
RESEARCH ARTICLE Open Access

The role of drug resistance in poor viral
suppression in rural South Africa: findings
from a population-based study
Sheri A. Lippman1* , Alyssa C. Mooney2, Adrian Puren3,4, Gillian Hunt3,4, Jessica S. Grignon5,6, Lisa M. Prach1,
Hailey J. Gilmore1, Hong-Ha M. Truong1, Scott Barnhart5,6 and Teri Liegler7

Abstract

Background: Understanding factors driving virological failure, including the contribution of HIV drug resistance
mutations (DRM), is critical to ensuring HIV treatment remains effective. We examine the contribution of drug
resistance mutations for low viral suppression in HIV-positive participants in a population-based sero-prevalence
survey in rural South Africa.

Methods: We conducted HIV drug resistance genotyping and ART analyte testing on dried blood spots (DBS) from
HIV-positive adults participating in a 2014 survey in North West Province. Among those with virologic failure (>
5000 copies/mL), we describe frequency of DRM to protease inhibitors (PI), nucleoside reverse transcriptase
inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI), report association of resistance with
antiretroviral therapy (ART) status, and assess resistance to first and second line therapy. Analyses are weighted to
account for sampling design.

Results: Overall 170 DBS samples were assayed for viral load and ART analytes; 78.4% of men and 50.0% of women
had evidence of virologic failure and were assessed for drug resistance, with successful sequencing of 76/107
samples. We found ≥1 DRM in 22% of participants; 47% were from samples with detectable analyte (efavirenz,
nevirapine or lopinavir). Of those with DRM and detectable analyte, 60% showed high–level resistance and reduced
predicted virologic response to ≥1 NRTI/NNRTI typically used in first and second-line regimens.

Conclusions: DRM and predicted reduced susceptibility to first and second-line regimens were common among
adults with ART exposure in a rural South African population-based sample. Results underscore the importance of
ongoing virologic monitoring, regimen optimization and adherence counseling to optimize durable virologic
suppression.
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Background
The UNAIDS HIV epidemic targets for detection, sus-
tained antiretroviral therapy (ART), and viral suppres-
sion propose that overall community viral suppression
should reach 73% by 2020 [1]. With testing and treat-
ment increasingly available and universal in sub-Saharan
Africa, home to the majority of HIV cases and greatest
need for treatment scale up [2], meeting this goal should
be attainable, particularly as ART has increasingly reduced
morbidity and mortality and has been demonstrated to
substantially reduce further transmission [3–6]. To reap
the benefits of ART and achieve widespread viral suppres-
sion, however, both access to and consistent adherence to
medication is critical for achieving durable viral suppres-
sion and preventing drug resistance [3, 7–10].
Among patients in clinical research cohorts in sub-

Saharan Africa with access to virologic monitoring, viral
suppression at 12 months has been estimated between
84 and 90% among those on ART [11–13]. In South Af-
rica, findings of the National HIV Prevalence, Incidence,
Behaviour and Communication Survey 2017 similarly es-
timated that 89.9 and 82.1% of females and males on
ART were virally suppressed [14]. Less is known about
prevalence of viral suppression in the general population,
particularly in rural areas, where monitoring is less con-
sistent [15]. One population-based study covering 32
rural Kenyan and Ugandan communities noted that 45%
of HIV-positive individuals had evidence of viral sup-
pression prior to intensive interventions to improve
ART initiation [16]. The recent Universal Test and Treat
trial in Kwa Zulu Natal similarly noted high viral sup-
pression rates for those on ART (85%), but an overall
suppression rate of 49% among all PLHIV in 2016 [17],
lower than the 2016–2017 PopART trial estimates of
63–72% virally suppressed in community cohorts [18].
While known factors contribute to virological failure

(intermittent adherence to medication resulting in non-
suppressive drug levels in a setting of ongoing viral repli-
cation, transmitted resistance), it remains unknown what
proportion of those undergoing virological failure can be
attributed to each factor. Studies in sub-Saharan Africa
have found drug resistance mutations in 6–14% of ART-
naïve patients [11, 19, 20], and 84–89% of those with
virological failure who initiated ART ≥12 months prior
[19, 21]. Results from a systematic review and meta-
analysis estimated a prevalence of pretreatment non-
nucleotide reverse-transcriptase inhibitor (NNRTI) re-
sistance of 11% in southern Africa [22]. Results from
one of few population-based studies in South Africa in-
dicate that transmitted resistance is increasing; from 0%
in 2010, to 5 and 7% in 2011 and 2012, respectively [23].
Understanding factors driving virological failure, including
the contribution of both pre-treatment drug resistance
and acquired resistance, is critical to ensuring treatment

