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Purpose: The purpose of this study is to compare the detection performance of the

3-dimensional convolutional neural network (3D CNN)-based computer-aided detection

(CAD) models with radiologists of different levels of experience in detecting pulmonary

nodules on thin-section computed tomography (CT).

Patients and Methods: We retrospectively reviewed 1109 consecutive patients who under-

went follow-up thin-section CT at our institution. The 3D CNN model for nodule detection was

re-trained and complemented by expert augmentation. The annotations of a consensus panel

consisting of two expert radiologists determined the ground truth. The detection performance of

the re-trained CAD model and three other radiologists at different levels of experience were

tested using a free-response receiver operating characteristic (FROC) analysis in the test group.

Results: The detection performance of the re-trained CAD model was significantly better

than that of the pre-trained network (sensitivity: 93.09% vs 38.44%). The re-trained CAD

model had a significantly better detection performance than radiologists (average sensitivity:

93.09% vs 50.22%), without significantly increasing the number of false positives per scan

(1.64 vs 0.68). In the training set, 922 nodules less than 3 mm in size in 211 patients at high

risk were recommended for follow-up CT according to the Fleischner Society Guidelines.

Fifteen of 101 solid nodules were confirmed to be lung cancer.

Conclusion: The re-trained 3D CNN-based CAD model, complemented by expert augmen-

tation, was an accurate and efficient tool in identifying incidental pulmonary nodules for

subsequent management.

Keywords: computer-aided detection, computed tomography, pulmonary nodules,

convolutional neural network

Introduction
Lung cancer is the leading cause of cancer death worldwide.1 On computed

tomography (CT), lung cancer can be detected in its initial stages radiologically

as a pulmonary nodule. Increased utilization of low-dose multidetector CT, increas-

ing rates of incidentally detected pulmonary nodules on CT, and increasing amount

of interpreted CT images posed challenges for radiologists. Automated detection of

pulmonary nodules on CT plays an important role in nodule detection and earlier

cancer diagnosis. Research into computer-aided detection (CAD) of pulmonary

nodules in thoracic CT scans has rapidly grown in the last two decades.
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Various traditional feature-based machine learning

approaches have been proposed, especially for classifica-

tion, in CAD schemes.2–6 Feature-based CAD schemes

have sensitivities ranging 38–100% and 0.7–74.4 false

positive per scan (FP/scan). However, it is difficult to

compare CAD schemes, as only a few studies provide

a comparative performance evaluation of different CAD

models using a common database. In addition, manually

crafted features are limited and struggle to provide

a complete quantitative description of the appearance of

pulmonary nodules.

A series of studies7,8 has shown that convolutional

neural networks (CNNs) effectively represent high-level

features and produce better classification results than

hand-crafted feature-based CAD models. In general, the

network architectures of CNN models consist of two steps:

1. Candidate nodule detection, and 2. False-positive reduc-

tion. The candidate nodules, obtained in the first stage,

were classified in the second stage for false-positive

removal. The LUNA16 study by Setio et al9 aimed to

objectively evaluate various automatic nodule detection

algorithms using a publicly available reference database

of chest CT scans, the LIDC-IDRI dataset. Among them,

a multi-level contextual 3-dimensional (3D) CNN archi-

tecture by Dou et al8 achieved the highest sensitivity of

98.1% at 2 FP/scan, and the competition performance

metric (CPM) achieved 0.908, making it the single best-

performing model for false-positive reduction.

In our study, we also presented two-phase prediction 3D

CNN networks: a fully convolutional V-Net10 for volumetric

candidate detection and a multi-level contextual 3D CNNs

similar to Dou et al8 for false-positive reduction. However,

when we tested the detection performance in this pre-trained

network, the detection sensitivity was only 38.44% at 0.68

FP/scan and CPM of 0.347. Like many previous

studies,9,11,12 Dou et al only categorized nodules ≥3 mm in

size as relevant lesions and nodules <3mm, regardless of risk

factors, were considered irrelevant and ignored according to

the lung cancer protocols of Aberle et al.11 Unlike the less

aggressive management of small nodules in screening pro-

grams, radiologists should interpret the incidentally identi-

fied nodules based on the 2017 Fleischner Society

Guidelines, which recommends that high-risk patients with

solid nodules <6 mm or patients with multiple subsolid

nodules warrant routine follow-up CT scan.13 Thus, inciden-

tal nodule detection, regardless of size, should be separated

from subsequent nodule analysis and management. In our

study, by complementing CNNs with expert augmentation,

we re-trained and tested the 3D CNNs-CAD model based on

a dataset of 1109 cases from our institution to detect nodules

of all sizes. The aim of this study was to compare the detec-

tion performance of the 3D CNNs-CAD model with radiol-

ogists of different levels of experience in detecting

pulmonary nodules of all sizes.

