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Editorial on the Research Topic

Computational Neuroimage Analysis Tools for Brain (Diseases) Biomarkers

This Research Topic focuses on recent advances in the field of neuroimaging biomarkers, including
novel imaging technologies, image processing, and artificial intelligence approaches, which are
pushing forward the achievement of precision medicine. Indeed, brain imaging often visualizes
disease effects with greater sensitivity than clinical observation, thus holding great promise to help
diagnose patients at the earliest stages of their disease, when treatment is most effective.

To unleash this potential, neuroimaging biomarkers should be proven to be useful, sensitive
and reliable. Nowadays, conventional magnetic resonance imaging is complemented by numerous
advanced acquisition and processing techniques, aiming to unravel structural and functional brain
connectivity and pathological alterations in brain tissue up to the microstructural level.

Current challenges amount not only to designing clinically feasible acquisition protocols and
reliable image processing methods, but also integrating the wealth of data that gets collected in
different centers and in different neuroimaging domains in a consistent way to permit reuse in
new domains. As large-scale and more complex neuroimaging datasets have been or are being
collected in heterogeneous ways by various organizations (with the field of Alzheimer’s disease as
a notable example), Huguet et al. propose core principles to facilitate reusability and data sharing.
They implement an ecosystem of modules and tools, including automated quality control, which is
suitable for large neuroimaging studies.

However, the benefits of merging different datasets is often counteracted by their heterogeneous
nature. Indeed, systematic differences can occur due to site-specific conditions or due to bias in
population characteristics. Moreover, some tasks are difficult to generalize from one dataset to
another, since not all datasets are consistently labeled, or are labeled at all. As such, Kushibar et al.
propose a transductive transfer learning approach for domain adaptation to reduce the domain-
shift effect in human brain MRI segmentation. The transductive property means that there are two
disjoint source and target domains, where label annotations are only available in the source domain,
but examples from the target domain are also present. The proposed network is jointly optimized
by integrating both source and target images into the transductive training process, minimizing
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the domain-shift effect with a histogram loss at feature level. The
method shows performance improvements up to 10% in terms
of Dice similarity coefficient for the segmentation of subcortical
brain structures and white matter hyperintensities, compared to
a model pre-trained in the source domain only.

Meyer et al. propose to increase the generalization capability
of state-of-the-art convolutional neural network (CNN) models
trained on homogeneous datasets by applying an intensity-
based data augmentation approach based on Gaussian mixture
modeling. This approach is shown to significantly impact the
generalization performance of brain structures segmentation
when the training set is very homogeneous, but also when it
consists of heterogeneous multi-scanner brain images.

Valverde et al. employ CNNs for the task of lesion
segmentation in rodent brains. They suggest that an architecture
resembling an autoencoder has better performance compared
with three other convolutional neural networks specifically
designed for medical image segmentation. Moreover, when
comparing versions trained on homogeneous and heterogeneous
training datasets, it is clear that increasing training data
diversity improves performance, as measured by the capability to
extrapolate to different-looking ischemic brain lesions.

Not only combining datasets, but also combining existing
modeling methods can be beneficial for obtaining more robust
biomarkers. This is illustrated by Lu et al., who focus on
quantitative diffusion measures for classifying multiple sclerosis
lesions. They use eight open-source biophysical models of
multishell diffusion data to reconstruct the isotropic and intra-
axonal compartments, and identify the microstructural diffusion
measures that are most discriminative for focal pathology.
Further, they show that some of the combinations of the selected
normalized diffusion measures better correlate with patients’
disability and neuroaxonal damage than individual measures.

While deep learning techniques play an important role in
current neuroimaging research due to their ability to increase
reliability of computed biomarkers, there are still essential gains
to be made by improving MRI acquisitions and parameter map
reconstructions. For instance, Emmenegger et al. assess the
effect of radio-frequency transmit (B1+) field inhomogeneities
correction on the accuracy of MR G-ratio weighted imaging,
which is an aggregated measure of relative myelination of axons
across the entire brain white matter. B1+ correction via a
measured B1+ field map is the method of choice to reduce
bias and test-retest error. However, if the B1+ field map cannot
be acquired, a data-driven B1+ correction approach is also
proposed, and shown to reduce the error and bias by a factor
of three.

