respect to GSSG at fixed NADPH concentration (Figure 4A,B). Similarly, nitroaromatics acted as
uncompetitive inhibitors with respect to NADPH at fixed GSSG concentration (Figure 5).

These findings are in line with the well-characterized inhibition of yeast and human erythrocyte GR
by nitroaromatics [19,25], and Pf GR and HGR by arylisoalloxazines and quinones [27,30,41]. The latter
compounds may bind at the interface domain of two subunits of Pf GR in the vicinity of Val-56,56′

and Asp-58,58′, which correspond to His-75,75′ and Phe-78,78′ in HGR [27]. This site is distant from
both the NADP(H)- and GSSG-binding regions. The Ki values of nitroaromatic compounds of Pf GR
determined using GSSG as a variable substrate (Figure 4A,B), are given in Table 2. The table also
contains Ki values of nitroaromatic compounds towards HGR determined previously [19] and partly
within the present work. Importantly, the Ki values for several nitroaromatic compounds obtained
in both studies were sufficiently close (Table 2). It should be noted that significant differences exist
between HGR and Pf GR inhibition constants, and that their log values are poorly related (r2 = 0.3840).
This may be attributed to differences in the structure, shape, and flexibility of the intersubunit regions
of Pf GR and HGR [24,25]. However, the analysis of the inhibition profile of the two enzymes is beyond
the scope of the present work.
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Figure 4. (A) Inhibition of P. falciparum glutathione reductase (Pf GR) by nitrofuran IIIa and by TNT (B)
at fixed NADPH concentration, 100 µM, and varied concentrations of GSSG. (A) Concentrations of
nitrofuran IIIa: 0.0 µM (line 1), 6.7 µM (line 2), 10.0 µM (line 3), 15.0 µM (line 4), 22.2 µM (line 5), and
50 µM (line 6). (B) Concentrations of TNT: 0.0 µM (line 1), 13.2 µM (line 2), 19.7 µM (line 3), 29.6 µM
(line 4), 44.4 µM (line 5), and 100 µM (line 6).
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Figure 5. Inhibition of Pf GR by nitrofuran IIIa at fixed GSSG concentration, 1.0 mM, and varied
concentrations of NADPH. Concentrations of inhibitor: 0.0 µM (line 1), 10.0 µM (line 2), 20.0 µM (line
3), 30.0 µM (line 4), 45.0 µM (line 5), and 66.7 µM (line 6).

Table 2. Inhibition constants of nitroaromatic compounds acting on P. falciparum and human erythrocyte
glutathione reductases (HGRs), calculated under constant concentration of NADPH (100 µM) and
varied concentration of GSSG.

No. Compound Ki (µM)

PfGR a HGR b

1 Nitrobenzene ≥6000 ≥2000
2 4-Nitrobenzoic acid 1200 ± 180 800
3 CB-1954 350 ± 40 ≥1000
4 4-Nitroacetophenone 70 ± 11 400
5 3,5-Dinitrobenzoic acid 220 ± 29 350
6 1,3-Dinitrobenzene 40 ± 5.0 320; 350 ± 30a

7 4-Nitrobenzaldehyde 25 ± 4.0 290
8 3,5-Dinitrobenzamide 75 ± 9.0 ≥1000
9 1,2-Dinitrobenzene 30 ± 4.0 ≥1000

10 Nitrofurantoin 9.0 ± 1.0 200
11 Nifuroxime 32 ± 5.0 200
12 1,4-Dinitrobenzene 0.85 ± 0.13 71
13 2,4,6-Trinitrotoluene 8.0 ± 2.0 6.0 c; 5.2 ± 0.6 a

14 N-Methylpicramide 5.9 ± 0.6 10 c

15 Nitrofuran IIIa 9.0 ± 1.0 3.0; 3.5 ± 0.2 a

16 Nitrofuran IIIb 25 ± 3.0 2.5
17 Nitrofuran IIIc 115 ± 17 25
18 Nitrofuran IIId 50 ± 6.0 ≥300
19 Nitrofuran IIIe 5.0 ± 1.0 2.5
20 Nitrofuran IIIf 75 ± 10 42.5
21 Nitrofuran IIIg 35 ± 5.0 25
22 Nitrofuran IIIh 100 ± 12 45
23 Tetryl 2.3 ± 0.5 14 c

a Ki determined in present work, b taken from [19], c taken from [42].