Patients and Methods
Data and CT Protocol
This retrospective Health Insurance Portability and

Accountability Act-compliant (HIPAA) study was

approved by the institution review board and the need for

informed consent was waived. We retrospectively reviewed

83,512 patients aged between 35 and 82 years who under-

went initial routine CT scans at our institution from

January 2014 to August 2015. Patients who underwent

follow-up CT scans for at least 2 years or surgery for highly

suspicious nodules within 2 years of the initial CTscan were

eligible for inclusion. Patients who had a previous diagnosis

of lung cancer, hemoptysis, unexplained weight loss of

more than 6.8 kg in the preceding year, or had undergone

chest CT within 18 months before enrollment were

excluded. Ultimately, 1109 patients were enrolled in our

study. Eighty percent of all patients in the dataset were

randomly selected as the training set (887 cases), 10% as

the validation set (111 cases) for model selection, and the

remaining 10% as the test set (111 cases) for assessment of

the selected model. Randomization was performed by using

pseudorandom numbers generated from the random func-

tion in the Python Standard Library (Python 2.7.13, Python

Software Foundation, Wilmington, Del).

All patients underwent unenhanced chest CT using

a 128-slice (Definition AS+; Siemens, Malvern, Pa) row

CT scanner, with a slice thickness of 1.0 mm and

a reconstruction interval of 0.8 mm. The protocol was as

follows: 100–120 kVp; mAs settings based on CARE

Dose 4D for exposure dose reduction. All images were

reconstructed with a high-kernel (b60) 512×512 matrix.

Window settings were as follows: standard lung (window

width, 1500 HU; window level, −600 HU) and mediasti-

num (window width, 350 HU; window level, 50 HU).

Image Interpretation
Three radiologists at different seniority levels (authors 2, 4,

and 5 with 5, 11, and 20 years of experience in chest imaging,

respectively) were asked to independently interpret all of the

original CT images (including the training set, validation set
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and test set). They were aware that this was a nodule detec-

tion study, and were otherwise blinded to all information

regarding the CT scans. The order of reading was selected

randomly. Reading time for each patient was measured by an

assistant without revealing it to the radiologists.

A pulmonary nodule was defined as a small spherical

or ellipsoid structure, non-linear circumscribed focus of

abnormal tissue.14,15 Longitudinal or linear densities with-

out a nodule like aspect and sub-pleural densities that were

attributable to pleural adhesions were excluded from the

nodule diagnosis. Radiologists independently marked each

pulmonary nodule in CT images, and noted the size (lar-

gest axial diameter), location (slice level, right or left

lung), morphological type (calcified, solid and sub-solid).

Construction of 3D CNNs Model
Pre-Processing

The 3D CNN networks were initially trained using 888 cases

with 1186 nodules ≥3 mm in size from the LUNA16

dataset.16 To facilitate the training of the 3D CNNs, input

images were normalized to have a zero mean and unit

variance. The mean, µ, and the standard deviation, σ, of all
training samples were first computed and then were used to

normalize each pixel by subtracting µ and dividing by σ.

Nodule Detection

The 3D CNN networks in this study were adapted from

contemporary neural networks, namely a fully convolutional

V-Net10 for volumetric candidate detection and multi-level

contextual 3D CNNs8 for false-positive reduction. Different

from the 2D CNNs, by which pulmonary nodules can only

be distinguished from the surrounding lung anatomy in the

2D plane, the 3D CNNs, represented as 3D feature volume

in the convolutional/max-pooling layer, performed better in

revealing the structural and appearance characteristics in 3D

spatial dimensions. To optimize detection speed, a coarse-to-

fine approach was adopted. A set of candidates were first

selected by the coarse detection using a smaller network,

while the false positives in the candidates were further

pruned by larger 3D CNNs (Figure 1). The candidate detec-

tion network architecture consisted of an encoder path fol-

lowed by a decoder path. The features map from the encoder

path was concatenated with the feature maps in the decoder

path at the corresponding scales. The layers used in the

network include convolution, rectified linear unit (ReLU),

max pooling, batch normalization, and residual layers. The

network was fully convolutional, which is suited for object

detection in a large 3D volume. The results of the candidate

detection were used as the input layer for the second-phase

prediction.

