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Increased plasminogen activator inhibitor-1 (PAI-1) levels are associatedwith a number of pathophysiological complications; among
them is obesity. Resveratrol was proposed to improve obesity-related health problems, but the effect of resveratrol on PAI-1 gene
expression in obesity is not completely understood. In this study, we used SGBS adipocytes and a model of human adipose tissue
inflammation to examine the effects of resveratrol on the production of PAI-1. Treatment of SGBS adipocytes with resveratrol
reduced PAI-1 mRNA and protein in a time- and concentration-dependent manner. Further experiments showed that obesity-
associated inflammatory conditions lead to the upregulation of PAI-1 gene expression which was antagonized by resveratrol.
Although signaling via PI3K, Sirt1, AMPK, ROS, and Nrf2 appeared to play a significant role in the modulation of PAI-1 gene
expression under noninflammatory conditions, those signaling components were not involved in mediating the resveratrol effects
on PAI-1 production under inflammatory conditions. Instead, we demonstrate that the resveratrol effects on PAI-1 induction under
inflammatory conditions were mediated via inhibition of the NF𝜅B pathway. Together, resveratrol can act as NF𝜅B inhibitor in
adipocytes and thus the subsequently reduced PAI-1 expression in inflamed adipose tissue might provide a new insight towards
novel treatment options of obesity.

1. Introduction

Obesity is becoming an increasing public health problem
worldwide. The excessive accumulation of adipose tissue
leads to the development of dyslipidemia, impaired glucose
metabolism, hypertension, and proinflammation, processes
playing an essential role in the pathogenesis of cardiovas-
cular disease, type 2 diabetes, the metabolic syndrome, and
various cancers (reviewed by [1]). Many of those obesity-
related pathophysiological conditions are associated with
increased plasminogen activator inhibitor-1 (PAI-1) levels
[2–6]. PAI-1 is the primary, fast-acting inhibitor of both
tissue-type and urokinase-type plasminogen activators and
therefore controls the regulation of the fibrinolytic system in
blood [7, 8]. In addition, PAI-1 is an important regulator of
extracellular matrix turnover, tissue remodeling, and fibrosis

[9]. PAI-1 levels can be increased in response to hypoxia
[10, 11], hormones like insulin [12, 13], coagulation factors,
and cytokines (discussed by [14]). More recently PAI-1 levels
have been considered as one of the biomarkers used to predict
obesity-associated diseases [15]. Elevated PAI-1 mRNA levels
have been found in adipose tissues from obese ob/ob mice
[16] and also in human obesity with higher expression levels
in visceral compared to subcutaneous adipose tissue depots
[17]. Thus, high plasma PAI-1 levels are a common finding in
obesity in both mice and humans [18–25]. Most importantly,
the obesity-induced PAI-1 increase is reversible by lifestyle
intervention. Weight loss due to calorie restriction decreased
plasma PAI-1 concentrations in obese individuals [26, 27].
These data imply that substances that potentially mimic
calorie restriction may be used as modulators of PAI-1 levels
in the treatment of obesity and obesity-related diseases.
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From a number of natural compounds mimicking calorie
restriction by targeting various metabolic pathways, resver-
atrol gained special interest. Resveratrol is a polyphenol
produced by plants in response to environmental stress and
found in red grape skin, peanuts, a variety of berries, and
medical plants [28]. It has been suggested to act as a calorie
restriction mimetic based on data from rodents. When mice
and/or rats were fed a high-fat diet, resveratrol treatment
improved glucose homeostasis, mitochondrial function, lipid
parameters, body weight, and survival [29–39]. While the
resveratrol effects are intensively studied in animal models
only few clinical trials were conducted so far to study
the effects of resveratrol supplementation in the context of
humanobesity [40] and coronary artery disease [41]; yet there
exists some controversy [42] and the effect of resveratrol in
obese human individuals remains to be further investigated.