The analysis of antiplasmodial activity of nitroaromatics (Tables 1 and 2) shows that the dependence
of log IC50 on log Ki is poorly expressed in the case of Pf GR, being characterized by r2 = 0.5878
(Figure S3, Supplementary Materials). An introduction of log D as a second variable improved
the correlation:

log IC50 = (0.59 ± 0.23) + (0.61 ± 0.11) log Ki - (0.21 ± 0.07) log D, (r2 = 0.7253) (2)
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Although the log IC50 of nitroaromatics also increased with their log Ki for HGR (Table 2), this
dependence was poorly expressed (r2 = 0.3323). An introduction of log D as a second variable improved
it up to r2 = 0.4543. Finally, the antiplasmodial activity of nitroaromatics was best described by a
regression using E1

7, log Ki for Pf GR, and log D as independent variables:

log IC50 = −(0.27 ± 0.43) - (4.16 ± 1.78) E1
7 + (0.36 ± 0.14) log Ki - (0.15 ± 0.07) log D, (r2 = 0.7866) (3)

On the other hand, the use of log Ki for HGR as a variable resulted in a lower regression coefficient,
and in an uncertain relationship between log IC50 and log Ki:

log IC50 = −(0.70 ± 0.46) - (8.24 ± 1.90) E1
7 − (0.10 ± 0.15) log Ki - (0.13 ± 0.08) log D, (r2 = 0.7252) (4)

3. Discussion

Our study resolves the debated problem about the mechanisms of antiplasmodial activity of
nitroaromatics [19,23,26], and demonstrates that their activity increases both with the ease of their
bioreductive activation, expressed as the value of E1

7, and the efficiency of inhibition of Pf GR
(Equation (3)). These data complement our previous findings on the role of inhibition of Pf GR in the
activity of quinones against the same strain [30]. In both cases, the relationship between the activity
of compounds and their efficiency as Pf GR inhibitors is revealed using multiparameter regression
analysis. On the analogy with Equation (3), the activity of quinones was described by the relationships
with ∆log IC50/∆log Ki = 0.633 – 0.763 [30]. These observations point to the importance of Pf GR as
potential target for antiplasmodial agents. Apart from protection against the oxidative stress, Pf GR
supplies GSH for the glyoxalase system, for the degradation of uncrystallized ferriprotoporphyrin
IX, and as a source of reducing equivalents for ribonucleotide synthesis and thioredoxin-dependent
antioxidant system [43–46]. Although no Pf GR knockout data are available in the case of P. falciparum,
the functional analysis of its genome revealed a high fitness cost of disruption of the Pf GR gene [38].
On the other hand, the comparison between Equations (3) and (4) points to an insignificant role of HGR
inhibition in the antiplasmodial action of nitroaromatics. Although the role of HGR in the survival of
P. falciparum is a matter of debate [2,47], our data are in favor of its minor importance for parasite killing.
However, this does not discard its role in the protection against an oxidative environment which limits
the parasite infection rate, as it is in the case of glucose-6-phospate dehydrogenase deficiency [40].
In this context, one may note that the relationship ∆log IC50/∆log Ki (Equation (3)) is significantly
lower than unity. It may point to a limited role of inhibition of Pf GR in the antiplasmodial activity of
nitroaromatics. On the other hand, the disturbance of GSSG/GSH homeostasis under the oxidative or
alkylative stress in certain cases may enhance the expression of GR as a compensation mechanism.
This phenomenon has been observed in yeast, plants, and mammalian cells [48–51].