The false-positive reduction component consisted of

three 3D CNNs with different sized receptive fields to

deal with pulmonary nodules of different sizes. In our

study, each 3D convolutional network consisted of 3D

convolutional, 3D max-pooling, residual, and fully con-

nected layers, and a softmax layer for the final regression

to probabilities. Slightly different from the networks by

Dou et al, double residual-net blocks were incorporated in

the proposed refinement network to improve the training

efficiency and avoid gradient vanishing. The pulmonary

nodules showed large variations regarding volume sizes

and morphological characteristics, among other factors.

According to Dou et al, it is difficult to identify a single

optimal receptive field for the detection of targets with

large variations. Therefore, they designed three 3D

CNNs and obtained the final classification results by fus-

ing the prediction outputs of the three.

The 3D CNNs model consisted of three 3D CNN archi-

tectures applicable to the various lesion sizes (Archi-a, Archi-

b, Archi-c) with a receptive field of 20×20×6, 30×30×10, and

Coarse Detec on Network

Nodule Detec ons

Input Volume

Candidate

Proposals &

VOI Pooling

Re nement Network

Figure 1 3D CNNs-CAD classification network architecture. A coarse-to-fine approach was adopted by using a fully convolutional network V-Net for coarse candidate

detection and multi-level contextual 3D CNNs for fine-tuning. Average consuming time of this model for nodule detection in each scan was 4 s.
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40×40×26, respectively. In Archi-a, the receptive field is

followed by three convolutional layers with 64 kernels of

5×5×3, 5×5×3, and 5×5×1. In Archi-b and Archi-c,

a receptive field is applied followed by the first convolutional

layer with 64 kernels of 5×5×3. Thereafter, a max-pooling

layer and two convolutional layers both with 64 kernels of

5×5×3 are applied. The difference is that the kernel of the

max-pooling layer is 2×2×1 in Archi-b and 2×2×2 in Archi-

c. Archi-a has the fewest fully connected layer output units

(150); Archi-b and Archi-c both include a fully connected

layer of 250 output units. The three prediction probabilities

yielded by the subsystems were merged with a linear weight-

ing to obtain the final prediction. For more architecture

details, please refer to the study by Dou et al.8

We designed the CNN model based on Tensorflow (v.

1.4). Our model was referred to the open-source code (https://

github.com/shartoo/luna16_multi_size_3dcnn.git), which

was the implement of Dou’s work. We used Adam algorithm

to update the weights with 0.0001 learning rate. Our model

was trained on one NVIDIA GTX 1080Ti graphic card.

After complementing with expert augmentation, we re-

trained the 3D CNN networks on a dataset in our institu-

tion to detect nodules of all sizes. The re-training dataset

consisted of a training set and validation set with

a manually labeled reference standard established by

a consensus panel. Training and validation procedures

were repeatedly performed by fine-tuning the 3D CNNs

model until a satisfactory result was achieved. The work-

flow for the data analysis is shown in Figure 2.

Reference Standard of Nodule Inclusion

and Model Re-Training
The reference standard was established by a consensus panel

of two expert radiologists (author 3, and 9 with 20, and 30

years of experience in chest imaging, respectively). They

reviewed the results of training set, validation set and test

set obtained from the three radiologists (authors 2, 4, and 5)

and the CAD-marked images from the pre-trained 3D CNN

model. The reference standard was referred to the previously

reported references.12,17 The consensus labelled lesions as

“nodules” according to the definitions in the NELSON

protocol.15 Non-lesions and benign lesions were regarded as

findings excluded from further evaluation. Calcified lesions

and abnormal findings not presenting as nodule shapes, eg

pleural plaque, or fissure thickening, were recorded as benign

lesions. Nodules were labelled as true positive (TP), if they

were determined by the consensus panel as positive nodules

needing further evaluation, or otherwise as false positive

(FP). Beside identifying a pulmonary opacity as a nodule

(yes/no), nodule size, location and morphological type were

performed by the consensus panel.