Although obesity and obesity-associated diseases seem to
be positively influenced by resveratrol, not much is known
about the effect of resveratrol on PAI-1 in obesity. Therefore,
it was the aim of this study to investigate the effects of resver-
atrol on the production of PAI-1 in human adipocytes and
in an in vitro model of human adipose tissue inflammation.
We found that resveratrol reduces PAI-1 levels in adipocytes
especially under inflammatory conditions. Thus, our data
support the concept that resveratrol can alleviate obesity-
induced upregulation of PAI-1 in human adipose tissue.

2. Materials and Methods

2.1. Reagents and Cell Culture. All biochemicals were of
analytical grade and were purchased from commercial sup-
pliers. Resveratrol, sirtinol, and LY204002 were obtained
from Sigma (Deisenhofen, Germany). SC-514 was from
Merck Millipore (Darmstadt, Germany). Small molecule
inhibitors were diluted in DMSO which alone was also used
as vehicle control.The following concentrations of resveratrol
and inhibitors were used in experiments: resveratrol 10, 50,
100 𝜇M, sirtinol 10 𝜇M; LY204002 20 𝜇M, SC-514 100𝜇M.

Simpson-Golabi-Behmel syndrome (SGBS) preadipo-
cytes were cultured as previously described [43]. Human pri-
mary preadipocytes were prepared by collagenase digestion
from subcutaneous adipose tissue of 3 healthy women using
a previously described protocol [44]. Adipogenic differentia-
tion of SGBS and human primary and SGBS preadipocytes
was induced in serum-free DMEM/F12 medium supple-
mented with 10 𝜇g/mL iron-poor transferrin, 10 nM insulin,
200 pM thyroid hormone, and 0.1 𝜇M cortisol and for the
first four days 2𝜇M rosiglitazone, 250𝜇M isobutylmethylx-
anthine, and 25 nM dexamethasone. Cells were used for
experiments on day 8 of adipogenic differentiation.

THP-1 cells (ATCC, Wesel, Germany) were cultured as
described earlier [45]. Differentiation into macrophages was
induced by 125 ng/mL phorbol myristate acetate for 48 h.
Macrophage-conditioned medium (MacCM) was collected
after additional 48 h of incubation in serum-free basal
medium containing 0.5% BSA and cleared by centrifugation.
MacCM from 5 independently performed productions was
pooled and then used for experiments.

Mouse embryonic fibroblasts (MEFs) were maintained in
DMEM supplemented with 10% fetal bovine serum (Invit-
rogen, Karlsruhe, Germany), 1% nonessential amino acids
(Invitrogen), and 0.5% antibiotics in an atmosphere of 16%
O
2
, 5% CO

2
, and 97% humidity at 37∘C in a cell culture incu-

bator. Mouse embryonic fibroblasts Sirt1+/+ and Sirt1−/− were
a generous gift fromDr.MichaelMcBurney (OttawaHospital
Research Institute, Canada). We obtained AMPK𝛼1,2+/+ and
AMPK𝛼1,2−/− MEFs [46] from Dr. Benoit Viollet (Institut
Cochin, Paris, France). Nrf2 wild-type and Nrf2 knockdown
MEFswere provided byDr. Stephan Immenschuh (Hannover
Medical School, Germany).