In this context, two other issues related to the mechanism of antiplasmodial activity of ArNO2 may
be discussed. First is the dependence of their IC50 values on their E1

7 (Equation (1)), the latter being
associated with their redox cycling activity. However, because P. falciparum, during its intraerythrocyte
stage, adopts microaerophilic metabolism and relies mainly on anaerobic processes [52,53], the role of
the ROS-promoted parasite death should be interpreted with caution. On the other hand, Equation (1)
may equally well reflect the rates of formation of DNA-damaging hydroxylamines under the action
of single-electron transferring enzymes such as Pf FNR (Figure 3A,B) which may take place under
partly anaerobic conditions. Another point is the role of Pf FNR in the formation of free radicals and/or
other reduced forms of ArNO2 in plasmodia. To the best of our knowledge, nitroreductase activity of
P. falciparum flavoenzymes has not been previously evaluated. Some conclusions may be drawn from the
enzyme reactivity with a model compound menadione (2-methyl-1,4-naphthoquinone, E1

7 = −0.20 V)
(Table 3), because, as a rule, flavoenzymes reduce quinones much faster than nitroaromatics, or,
in exceptional cases, with similar rates ([7,53], and references therein). Thus, given the data currently
available (Table 3), Pf FNR may act as the most efficient generator of ArNO2 free radicals in plasmodia.
P. falciparum thioredoxin reductase may be next to it according to menadione reductase activity (Table 3).
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On the other hand, the nitroreductase activity of mitochondrial type II NADH dehydrogenase is
expected to be very low because menadione is slowly reducible. To the best of our knowledge,
nitroaromatic compounds and soluble quinones have not been previously studied as oxidants of other
enzymes of the mitochondrial respiratory chain, namely dihydroorotate dehydrogenase, succinate
dehydrogenase, and malate:quinone oxidoreductase.

Table 3. Kinetic characterization of nitro- and quinone reductase reactions of Plasmodium falciparum
flavoenzymes.

Enzyme
Oxidants

Nitrofurans, Nitrobenzenes
MenadioneE1

7 = −0.25–−0.19 V

Pf FNR kcat > 20 s−1, kcat/Km = 4.8 × 104 –
1.6×105 M−1

·s−1, this work
kcat = 14 s−1, kcat/Km = 1.0 ×106

M−1
·s−1 [30]

Pf GR kcat = 0.06–5.9 s−1, kcat/Km = 7.6 × 103 –
110 M−1

·s−1, this work
kcat = 0.16 s−1, kcat/Km = 2.0 × 103

M−1
·s−1 [54]

P. falciparum thioredoxin
reductase

kcat = 31 s−1, kcat/Km = 1.6 × 105

M−1
·s−1 [54]

P. falciparum type II NADH
dehydrogenase kcat = 0.1 s−1 [55]

A more general conclusion following from our study is that the efficacy of redox active
antiparasitic agents such as quinones, nitroaromatic compounds, isoalloxazines, and aromatic
N-oxides [6] may be achieved through two separate types of action, namely inhibition of
antioxidant NADPH:disulfide reductases and rapid reduction by flavoenzymes dehydrogenases-
electrontransferases. Currently, these groups of compounds are mainly considered as “subversive
substrates” of disulfide reductases such as glutathione reductase, trypanothione reductase,
or thioredoxin reductase [11,30,40,54,56]. However, the single-electron reduction of the above
compounds by dehydrogenases-electrontransferases of different origin (e.g., mammalian NADPH:
cytochrome P-450 reductase, NO-synthase, NADH:ubiquinone reductase, algal FNR, and bacterial
flavohemoglobin) is usually faster [7–10]. Thus, more attention should be given to the studies of these
reactions catalyzed by parasite enzymes of this group.