Figure 2 Workflow for nodule detection, validation and test in a total of 1109 patients in our single institution.
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As the present study includes all sizes of nodules, it is

necessary to re-train the 3D CNNs CAD model comple-

mented by expert augmentation. The re-training dataset

consisted of a training set and validation set with

a reference standard (ie, ground truth) by consensus

panel of two experts. Training and validation procedures

were repeatedly performed by fine-tuning the 3D CNNs

model until a satisfactory result was achieved. The detec-

tion performance of the re-trained CAD model was tested

in the test set and compared with three readers (authors 2,

4 and 5) at different levels of experience using the con-

sensus panel as the reference standard.

Follow-Up Recommendation
The recommendations of the trial radiologists were devel-

oped according to the 2017 Fleischner Society Guidelines

for the management of incidental pulmonary nodules

detected on CT images.13

We evaluated three CT scans (first T0) at 1-year inter-

vals (T1 and T2) for the patients who were recommended

follow-up CT scans within 2 years. Patients in whom lung

cancer was diagnosed and underwent surgery were not

offered subsequent tests.

Statistical and Data Analysis
All statistical analyses were performed using statistical

software (SPSS 17.0 Chicago, III; MedCalc software, ver-

sion 8.2.0.1, Mariakerke, Belgium).

Sensitivities for pulmonary nodule detections from three

readers and re-trained CAD model were calculated using the

consensus panel as the reference standard in the test set.

Results were evaluated using the free-response receiver

operating characteristic (FROC) analysis. In the FROC

curve, sensitivity was plotted as a function of the average

number of FP/scan. An overall score was calculated by using

the CPM value18 in order to compare with previous studies.

The CPM value was defined as the average of the sensitivity

at seven predefined false-positive rates: 1/8, 1/4, 1/2, 1, 2, 4,

and 8 FP/scan. The accuracy and FP/scan of CAD and the

three readers were calculated and compared using the two-

sided Wilcoxon signed-rank test.

P values <0.05 were considered to indicate statistical

significance.

Results
The final cohort comprised 1109 patients (640 men and

469 women, mean age 55.1 ± 13.8 years). The mean age of

patients in the training set, validation set, and test set were

59.6 ± 10.1 years, 57.8 ± 11.5 years, and 56.6 ± 9.9 years,

respectively. No statistical differences in sex or age were

found between the three cohorts.

The performance of detection results in pre-trained and

re-trained networks are illustrated in Tables 1 and 2. The

detection sensitivity was 38.44%with 0.68 FP/scan using the

pre-trained network, as shown in Figure 3. The re-trained

augmentation by CAD-complemented experts improved

detection performance significantly over that of the pre-

trained networks (average sensitivity: 93.09% vs 38.44%,

P < 0.001) without considerably increased FP/scan (1.64 vs

0.68, P > 0.05), as shown in Tables 1 and 2. Comparing the

results before and after re-training, it can be seen that the

detection sensitivity of nodules smaller than 3 mm has also

been significantly increased (9.26% vs 89.74%) without

noticeably increasing FP/scan (0.117 vs 0.597). The differ-

ence in detection performance was reduced with the increase

of nodule size.

The FROC curves of the model for nodule detection are

shown in Figures 3 and 4, and Table 2. An average sensitivity

of 93.09%was achieved at 1.64 FP/scan with a CPM score of

0.757. The detection for solid, sub-solid, including part-solid

Table 1 Summary of Results Before Fine-Tuning in Test Group (111 Cases)

Total n≤3mm 3<n≤4 4<n≤6 n>6 Solid Part-Solid GGO

Detected amount 408 55 115 97 141 261 63 84

True positive 356 46 110 89 111 217 61 78

False positive 52 9 5 8 30 44 2 6

False negative 570 451 82 27 10 445 8 117

Sensitivity 0.3844 0.0926 0.5729 0.7672 0.9174 0.3278 0.8841 0.4

FP per scan 0.6753 0.1169 0.0649 0.1039 0.3896 0.5714 0.026 0.0779

Tested case amount 111

Sensitivity 0.3844

Note: FP per scan: mean false-positive nodules per scan.

Abbreviation: GGO, ground glass opacity.
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and ground glass opacity (GGO) nodules gave sensitivities of

92.45%, 97.10%, and 93.85% at 1.06, 0.22, and 0.35 FP/

scan, respectively, with no significant difference.