remains effective and that existing first-line regimens can
be preserved. Data are scarce on the prevalence of geno-
typic resistance in rural areas of Sub-Saharan Africa [15]
and rarely is genotypic resistance data available from
population-based sampling, coincident with both reported
adherence and known ART exposure.
We conducted a population-based bio-behavioral sur-

vey in 2014 to characterize the HIV care continuum in a
rural district of North West Province, an area of the
country with substantial burden of disease and little
available data [24]. We noted that while > 90% of men
and women in care reported taking ART, only an esti-
mated 29% of men and 60% of women in care achieved
virologic suppression (< 5000 copies/mL) measured from
dried blood spots (DBS). To understand the discrepancy
between reported ART intake and viral suppression and
assess contributing factors to the low suppression rates,
we assessed all HIV-positive participants for antiretro-
viral drug exposure and performed drug resistance test-
ing among those not suppressed. In this manuscript we
examine the potential contribution of drug resistance
mutations for low viral suppression in this HIV-positive,
rural South African, population-based sample, discussing
implications for future programming.

Methods
Study setting
Data were collected from January–March 2014 in
Lekwa-Teemane and Greater Taung sub-districts, within
Dr. Ruth Segomotsi Mompati (RSM) District of North
West Province, South Africa. RSM is comprised of both
rural and peri-urban areas, with an economy centered
on beef production and agriculture. The study area in-
cludes approximately 230,000 people, the majority of
whom speak Setswana. North West Province has the
fourth highest HIV prevalence in South Africa, with an
estimated prevalence of 20.3% in the adult population
15–49 years [25] and 29.2% in the antenatal population
[26]. One quarter of households in North West are food
insecure, reporting lack of money to buy food in the past
year [27].

Data collection
The 2014 bio-behavioral survey employed multi-stage
cluster sampling, with twenty-three enumeration areas
(EAs) selected proportionate to size in each sub-district
by Statistics South Africa (StatsSA) using 2011 census
data. In each EA up to 36 inhabited dwelling units
(DUs) were randomly selected from the StatsSA sam-
pling frame for inclusion in the sample and one adult
(18–49 years) was randomly selected per DU for partici-
pation. Local, trained fieldworkers assessed eligibility cri-
teria, including age (18–49), residence in the home, and
ability to consent; obtained written informed consent;
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and conducted a survey by computer-assisted personal
interviewing in a private location at the participant’s
home. Survey questions included HIV testing history,
known status, history of HIV care and treatment, ART
initiation, and medication adherence. The fieldworkers
then referred consenting participants for HIV rapid test-
ing and DBS sample collection. Full data collection pro-
cedures have been described elsewhere [24].
For individuals consenting to HIV testing and sample

collection, serostatus was determined using the Alere
Determine HIV-1/2 rapid antibody test with finger-stick
capillary blood (Alere Medical Co.,Ltd., Chiba, Japan)
and, if reactive, confirmed using the First Response HIV
1–2.0 Rapid Whole Blood Test (Premier Medical Cor-
poration Ltd., Daman, India). Participants with HIV-
positive or discrepant results were asked to provide
finger-prick blood for DBS using a Munktell filter card
(Ahlstrom Munktell, Helsinki, Finland). Participants who
declined HIV rapid testing in their home could provide
blood for DBS for laboratory HIV diagnosis (serology:
ELISA confirmed with Western blot).

Laboratory methods
Viral Load: DBS cards were dried, stored under desic-
cant at ambient temperature, transported to the testing
laboratory (Clinical Laboratory Services, Johannesburg)
within six days of collection, and stored at − 70 °C. Viral
load testing was performed using the COBAS AmpliPrep
for sample preparation and COBAS TaqMan HIV-1 2.0
test (Roche Applied Science, Pleasanton CA, USA; lower
limit of quantification 400 copies/mL) a previously vali-
dated method [28]. We opted to use a viral suppression
cut-off of < 5000 copies/mL, a higher threshold than that
recommended for plasma, as there is no definitive cut-
point using DBS [29].
HIV Drug Resistance testing was performed using ar-