4. Materials and Methods

4.1. Materials

Recombinant PfGR and P. falciparum ferredoxin:NADP+ oxidoreductase were prepared as
previously described [29,36], and their concentrations were determined spectrophotometrically
according to ε461 = 11.7 mM−1

·cm−1 and ε461 = 10.1 mM−1 cm−1, respectively. Recombinant HGR was
obtained from Sigma-Aldrich (St. Louis, MO, USA), and its concentration was determined according
to ε464 = 11 mM−1

·cm−1.
Nitrobenzene derivatives 1,2,4–9,12 and nitrofurans 10,11 (Table 1) were obtained from

Sigma-Aldrich (St. Louis, MO, USA) and used as received. TNT, 2,4,6-trinitrophenyl-N-
methylnitramine (tetryl) (Figure 1), and N-methylpicramide were synthesized as described in [57,58].
5-(Aziridin-1-yl)-2,4- dinitrobenzamide (CB-1954, Figure 1), synthesized as described in [59],
was a generous gift of Dr. Vanda Miškinienė (Institute of Biochemistry, Vilnius, Lithuania).
Vinylquinoline-substituted nitrofurans IIIa–h (Figure 1) were synthesized as described in [60,61]. All
synthesized compounds were previously verified by determining their melting point, as well as their
1H-NMR, UV, and IR spectra [8,19,25]. The purity of compounds, determined using a high-performance
liquid chromatography system equipped with a mass spectrometer (LCMS-2020, Shimadzu, Kyoto,
Japan), was >98%. Cytochrome c, NADPH, GSSG, glucose-6-phosphate, glucose-6-phospate
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dehydrogenase, superoxide dismutase, and other compounds were obtained from Sigma-Aldrich
(St. Louis, MO, USA) and used as received.

4.2. Methods

4.2.1. Enzyme Kinetic Studies

All kinetic experiments were carried out spectrophotometrically using a PerkinElmer Lambda
25 UV–VIS spectrophotometer (PerkinElmer, Waltham, MA, USA) in 0.1 M K-phosphate buffer
(pH 7.0) containing 1 mM EDTA at 25 ◦C. The steady-state parameters of reactions, the catalytic
constants (kcat(app.)), and the bimolecular rate constants (or catalytic efficiency constants, kcat/Km) of
the oxidants at fixed concentrations of NADPH correspond to the reciprocal intercepts and slopes
of Lineweaver–Burk plots, [E]/v vs. 1/[oxidant], where v is the reaction rate, and [E] is the enzyme
concentration. kcat represents the number of molecules of NADPH oxidized by a single active center of
the enzyme per second. The rates of Pf FNR- and Pf GR-catalyzed NADPH oxidation in the presence of
nitroaromatic compounds or GSSG were determined using the value ∆ε340 = 6.2 mM−1

·cm−1. The rates
were corrected for the intrinsic NADPH-oxidase activity of enzymes, which were equal to 0.12 s−1

and 0.07 s−1 for Pf FNR and Pf GR, respectively. In separate experiments, in which 50 µM cytochrome
c were included in the reaction mixture, its nitroaromatic-mediated reduction was measured using
the value ∆ε550 = 20 mM−1

