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initiated work in this regard with respect 
to different PA species (Guo et al., 2011). 
Additionally, it can be speculated that PA 
targets (see this review by Guo and Wang) 
can phosphorylate SPHKs, leading to their 
activation as previously shown in mam-
mals (Pitson, 2010). Clearly, solving the 
SPHK structures will be crucial for under-
standing the regulatory mechanisms that 
control these enzymes.

Secondly, work from the Wang laboratory 
showed that phyto-S1P does not activate 
PLDα1 directly in vitro (Guo et al., 2012). 
S1P and phyto-S1P were found to stimulate 
an intracellular calcium increase (Ng et al., 
2001; Kim et al., 2007), and calcium is a key 
factor required for PLDα1 activity (see this 
review by Guo and Wang). Consequently, 
phyto-S1P may increase cytoplasmic cal-
cium to promote PLDα1 translocation, 
resulting in PLDα1 activation. On the other 
hand, work on two A. thaliana mutants dis-
rupted in the Gα subunit of heterotrimeric 
G protein showed that they are incapable 
of initiating stomatal closure when they are 
challenged by phyto-S1P, suggesting that Gα 
functions downstream of SPHK/phyto-S1P 
(Coursol et al., 2005). Additionally, it was 
shown that PLDα1 physically interacts with 
Gα (Mishra et al., 2006), and thus phyto-
S1P may activate Gα to stimulate PLDα1. 
Network inference also predicted a positive 
regulation of Gα by S1P, which in turn posi-
tively regulates PLD/PA (Li et al., 2006). The 
resulting effect on stomatal closure is likely 
to be mediated by PA inhibition of the type 
2C protein phosphatase ABI1, a negative 
regulator of ABA signaling (Li et al., 2006). It 
will be interesting to see if as predicted by Li 
et al. (2006), ABA inhibition of ABI1 phos-
phatase activity is impaired in sphk mutants 
unable to produce phyto-S1P.

We envisage that determination of the 
structure–activity relationships between 
phospholipids and SPHKs will yield inter-
esting clues as to the underlying mecha-
nisms for phospholipid activation of 

and Wang). Guo and Wang have provided 
a comprehensive review of the crosstalk 
between the sphingolipid and phospholipid 
pathways and their potential roles in regu-
lating signaling processes. However, two 
questions remain: (1) how do PAs activate 
SPHKs, and (2) how does phyto-S1P acti-
vate PLD?

Firstly, work in the mid 1990s by 
Olivera et al. may provide some clues 
to the underlying mechanism(s). They 
showed that mammalian SPHKs can be 
activated by phosphatidylserine, and to 
a lesser extent by lysophosphatidylserine, 
phosphatidylinositol, phosphatidylinositol 
bisphosphate, cardiolipin, and PA. These 
SPHK activators are acidic phospholipids 
and their ability to activate SPHK activ-
ity suggests the potential importance of 
the negative charges on the phospho-
lipid molecules. This is supported by the 
observation that diacylglycerol, which is 
structurally similar to PA but lacking the 
phosphate group did not activate SPHKs 
(Olivera et al., 1996). The situation appears 
to differ in the case of A. thaliana SPHK1 
and SPHK2 as these enzymes do not appear 
to interact with other phospholipids such 
as phosphatidylcholine, phosphatidy-
lethanolamine, phosphatidylglycerol, 
phosphatidylinositol, phosphatidylserine, 
lysophosphatidylcholine, and lysophos-
phatidylethanolamine (Guo et al., 2011). 
In contrast to mammalian SPHK1 and 
SPHK2 that are localized mainly in the 
cytosol and the nucleus, respectively, A. 
thaliana SPHK1 and SPHK2 are primar-
ily associated with the tonoplast (Marion 
et al., 2008; Guo et al., 2011), and thus it 
remains to be determined if their activation 
by PA only may be due to their tonoplastic 
localization. Given the diversity in phos-
pholipid classes and species in eukaryotic 
cells, it will be interesting, while at the same 
time challenging, to determine the effects 
of particular phospholipids on plant SPHK 
activities, and Wang and co-workers have 
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Since the treatise by Thudichum in 1884 
where he observed that “the fatty acids dis-
solve, while a body remains insoluble, which 
is of an alkaloid nature, and to which, in com-
memoration of the many enigmas which 
it presented to the enquirer, I have given 
the name of Sphingosin,” much is known 
about the cellular and physiological func-
tions of sphingosine and its phosphorylated 
derivative, sphingosine-1-phosphate (S1P), 
in mammals. S1P is produced in mamma-
lian cells by two sphingosine kinase (SPHK) 
isoenzymes, SPHK1 and SPHK2, which dif-
fer in their temporal and spatial distribu-
tion (Maceyka et al., 2012). The SPHK/S1P 
pathway has been shown to regulate diverse 
physiological processes ranging from cel-
lular proliferation to survival and patho-
physiological processes like osteoporosis, 
diabetes, and cancer. Mammalian SPHKs 
can be regulated by numerous effectors. 
For example, the mammalian SPHK1 is 
activated by its interaction with TRAF2 
(TNF receptor-associated factor 2), with 
SPHK1 acting as a co-factor for the E3 ligase 
activity of TRAF2 (Alvarez et al., 2010). The 
mammalian SPHK2 is part of the repres-
sor complex with histone H3 and histone 
deactylases (HADCs) in the nucleus, and 
the resulting nuclear production of S1P by 
SPHK2 regulates histone acetylation and 
transcription (Hait et al., 2009).

In plants, work from the Wang labora-
tory showed that the two tonoplastic SPHK1 
and SPHK2 isoenzymes from Arabidopsis 
thaliana can be activated by phospholipase 
D α1 (PLDα1)-derived phosphatidic acid 
(PA) species, and that SPHK-derived phyto-
sphingosine-1-phosphate (phyto-S1P) acts 
upstream of PLDα1 (see this review by Guo 
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SPHKs. Additionally, it will be interesting 
to see if non-seed land plants and mono-
cots show similar trends and responses 
as  sphingosine is present in these plants 
(Islam et al., 2012), and may have an effect 
on which long chain bases are used in the 
SPHK and PLD-mediated pathways.
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