chived DBS with a VL > 5000 copies/mL at the National
Institute for Communicable Diseases, Johannesburg, RSA.
Spots were lysed in 2ml of NucliSENS lysis buffer (Bio-
merieux, Germany) for 2 h at room temperature. Total
nucleic acid was extracted using the NucliSENS Easy-
MAG® automated system according to the manufacturer’s
instructions. Amplification of a 1084 bp polymerase chain
reaction (PCR) fragment consisting of codons 1–99 of
protease (Pro) and codons 1–250 of reverse transcriptase
(RT) was performed as previously described [30]. Editing
of sequences was performed using Recall software v2.10.
Drug Resistance Mutations (DRM) and inferred suscepti-
bility to individual ARV for RT and Pro regions were de-
termined using the Stanford Drug Resistance Database
V8.4 (http://hivdb.stanford.edu) [31].
ART Drug Exposure was determined by a validated

qualitative liquid chromatography-tandem mass spec-
trometry (LC MS/MS) method for the determination of

the presence or absence of various antiretroviral analytes
against cutoff samples analysed at a known concentra-
tion (0.02 μg/ml). A method was validated for the quali-
tative determination of 9 antiretroviral drugs from DBS,
and consisted of a protein precipitation, followed by high
performance liquid chromatography with MS/MS detec-
tion using a gradient elution. Deuterated internal stan-
dards were used for each analyte. An AB Sciex API 4000
mass spectrometer at unit resolution in the multiple re-
action monitoring (MRM) mode was used to monitor
the transition of each of the protonated precursor ions.
Analytes were assessed for the following three drugs:
efavirenz (EFV), lopinavir (LPV), nevirapine (NVP), ac-
counting for the majority of first and second line regi-
mens, as tenofovir and emtricitabine are typically given
in combination with efavirenz [32].

Analysis
Analyses aimed to characterize the scope of HIV drug
resistance and types of DRM by treatment history
among viremic HIV-positive participants. All analyses
were weighted to account for sample design, with the
exception of counts displayed in Fig. 1. Weights were
created using the inverse probability of selection at each
stage (EA, DU and person) and adjusted for non-
response to reflect the municipality, age group and sex
distributions within the target population [33]. Using the
full survey population, we calculated weighted sample
sizes, weighted proportions and 95% confidence intervals
(CIs) to describe participant demographic characteristics
and HIV-care indicators. We used Stata’s ‘subpop’ com-
mand to calculate estimates specific to HIV-positive par-
ticipants, including full participant data in the calculation
of standard errors. We used chi-square statistics to assess
demographic differences between the HIV suppressed and
non-HIV suppressed participants. When self-report and
biomarkers were discrepant (i.e. participant stated not ini-
tiating ART but had positive analytes), we utilized the bio-
marker to indicate ART status.
Virological failure was defined as ≥5000 copies/mL mea-

sured from DBS, a conservative cut-off because of the po-
tential for contributions of pro-viral DNA in the
quantification using DBS instead of plasma RNA [29, 34].
We assessed presence of genotypic resistance to protease
inhibitors (PI), NRTIs, and NNRTIs, and the association
with ART status. ART status was categorized in three
groups: those who had evidence of ART analytes, those
who reported ART initiation but did not have evidence of
analytes (likely inconsistent or interrupted treatment), and
those who were ART-naïve, having reported never initiat-
ing ART and having no evidence of analytes.
Overall 71.7% of participants consented to HIV-testing

(749/1044). Of participants with confirmed HIV-positive
status, 94% provided DBS (171/182), however one DBS

Lippman et al. BMC Infectious Diseases          (2020) 20:248 Page 3 of 10

http://hivdb.stanford.edu


card had insufficient specimen for genotyping. To assess
whether the population with missing DBS data differed
from the population with complete data, we used mul-
tiple imputation to create 50 copies of the dataset with
simulated values based on observed data; our analyses
with imputed datasets produced adjusted estimates for
uncertainty. Missing HIV and viral suppression status
were imputed based on age, sex, education, food inse-
curity, and lifetime number of sexual partners. Imput-
ation of missing viral load also incorporated ART
initiation, adherence, and months since diagnosis. All
analyses were performed using Stata 14 (StataCorp, Col-
lege Station, TX, USA).