·cm−1. The kinetic parameters were obtained by the fitting of kinetic data
to the parabolic expression using SigmaPlot 2000 version 11.0 (https://systatsoftware.com). The rates
of reduction of nitroaromatic compounds (50 µM) by Pf FNR in the absence of external oxygen
supply were monitored in the presence of an NADPH-regeneration system (50 µM NADPH, 10 mM
glucose-6-phosphate, and 50 U/mL yeast glucose-6-phosphate dehydrogenase) at the specific λmax of
absorbance of compounds. In these cases, a sealed spectrophotometer cell was completely filled by
the solution containing nitroaromatic compound and NADPH-regeneration system, and the reaction
was initiated by the injection of Pf FNR. In parallel, the rate of oxygen consumption was monitored
under identical conditions using a Digital Model 10 Clark electrode (Rank Brothers Ltd., Bottisham,
UK). In reversible inhibition studies of Pf GR, reaction rates were determined either at fixed NADPH
concentration (100 µM) and varied GSSG concentrations (1.0–0.13 mM), or at fixed GSSG concentration
(1.0 mM) and varied NADPH concentrations (8–50 µM), and either in the absence or presence of the
inhibitor at 4–6 different concentrations. Using tetryl as inhibitor, the reaction rates were corrected for
Pf GR- catalyzed NADPH oxidation by tetryl, which was typically less than 0.4% of total reaction rate.
Since CB-1954 possessed significant absorbance at 340 nm, the reaction rate of Pf GR was monitored
according to GSH-mediated reduction of 5.5‘-dithiobis-(2-nitrobenzoic acid) (1.0 mM) using the value
∆ε412 = 27.2 mM−1

·cm−1. The inhibition constants (Ki) were obtained from the Cleland plots, that is,
the dependence of 1/kcat on the inhibitor concentration ([I]).

4.2.2. Antiplasmodial In Vitro Activity Studies

The chloroquine-resistant P. falciparum strain FcB1 from Colombia, which is deposited in the
Protist collection of Museum National d’Histoire Naturelle, Paris, France, was kindly provided by Dr.
H.D. Heidrich (Max-Planck Institut für Biochemie, Martinsried bei München, Germany). P. falciparum
FcB1 strain was maintained in continuous culture of human erythrocytes according to [62]. In vitro
antiplasmodial activity was determined using a modification of the semiautomatic microdilution
technique [63]. Stock solutions of test compounds in DMSO were serially diluted with culture medium
and added to asynchronous parasite cultures (1% parasite infected cells and 1% final hematocrit) for
24 h, at 37 ◦C, prior to the addition of 1.825 MBq of [3H]-hypoxanthine (0.37–1.11 TBq/mmol), for 24 h.
The growth inhibition for each compound concentration was determined according to the radioactivity
incorporation into the treated culture as compared with that in the control culture. The experiments
were repeated in triplicate.

https://systatsoftware.com
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4.2.3. Statistical Analysis and Calculations

The octanol/water distribution coefficients at pH 7.0 (log D) of compounds were calculated using
LogD Predictor (https://chemaxon.com). The multiparameter regression analysis was performed using
Statistica (version 4.3, StatSoft, Toronto, ON, Canada).

Supplementary Materials: The following are available online. Figure S1: Dependence of activity of nitroaromatic
compounds against P. falciparum FcB1(IC50) on the values of their single-electron reduction midpoint potential
(E1

7), Figure S2: Dependence of activity of nitroaromatic compounds against P. falciparum FcB1(IC50) on the values
of their log D, Figure S3: Dependence of activity of nitroaromatic compounds against P. falciparum FcB1(IC50) on
the values of their inhibition constant (Ki) of P. falciparum glutathione reductase.
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Abbreviations

ArNO2 Nitroaromatic compound
E1

7 Single-electron reduction midpoint potential of nitroaromatic compound (redox potential
of ArNO2/ArNO2

−. couple) at pH 7.0
HGR Human erythrocyte glutathione reductase
IC50 Compound concentration causing 50% parasite growth inhibition
kcat Enzyme catalytic constant
kcat/Km Enzyme bimolecular rate constant (catalytic efficiency)
Ki Enzyme inhibition constant
log D Octanol/water distribution coefficient at pH 7.0
Pf FNR P. falciparum ferredoxin:NADP+ oxidoreductase
Pf GR P. falciparum glutathione reductase
ROS Reactive oxygen species
TNT 2,4,6-Trinitrotoluene
TR Trypanothione reductase
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9. Anusevičius, Ž.; Nivinskas, H.; Šarlauskas, J.; Sari, M.-A.; Boucher, J.-L.; Čėnas, N. Single-electron reduction
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