The sensitivities for nodule detection by the three read-

ers were 35%, 46%, and 50.22% with 0.71, 0.67, and 0.68

FP/scan, respectively. The detection sensitivities for solid,

part-solid, and GGO nodules by the expert reader with 20

years of experience in chest imaging were 35.2%, 75.36%,

and 92.31% with 0.36, 0.10, and 0.22 FP/scan, respec-

tively. Regarding nodule size, the sensitivities of the

three readers for nodules less than 3 mm were 27.81%,

28.17%, and 30.18%, respectively, which were signifi-

cantly lower than the sensitivities for nodules bigger than

3 mm (all sensitivities >59%), as shown in Table 3.

Among the three readers, the expert reader did not show

any significant advantage in detecting lesion over the other

two readers. The re-trained CAD model showed signifi-

cantly higher sensitivity and better detection performance

than the expert radiologist (sensitivity: 93.09% vs 50.22%;

CPM score: 0.757 vs 0.436; both P < 0.001) without

a significantly higher FP rate (1.64 vs 0.68, P > 0.05).

nodules (including calcified nodules) in 887 patients were

detected and the results are shown in Table 4. Among them,

56.6% nodules (n = 5731) were ≤3 mm in size, 28.2% (n =

2855) were 3–6 mm, and the remaining 15.2% (n = 1536)

were ≥6 mm. By using the 3D CNNs-CAD model comple-

mented by experts, a total of 3524 nodules in 567 patients

were detected and recommended for a subsequent follow-up

CT scans according to the 2017 Fleischner Society

Pulmonary Nodule Guidelines.13 Among them, 922 nodules

in 211 patients were less than 3 mm. Within the 24-month

follow-up interval, 15 (14.85%) nodules in 15 patients of the

101 solid nodules ≤3 mm in size, and 2 (2.43%) of the 821

pure ground glass nodules (GGNs) were confirmed to be

lung cancer. Representative cases including adenocarcinoma

in situ (AIS), minimally invasive adenocarcinoma (MIA)

et al are shown in Figure 5, Figure 6. The malignancy rate

of high-risk solid nodules smaller than 3 mm was signifi-

cantly higher than that of GGNs. In addition, 242 of the 821

pure GGNs that were followed-up showed to be persistent

and 15 showed slight enlargement that required follow-up for

the following 2 to 4 years. Ten (0.263%) of the 3798 low-risk

solid nodules ≤3 mm in size and 25 (1.41%) of the 1773 solid

nodules >3 mm and <6mm in size were confirmed to be lung

cancer. The malignancy rate of low-risk nodules less than

3mmwas significantly lower than the corresponding nodules

in the high-risk group.

The average time for nodule detection in a patient was 4 s

by the CAD model. As for the three readers who interpreted

the original images, the average time for nodule detection

was 8 min per scan. Compared with radiologists, the CAD

model appears to be an efficient and time-saving method.

Discussion and Conclusion
In our study, a newly developed CAD model based on 3D

CNNs was evaluated to detect incidental pulmonary

nodules of all sizes. After re-training of the 3D CNNs-

CAD model with our dataset of 887 cases and 10,122

nodules complemented by expert augmentation, the detec-

tion performance showed a significant improvement over

the pre-trained network, with a sensitivity of 93.09% at

1.64 FP/scan and CPM score of 0.757. The re-trained

CAD model showed significantly higher sensitivity and

CPM than expert radiologists without a significantly

increased FP rate (P > 0.05). The CAD model significantly

improved the detection performance for nodules less than

6 mm in size (sensitivity 91.01% at 0.333 FP/scan), espe-

cially for nodules less than 3 mm in size (sensitivity

89.74% at 0.597 FP/scan), and provided an accurate and

Table 2 Summary of Results After Fine-Tuning in Test Group

Total n≤3mm 3<n≤4 4<n≤6 n>6 Solid Part-Solid GGO

Detected amount 988 492 220 132 144 694 84 210

True positive 862 446 188 112 116 612 67 183

False positive 126 46 32 20 28 82 17 27

False negative 64 51 4 4 5 50 2 12

Sensitivity 0.9309 0.8974 0.9792 0.9655 0.9587 0.9245 0.971 0.9385

FP per scan 1.6364 0.5974 0.4156 0.2597 0.3636 1.0649 0.2208 0.3506

Tested case amount 111

Sensitivity 0.9309

Note: FP per scan: mean false-positive nodules per scan.