Results
Among 182 seropositive participants confirmed by serial
rapid testing or HIV DNA PCR, DBS were available for
viral load and analyte testing from 170 participants (11
did not provide DBS and one had insufficient specimen
for genotyping; Fig. 1). A total of 107 dB samples from
individuals with viral load ≥5000 copies/ml were assayed
for sequence-based drug resistance testing. While youn-
ger people were less likely to provide DBS, no differ-
ences were found in DBS provision by sex or education.
Using imputed values for viral load and HIV status, viral
suppression was not significantly different across DBS
provision status.

Participant characteristics
The final weighted sample reflects the sex and age distri-
bution of the HIV-positive population of the sub-
districts (Table 1). Overall, only 38.4% of the HIV-
positive population had ≤5000 copies/mL detected

(referred to in this manuscript as virally suppressed).
Those who were suppressed were far more likely to be
female than male; however, viral suppression status did
not differ by age or education level. Not surprisingly, the
majority of those who were virally suppressed were
aware of their infection (86.0%); 14.0% of those sup-
pressed reported being HIV-negative or unknown during
the survey. Those who were suppressed were also more
likely to have initiated ART (95.3%) than those who were
not suppressed (80.3%). Only 33.3% of those not sup-
pressed had evidence of ART analytes, compared to
75.5% of those suppressed.

Resistance patterns
Among the 107 HIV-positive participants with a DBS
viral load > 5000 copies/mL and specimens for genotyp-
ing, sequences were successfully generated for 71% (n =
76), with greater sequencing failures among those who
were positive for ART analytes compared to those who
were ART-naïve or were negative for ART analytes but
with reported prior ART exposure (Fig. 1). Seventy-five
(99%) viruses sequenced were pure consensus subtype C
using two independent typing tools. One was pure con-
sensus D; none were found to be unique recombinant
forms (subtype data not shown).
In weighted analyses, 21.7% of those sequenced had

evidence of DRM (Table 2). Resistance was most prom-
inent in those who were initiated on ART with negative
analyte results, who likely took ART inconsistently or
had interrupted treatment. In this group, 51.1% (95% CI
11.6–89.3%) had any resistance mutation, as compared
to 46.6% (95% CI 24.6–70.0%) of those sequenced with

Fig. 1 Participant viral suppression, medication history, and resistance status, North West Province, South Africa
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positive analyte results and 8.0% (95% CI 3.1–18.9%)
among those sequenced who were ART-naïve.
Sequencing results showed a predominance of NNRTI

resistance (Table 2). The most common resistance pat-
tern was dual class NRTI/NNRTI resistance at 51.2%
(95% CI 28.3–73.6%), followed by single class resistance
to NNRTI at 36.3% (95% CI 17.7–60.2%). However, spe-
cific mutations differed by presence of analytes. Of the
21 participants successfully sequenced with positive
NVP or EFV results, 10 showed two or more DRM, all
of whom had both NRTI and NNRTI resistance. The
predominant NRTI mutations were M184V (8/10) and

K65R (5/10) with three participants harboring both mu-
tations. (Table 3). Among those with NNRTI resistance,
the predominant mutations were at codons 100, 101,
103, 106 and 181. In contrast, among participants with-
out evidence of being on ART (analyte negative – re-
gardless of reported ART initiation), 10 harbored at least
one major NRTI, NNRTI or PI DRM. Two showed
NRTI resistance (M184V) and six harbored NNRTI
DRM at codons 101 and 103. The major PI mutations
M46I, I50I/V and V82I, which confer low to intermedi-
ate resistance to LPV/r used in second line therapy, were
detected in three participants. (Table 3).

Table 1 Participant characteristics by viral load status, North West Province, South Africa, 2014a

Not Suppressed
(≥ 5000 copies/ml)
wgt n = 7981

Suppressed
(< 5000 copies/ml)
wgt n = 4976

wgt % 95% CI wgt % 95% CI P-value

Overall 61.6 (51.4–70.9) 38.4 (29.2–48.6)

Sex

Male 51.1 (41.0–61.1) 21.1 (10.4–38.2) 0.003

Female 48.9 (38.9–59.1) 78.9 (61.8–89.6)

Age group

18–29 Years 22.2 (11.4–38.7) 19.0 (9.2–35.1) 0.868

30–39 Years 45.0 (31.0–59.9) 42.7 (28.1–58.7)

40–49 Years 32.8 (22.1–45.6) 38.3 (24.5–54.4)

Education

Primary or Less 30.2 (20.3–42.4) 35.3 (21.6–52.0) 0.759

Some Secondary 39.3 (30.0–49.5) 39.8 (28.0–53.0)