Metin and Gökçay highlight the value of using directional
information from diffusion tensor imaging of the brain for
group statistics, rather than scalar metrics that consider only the
magnitude of the diffusion. A typical scalar metric used in group
studies is the Fractional Anisotropy map. Directional statistical
analysis is particularly important along the white matter tracts,
especially when the tract length increases.

Barakovic et al. propose a more robust estimation of the
axon diameter index of pathways by jointly estimating the
microstructure properties of the tissue and the macroscopic

organization of the white matter connectivity. The method
overcomes limitations of previous voxel-wise approaches, which
neglect the fact that axons are continuous three-dimensional
structures that are not limited to the extent of each voxel. By
computing the axon diameter index in bundles of streamlines,
where each streamline represents a group of axons that share
a similar trajectory, the method is able to estimate an average
diameter for the represented group of axons. As such, they show
that the fiber bundle composition agrees with histology and
known anatomy.

The value of brain imaging biomarkers is crucial since
early stages of development. Thus, imaging the neonatal
brain with the aim of establishing patterns of (normal or
abnormal) brain development is also an important and very
active topic of research. It is now possible to acquire high
resolution (isotropic 0.4mm) images in a short time (6min),
due to novel super-resolution reconstruction of three short
duration scans with variable directions of slice selection (Sui
et al.).

Uus et al. highlight the importance of employing a suitable
atlas of normal neonatal brain development. They build a
single multi-channel spatio-temporal atlas based on multiple
metrics extracted from both diffusion and structural MRI,
and then compare, in this novel atlas space, two groups
of neonates: born at term and preterm. Significant effects
linked to prematurity are shown to be present in multiple
brain regions, including the transient fetal compartments,
indicating that white matter maturation is altered by
preterm birth.

Grigorescu et al. predict tissue segmentation maps of
neonates on T2-weighted magnetic resonance imaging
data. Similarly to Kushibar et al., they employ domain
adaptation techniques for the challenging task of brain
segmentation in a preterm-born neonatal population,
where the training set consists of an annotated dataset
acquired from term-born neonates with a different scanner
and acquisition protocol. Importantly, adding the domain
adaptation to the model did not degrade performance in
the source domain. Moreover, in line with Meyer et al., the
authors show the importance of adding data augmentation
during training.

Finally, neuroimaging methods should not only act as
tools for new scientific discoveries, but should also provide
practical solutions for different neurological conditions in
clinical practice. As such, La Rocca et al. develop a novel
approach based on structural MRI to analyse interactions
between brain components. Based on these novel features,
they train a classifier able to predict with an accuracy of
70% whether subjects who suffered a mild traumatic brain
injury will have at least one seizure in the future. Princich
et al. revisit known MRI volumetry biomarkers that can
assist in the diagnosis of temporal lobe epilepsy. Despite
observing differences between different MRI segmentation
software in terms of hippocampal volumetry (here, FreeSurfer
and volBrain are compared), the study strongly reinforces
the value of hippocampal asymmetry in differentiating healthy
controls and epilepsy patients with hippocampal sclerosis.
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Bai et al. focus on childhood obstructive sleep apnea, a sleep-
related breathing disorder that can have an important negative
impact on neurological development. Functional MRI reveals
altered spontaneous brain activity, with dysfunctions occurring
in the default mode network, the frontal lobe, and the
lingual gyrus.

In conclusion, this Research Topic clearly illustrates
that the field of computational neuroimaging is active and
fascinating, with a wide range of novel methodologies aiming
at reliability and generalizability through domain adaptation,
data augmentation, super-resolution, and quality control.
Important applications presented here aim at understanding
brain development, connectivity and microstructure, as
well as brain diseases such as multiple sclerosis, epilepsy,
post-traumatic brain injury, and sleep dysfunction.
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