Abbreviation: GGO, ground glass opacity.
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efficient method for the subsequent management of inci-

dentally detected pulmonary nodules.

Many studies2,12,19 have demonstrated that the CAD

model can significantly improve the diagnostic accuracy

of pulmonary nodule detection. However, the reported sen-

sitivity of CAD has ranged from 38% to 100% and the FP

rate ranged from 0.7 to 74.4 per scan. CNN-based detection

models have been shown to outperform state-of-the-art

computer vision applications and have been successfully

applied to nodule detection, segmentation, and diagnosis by

learning highly discriminative features of raw input data,

without the manual input of features.8,9

CNNs are designed to better utilize spatial and configura-

tional information from 2D or 3D images as input. The

strength of CNNs lies in their weight sharing, exploiting the

intuition that similar structures occur in different locations in

one image. When seeing x as a vectorized image, weights can

be shared in such a way that it results in a convolution opera-

tion. This dramatically reduces the number of parameters (ie,

the number of weights no longer depends on the size of the

input image) that needs to be learned and renders the network

equivalent with respect to translation of the input. In general,

each CNN consists of convolution, non-linear activation,

pooling, and fully connected layers to hierarchically extract

Figure 3 FROC curve of pre-trained (A) and re-trained (B) 3D CNNs-CAD model for nodule detection. In the pre-trained model, the detection sensitivity was 38.44% with

0.68 FP/scan, while an average sensitivity of 93.09% was achieved at 1.64 FP per scan in the re-trained model.
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features and a softmax layer for the final regression to prob-

abilities. Each layer contains a number of channels, and every

channel encodes a different pattern.

In the LUNA16 competition,9 the single best-

performing model was developed by Dou et al8 by using

multi-level contextual 3D CNNs with a CPM value of

0.908. The detection sensitivities achieved 97.2% and

98.3% at 1 and 4 FP/scan, respectively. However, when

we tested the pre-trained multi-level contextual 3D CNNs

with our test category, the detection sensitivity was only

38.44% at 0.68 FP/scan, with a CPM score of 0.347. The

most important reason for this difference is that the anno-

tating method in the pre-training algorithm was unfit for

our dataset. According to the study by Setio et al,9 the

nodules annotated ≥3 mm were categorized as relevant

lesions in the pre-training process. Nodules <3 mm and

non-nodule lesions were considered irrelevant lesions and

were ignored, as the probability of malignancy in nodules

<3 mm was negligible in previous studies.20–22 Although

nodule size has a clear relationship with the risk of malig-

nancy, there is no strict cut-off between benign and malig-

nant lesions. Numerous other risk factors, including

smoking, exposure to other carcinogens, emphysema,

fibrosis, upper lobe location, family history of lung cancer,

age, and sex, have differing effects on the likelihood of

malignancy.23 After discussing with 23 expert radiologists

in China, we determined to label all detected true positive

nodules despite the size, as we considered that the

Figure 4 The performance of the re-trained 3D CNNs-CAD model complemented expert augment by CPM score in the FROC curve.

Table 3 Summary of Results by Highest Seniority Level Reader in Test Group

Total n≤3mm 3<n≤4 4<n≤6 n>6 Solid Part-Solid GGO

Detected amount 521 162 119 97 143 256 64 201

True positive 465 150 114 87 114 233 52 180

False positive 56 12 5 10 29 23 12 21

False negative 461 347 78 29 7 429 17 15

Sensitivity 0.5022 0.3018 0.5938 0.75 0.9421 0.3520 0.7536 0.9231

FP per scan 0.6779 0.1237 0.0649 0.1231 0.3664 0.36 0.0979 0.22

Tested case amount 111

Sensitivity 0.5022

Note: FP per scan: mean false-positive nodules per scan.