Completed Secondary 30.5 (22.2–40.2) 24.8 (13.2–41.8)

Prior knowledge of HIV serostatusb

Known Positive 54.2 (41.7–66.1) 86.0 (68.6–94.6) 0.005

Unknown 45.8 (33.9–58.3) 14.0 (5.4–31.4)e

ART initiationb

No 19.7 (10.4–34.3) 4.8 (1.4–15.1) 0.040

Yes 80.3 (65.7–89.6) 95.3 (85.0–98.6)

Time on ARTb

< 1 year 23.4 (14.4–35.9) 13.8 (7.4–24.3) 0.134

1–3 years 42.9 (29.4–57.5) 33.7 (18.7–52.8)

> 3 years 33.7 (21.9–48.0) 52.5 (30.8–58.5)

Analytes foundc

Yes 33.3 (25.3–42.4) 75.5 (57.9–87.4) < 0.001

No 66.7 (57.6–74.7) 24.5 (12.6–42.2)

CD4 category (Pima)d

≤ 350 cells/μL 57.8 (42.8–71.5) 28.2 (15.7–45.2) 0.018

> 350 cells/μL 42.2 (28.6–57.2) 71.9 (54.8–84.3)
aWeights account for sampling, non-response, and age/sex of target population
bBased on self-report
cAssessed for EFV, LPV, NVP
dAmong those for whom Pima CD4 results were available
eRespondents may be mis-reporting status, be elite controllers, or on ART without understanding of their condition [35]
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Table 2 Resistance by ART Status and drug class, North West Province, South Africa, 2014a

Analyte Positivec ART experienced,b

analyte negative
ART naïveb Total

Percent 95% CI Percent 95% CI Percent 95% CI Percent 95% CI

Genotype result wgt na = 2643 wgt na = 677 wgt na = 4623 wgt na = 7943

No resistance 24.4 14.4–38.3 49.0 10.7–88.4 72.6 55.2–85.1 54.6 43.4–65.4

Any resistance 21.3 9.1–42.4 51.1 11.6–89.3 6.3 2.4–15.5 15.1 8.2–26.3

Genotyping failure 54.3 35.4–72.0 0.0 – 21.1 9.4–40.7 30.3 20.3–42.6

Resistance - among those genotyped wgt na = 1209 wgt na = 677 wgt na = 3650 wgt na = 5536

No resistance 53.4 30.0–75.7 49.0 10.7–88.4 92.0 81.0–96.9 78.3 64.3–87.9

Any resistance 46.6 24.6–70.0 51.1 11.6–89.3 8.0 3.1–18.9 21.7 12.1–35.7

Drug class resistance wgt na = 564 wgt na = 346 wgt na = 291 wgt na = 1201

Single class

NRTI only 0.0 – 0.0 – 0.0 – 0.0 –

NNRTI only 0.0 – 73.1 27.9–95.0 63.0 18.1–92.9 36.3 17.7–60.2

PI only 0.0 – 12.2 1.4–58.6 11.5 1.2–58.0 6.3 1.3–25.7

Dual class

NRTI/NNRTI 100.0 – 14.7 1.6–64.1 0.0 – 51.2 28.3–73.6

PI/NRTI 0.0 – 0.0 – 25.5 3.3–77.6 6.2 0.7–37.3

PI/NNRTI 0.0 – 0.0 – 0.0 – 0.0 –
aWeights account for sampling, non-response, and age/sex of target population, bBy self report, c Assessed EFV, LPV, NVP

Table 3 Resistance mutations, North West Province, South Africa, 2014

Sex Age
Group

Months
on ART

ARV analyte exposure Viral
load

Drug resistance mutation by drug class

EFV NVP LPV NRTI NNRTI PI

Male 18–29 47 – – – 7327 Wild-Type Wild-Type V82L

Female 30–39 25 + + – 8580 M184V Y188L Wild-Type

Male 30–39 N/A – – – 18,800 Wild-Type Wild-Type I50V

Female 30–39 21 + – – 27,474 K65R, Y115F V106M, Y181C Wild-Type

Male 40–49 92 – – – 35,300 M184V K103N, Y188L Wild-Type

Female 40–49 117 + – – 36,873 M41L, M184V, T215F K101E, V106M, G190A Wild-Type

Male 30–39 N/A – – – 49,500 M184I Wild-Type M46I

Female 30–39 90 + – – 53,600 K65R, M184V K101P, K103S Wild-Type

Female 30–39 55 + – – 56,600 M184V K103N Wild-Type

Male 30–39 49 + – – 73,200 D67G, T69D, K70R, M184V, K219Q L100I, K103N Wild-Type

Female 30–39 N/A – – – 95,059 Wild-Type K103N Wild-Type

Female 30–39 47 + – – 95,100 K65R, M184V Y181C, G190S Wild-Type

Female 30–39 61 + – – 120,000 K65R, T69del K101E, Y181C, G190S Wild-Type

Male 18–29 N/A – – – 122,000 Wild-Type K101E Wild-Type

Male 30–39 22 – – – 135,000 Wild-Type K103N Wild-Type

Female 30–39 17 – – – 145,000 Wild-Type V106M Wild-Type

Male 40–49 N/A – – – 390,000 Wild-Type K103N Wild-Type

Male 18–29 N/A + – – 415,000 K65R, Y115F, M184V V106M, G190A Wild-Type

Male 18–29 15 – – – 490,000 Wild-Type K103N, G190A Wild-Type

Male 30–39 67 + – – 799,000 M41L, D67N, K70E, Y115F, M184V K103N, V106M Wild-Type
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Treatment-specific resistance
There were significant differences in treatment-specific
resistance among the analyte positive and negative par-
ticipants. Among those who were analyte negative, fewer
than 5 % demonstrated resistance to azidothymidine
(AZT), abacavir (ABC), lamivudine or emtricitabine
(XTC), tenofovir disoproxil fumarate (TDF), LPV/r and
thus few would fail to suppress using the first-line regi-
mens in South Africa. Among those who were analyte
positive, over 10% and as high as 47% showed any resist-
ance to XTC, TDF, EFV, NVP, and ABC and thus are
predicted to show reduced susceptibility to first- or
second-line regimes containing these antiretrovirals
(Fig. 2). Among the participants sequenced, three carried
M184V/I with K65R, mutations conferring resistance to
the regimen used for oral HIV pre-exposure prophylaxis
(PrEP) (FTC/TDF).

Discussion
We set out to examine the contribution of HIV drug re-
sistance mutations to rates of virologic failure after not-
ing that almost half of HIV-positive participants
reporting ART initiation in a population-based sero-
prevalence survey had evidence of virologic failure, des-
pite 93% of those in care reporting near perfect

adherence [24]. In exploring the factors behind poor
viral suppression rates in this rural South African popu-
lation, drug resistance mutations appear to be making a
substantial contribution to sub-optimal outcomes, par-
ticularly for those in treatment. Among those sequenced,
evidence of DRM was present in 22% of the population
and in 47% of those with evidence of ART analytes, with
implications for efficacy of treatment regimens.
Little is known about the prevalence of DRM both

prior to and following treatment initiation in the gen-
eral population. One population-based study in South
Africa found evidence of DRM in 7% of ART-naïve
patients in rural KwaZulu-Natal in 2012, similar to
our findings of DRMs in 8% of our 2014 North West
population sequenced pre-treatment. Clinical cohort
studies in sub-Saharan Africa have found a similar
prevalence of drug resistance mutations in 6–11% of
ART-naïve patients [11, 20, 22]. If our study partici-
pants reported ART initiation accurately, 8% would
represent the baseline estimate of transmitted resist-
ance in the population, most of which was NNRTI
only (63.0%), with fewer mutations representing PI/
NRTI resistance (25.5%) and even fewer being single
PI resistance (11.5%). For these patients, DRM could
lead to first-line failure. Recent studies have

Fig. 2 Treatment-specific resistance among analyte negative and analyte positive participants, North West Province, South Africa
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demonstrated that the prevalence of transmitted and
acquired drug resistance is increasing in RSA [20].
The cost in a program as large as South Africa’s
makes baseline DRM testing prior to ART initiation
to inform regimen selection largely infeasible; however
NHLS has instituted alert reports for adherence coun-
seling and DRM testing should be made available
when treatment failure is evident.
Resistance was particularly high in our sample among