Abbreviation: GGO, ground glass opacity.
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detection of nodules should be separate from the subse-

quent nodule analysis and management. In addition, in the

2017 Fleischner Society guidelines for the management of

incidental pulmonary nodules detected on CT scans, high-

risk patients (according to the categories proposed by

American College of Chest Physicians23) with single or

multiple solid, multiple <6 mm part solid, or pure ground-

glass nodules may warrant routine follow-up. Therefore,

all labeled nodules were categorized as relevant lesions

regardless of their size to meet clinical requirements. The

differences in data characteristics for pre-training and

practical use of degrade performance.24 Nomura et al25

retrained cerebral aneurysm detection software using data

collected in clinic, and effectively improved the perfor-

mance of this CAD model without changing the training

algorithm. Thus, the re-training process is essential before

the application of the CAD model. In our study, we re-

trained, validated, and tested a 3D CNNs-CAD model

based on a database of 1109 patients to detect as many

nodules as possible for subsequent evaluation according to

the 2017 Fleischner Society guidelines. This re-trained

CAD model was complemented by expert augmentation

and significantly improved detection performance over

that of the pre-trained networks (sensitivity: 93.09% vs

38.44%), especially for nodules less than 3 mm in size

(sensitivity: 89.74% vs 9.26%).

Table 4 Summary of 9724 Non-Calcified Nodules in 10,122 Detected Pulmonary Nodules After CAD Complemented Experts in

Training Dataset (887 Cases)

A: Solid Nodule

Nodule Type Size Cancer Confirmed in Follow-Up CT Scan

n≤3mm 3<n<6mm 6≤n<8mm n>8mm n≤3mm 3<n<6mm 6≤n<8mm n>8mm

Low risk↑

Detected amount 3798 1773 132 354 10 25 45 98

High risk↑

Detected amount 101 108 237 578 15 26 145 463

Total 3899 1881 369 729 25 61 190 561

B: Part Solid Nodule

Nodule Type Size Cancer Confirmed in Follow-Up CT Scan

n≤3mm 3<n<6mm 6≤n<8mm n>8mm n≤3mm 3<n<6mm 6≤n<8mm n>8mm

Single

Detected amount 0 215 85 101 0 8 14 26

Multiple

Detected amount 0 341 103 132 0 31 37 41

Total 0* 556 188 233 0 39 51 67

C: Pure Ground Glass Nodule

Nodule Type Size Cancer Confirmed in Follow-Up CT Scan

n≤3mm 3<n<6mm 6≤n<8mm n>8mm n≤3mm 3<n<6mm 6≤n<8mm n>8mm

Single

Detected amount 278 136 37 49 0 11 16 21

Multiple

Detected amount 821 428 47 73 2 25 47 39

Total 1099 564 84 122 2 36 63 60

Notes: ↑ Risk factors for malignancy were assigned according to the categories proposed by the American College of Chest Physicians. *The part-solid nodules could not be

defined in the nodules ≤3 mm in size.
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Figure 5 Imaging and pathology in patients with pulmonary nodules<3 mm in size at baseline CT (hematoxylin and eosin staining). Case 1(A–C): Transverse 1.5-mm CT

sections showed two sub-solid nodules in the right upper lobe. (A) Growth developed in the pure ground glass nodule (A, curve arrow) at 2 years follow-up CT. Surgical

resection was performed with the diagnosis of minimally invasive adenocarcinoma (MIA). (B, C) However, the incidentally resected nodule (B, arrow) in the same lobe

proved to be acinar predominant adenocarcinoma (C, magnification: ×200). Case 2(D–I): Transverse 1.0-mm CT sections showed two sub-solid nodules in the right upper

(D, G, H) and lower lobe (E). (E, F) Solid component developed (E, curve arrow) during 1 year follow-up, and resection was performed with a diagnosis of chronic

inflammation (F, magnification: x100). (D, G–I) CT guided location was performed (G, H, arrow) for the following surgery with a diagnosis of MIA (I, magnification: ×40).

Case 3(J–L): Highly suspicious case with a persistent solid nodule (J–K, arrow) and developed bronchiectasis. Surgery was performed with a diagnosis of MIA (L,

magnification: ×100). Case 4 (M–O): Incidentally resected nodule (M, arrow) with a diagnosis of acinar predominant adenocarcinoma (O, magnification: ×100). Case 5 (P–
R): Incidentally resected nodule (P, arrow) with a diagnosis of adenocarcinoma in situ (AIS) (R, magnification: ×40).
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In the training dataset, 56.6% detected nodules