those who had initiated ART, and most prevalent among
those who had reported initiation but had no evidence
of ART analytes, e.g. probable non-adherence. Non-
adherence is likely a big contributor to lack of viral sup-
pression and acquired resistance in this sample. It is not
possible to distinguish between acquired and transmitted
resistance in our data, however, patterns of resistance by
ART status provide insights about contributions of ac-
quired and transmitted resistance in this population-
based sample. The large majority of DRMs in this popu-
lation occurred in the ART-initiated population, imply-
ing a high likelihood of acquired resistance playing a
central role, particularly with all mutations demonstrat-
ing NRTI/NNRTI (first-line) dual resistance among the
analyte positive group. In fact, research has noted that a
high proportion of adults and children who received first
line ART will develop virological failure during the first
5 years, with 70–90% of patients in virologic failure ac-
quiring drug-resistant HIV [36]. While this estimate of
DRM is higher than that observed in our sample, we were
unable to sequence 30% of samples and the majority (22/
31) of those were ART positive with viral load measures
close to the cut-off (i.e. 20,000 copies or less) for virologic
failure. If all ART positive participants with genotyping
failure had resistance mutations, this would represent
75.6% of analyte positive participants, coinciding with
current estimates [36]. Indeed, if participants were par-
tially suppressed on ART and therefore had positive ana-
lytes and lower but not suppressed viral loads, they would
be more prone to generate resistance and may lead to an
underestimate of DRMs in this population.
The extremely high rates of dual NRTI/NNRTI resist-

ance among the analyte positive group has important
implications for the future of the current first-line treat-
ment. Currently the South African national program rec-
ommends that providers consider switching patients on
the first-line drug regimen if the patient has experienced
virological failure (VL > 1000 copies/mL) on at least two
occasions two months apart despite good adherence.
Our data indicate that approximately one-third of those
who report ART intake are negative for analytes, making
a premature decision to switch regimens potentially
costly and could encourage further DRM. With South
Africa currently starting up introduction of a new triple
combination regimen of tenofovir disoproxil fumarate,

lamivudine (3TC), and dolutegravir (TLD) [37, 38], some
progress in stemming resistance to NNRTI could be
imminent. However, even with availability of the new
regimen, routine monitoring of resistance remains crit-
ical [39]. Finally, circulating drug-resistant viruses may
have implications for persons initiating PrEP with TDF/
FTC. The few seroconversions among individuals en-
rolled in PrEP trials occurred among those who started
PrEP during unrecognized acute HIV infection, and the
emergence of resistance primarily involved M184V/I,
which can be selected for under the selective pressure of
FTC [40–42].
A strength of this study is the population-based sam-

ple in an understudied area with data on viral load, ART
analytes, and DRMs. Our data also has several limita-
tions. Only 70% of the samples were sequenced, with
failure being highest for those not suppressed on ART
and with comparatively lower viral load measures, which
could lead to an underestimation of DRMs if that popu-
lation is intermittently adherent. Studies restricted to
ART-naïve populations using the same medium for
genotyping have sequencing success of closer to 92%
[43]. Additionally, ART initiation and adherence are
based on self-report; however, the use of analyte data as
a biological marker of initiation and adherence improves
the study’s accuracy. We cannot distinguish between ac-
quired and transmitted resistance in our data, and, fi-
nally, we used DBS instead of plasma for the assays.
Though DBS offer a feasible, low-resource alternative for
viral load and DRM surveillance, they have well docu-
mented limitations – notably cellular HIV DNA contrib-
utes to copy number when using whole blood instead of
blood plasma samples [29]. We therefore used a conser-
vative threshold of 5000 copies/mL for defining viral
suppression, and, as a result, run the risk of over-
estimating viral suppression. Even so, viral suppression
in this study aligns well with data from the NHLS at the
time of the study, which suggested that viral suppression
among PLHIV in care (defined as < 400 copies/mL
plasma) ranged from 52 to 75% for North West Prov-
ince, depending on the district [44], similar to our esti-
mates among those on treatment.

Conclusion
We found that both non-adherence and drug resistance
mutations likely play a key role in virologic failure in this
rural community in North West Province, South Africa.
Increasing ART coverage can significantly lower the risk
of new HIV infections in South Africa [45]; however,
gains in treatment expansion will be lost if inconsistent
adherence is not addressed and resistance continues to
increase. There is growing evidence that pre-treatment
drug resistance is increasing in sub-Saharan Africa [22,
23], making it essential that policies around treatment
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regimens are reviewed and updated frequently, and that
surveillance be instituted in both HIV-positive, ART-
naïve populations and among those failing treatment, in-
cluding monitoring of drug exposure for non-adherence
and treatment failure despite adherence. Countries
should consider instituting sentinel sites for baseline
drug resistance testing in settings where feasible.
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