(n=5731) were ≤3 mm in size. A total of 922 nodules

in 211 patients were regarded as high risk and recom-

mended follow-up CT scans. Fifteen (14.85%) nodules in

15 patients within the 101 high-risk solid nodules and

two nodules in two patients within the 821 high-risk

GGNs were confirmed as lung cancer. Thus, 1.93% of

all 877 patients in the training dataset were at high risk

and 8.06% of the high-risk patients had confirmed malig-

nancy. In particular, 14.85% of patients with high-risk

solid nodules ≤3 mm were confirmed to have cancer. In

addition, 10 (0.263%) of the 3798 low-risk solid nodules

≤3 mm in size were confirmed to be lung cancer. The

malignancy rate for nodules smaller than 3 mm was

significantly higher in the high-risk group. Thus, we

considered that combined with risk factor evaluation,

the re-trained 3D CNNs-CAD model plays an important

role in detecting pulmonary nodules of all sizes and

provides an efficient and accurate method for the man-

agement of pulmonary nodules.

Figure 6 Imaging and pathology in patients with pulmonary nodules <3 mm in size at baseline CT and progressed to be malignant at follow-up CT (hematoxylin and eosin

staining). Case 1(A–C): Transverse 1.5-mm CT sections showed a solid nodule less than 3 mm in size in the left upper lobe (A, arrow). Significant growth developed at 2.5

years follow-up (B, arrow) and surgery was performed with a diagnosis of acinar predominant adenocarcinoma (C, magnification: ×200). Case 2(D–I): Transverse 1.0-mm

CT sections showed a solid nodule in the left lower lobe (D, F, G, arrow). Note multiple nodules in peripheral (G, curve arrow). At 3 years follow-up, the peripheral

nodules disappeared (H), while the perivascular nodule developed significantly (E, H, arrow) and confirmed to be squamous cell carcinoma (I, magnification: ×100).
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Another advancement of the current study was that a fully

convolutional V-Net was used for candidate detection. In the

candidate detection stage, high sensitivity (ideally close to

100%) is essential despite the potential increased false-

positive rate because any lesions missed at this stage could

not be found in the next refinement stage. The fully convolu-

tional network, which trained end-to-end, pixel-to-pixel on

semantic segmentation, exceeded state-of-the-art nodule

detection with efficient inference and learning ability for

candidate detection. To optimize detection speed, a coarse-

to-fine approach was adopted in the study. A set of candidates

was first selected using coarse detection, which utilized

a smaller network, while false positives among the candi-

dates were further pruned by using larger refinement 3D

CNNs. The average time for nodule detection in a patient

was 4 s by the CAD model, which is significantly less than

the detection time of radiologists. Thus, the re-trained CAD

model was found to be an efficient and time-saving method.

Our study has several limitations. First, the sensitivities at

0.125, 0.25 FP/scan were relatively low compared with those

reported in previous studies,8,9 resulting in a relatively lower

CPM score (CPM: 0.757 vs 0.908). Although we mentioned

that the main reason for this is the fact that nodules of all sizes

were labeled instead of annotating nodules ≥3 mm as

a relevant lesion in the present study, the detection perfor-

mance in terms of sensitivity should be further improved.

Second, the main work in the present study focused on

nodule detection and preliminary morphological parameters

were measured for systematic report generation. Further deep

learning methods should be developed to improve the detec-

tion of and diagnostic performance for suspicious nodules.

Third, a more convenient model that integrated clinical and

radiographic data together should be developed for risk fac-

tor evaluation. Fourth, although the re-trained CAD model

achieved better detection performance than radiologists,

quality assurance requirements are another issue in clinical

practice. Considering the effects of the quality of the training

data on developing a classifier, choosing an optimal training

dataset and strategy should be done so more cautiously. In

addition, end-user training and subsequent management

methods are critical to ensuring consistency of CAD model

performance at clinical sites over time.26 Finally, according

to previous studies,27–29 the considerable amount of memory

consumed by 3D CNNs has been a common problem. To

some extent, such computational complexity hinders the

translation from scientific research to clinical application.30

On the other hand, the more parameters that 3D CNN is

required to learn, the larger the necessary training dataset to

handle the overfitting problem. Improvements in training

strategies are necessary to overcome dataset limits.31

In conclusion, the re-trained 3D CNNs-CAD model

based on a dataset of 1109 patients significantly improved

the detection of incidental pulmonary nodules of all sizes

and proved to be an accurate and efficient tool for detect-

ing and managing incidental pulmonary nodules.

Abbreviations
3D, 3-dimensional; 3D CNNs, 3-dimensional convolutional
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