2.2. RNA Preparation and Quantitative Real-Time PCR. Iso-
lation of total RNA was performed using the peqGOLD
HP Total RNA kit (Peqlab, Erlangen, Germany) follow-
ing the manufacturer’s instructions. One 𝜇g of total RNA
was used for cDNA synthesis with using SuperScript II
Reverse Transcriptase (Invitrogen, Darmstadt, Germany).
Quantitative real-time PCR was performed with a LightCy-
cler 2.0 (Roche Diagnostics, Mannheim, Germany) using a
LightCycler FastStart DNA Master PLUS SYBR Green I kit
(Roche Diagnostics, Mannheim, Germany). The quantitative
real-time PCR results were normalized using hypoxanthine
phosphoribosyltransferase (HPRT) as a housekeeping gene.
The following primer sets were used: human PAI-1-F (5-
ACA AGT TCA ACT ATA CTG AGT TCA CCA CGC
CC-3), human PAI-1-R sequence (5-TGA AAC TGT CTG
AAC ATG TCG GTC ATT CCC-3), human HPRT-F (5-
GAG ATG GGA GGC CAT CAC ATT GTA GCC CTC-3),
and human HPRT-R (5-CTC CAC CAA TTA CTT TTA
TGT CCC CTG TTG ACT GGT C-3). The experiments for
each data point were carried out in triplicate. The relative
quantification of gene expression was determined using the
ΔΔCt method [47]. In some experiments conventional RT-
PCRwas performedusing Sp1 as a reference gene (PAI-1-F: 5-
GTC TGC TGT GCA CCA TCC CCC-3; PAI-1-R: 5-GAA
CAG CCT GAA GAA GTG GGG C-3, Sp1-F: 5-ACT ACC
AGT GGA TCA TCA GGG-3; Sp1-R: 5-CTG ACA ATG
GTG CTG CTT GGA-3).

2.3. ELISA. SGBS adipocytes were treated for 48 h with 10%
MacCM, 100 𝜇M resveratrol, and 100 𝜇M SC-514 alone or in
combination. The ELISA was performed using the Platinum
ELISA kit for human PAI-1 (eBioscience, Vienna, Austria).
Absorbance was measured on a spectrophotometer using
450 nm wavelength (ELx800 Absorbance Microplate Reader,
BioTek, Bad Friedrichshall, Germany).

2.4. Western Blot Analyses. Western blot analyses were per-
formed as previously described [10]. In brief, 24 h after
treatment with vehicle or resveratrol cell culturemedium (for
PAI-1) or total cell lysates were collected and 100 𝜇g of protein
was subjected to SDS-PAGE and blotted onto a nitrocellulose
membrane. The following primary antibodies were used:
PAI-1 (polyclonal 1 : 100) (American Diagnostics, Pfungstadt,
Germany), AMPK𝛽1/2 (polyclonal, 1 : 1000) (Cell Signaling,
Hamburg, Germany), Nrf2 (polyclonal, Nrf2 1 : 200) (Santa
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Cruz, Heidelberg, Germany), and Sirt1 (polyclonal, 1 : 1000)
(Santa Cruz, Heidelberg, Germany). The secondary anti-
body was anti-rabbit immunoglobulin G (IgG)-horseradish
peroxidase IgG (1 : 5000) (Biorad, Munich, Germany). The
enhanced chemiluminescence (ECL) system (Amersham,
Freiburg, Germany) was used for detection. Blots were
quantified by using the Fiji program (NCBI).

2.5. ROSMeasurement. TodetermineROSproduction, SGBS
adipocytes were incubated with 2.5 𝜇M CM-H

2
DCFDA

(Molecular Probes Europe BV, The Netherlands) for 30min
at 37∘C. After three washes with PBS, cells were treated with
100 𝜇MH

2
O
2
or 10%MacCM for 15min and analyzed by flow

cytometry.

2.6. Preparation ofNuclear Extracts and ElectrophoreticMobil-
ity Shift Assay (EMSA). SGBS adipocytes were treated with
100 𝜇M resveratrol, 100 𝜇M SC-514, and 10% MacCM alone
or in combination. TNF𝛼 (10 ng/mL) was used as a positive
control. Cells were collected from6 cmdishes by scraping and
centrifugation (10,000 g for 5min at 4∘C). After washing once
with ice-cold PBS, cell pellets were resuspended in 200𝜇L
low-salt buffer (10mM HEPES-KOH pH 7.9; 1.5mMMgCl

2
;

10mMKCl) and incubated for 10min on ice. After addi-
tion of 12.5 𝜇L of a 10% Nonidet P-40 solution, samples
were mixed vigorously for 30 s. Nuclei were collected by
centrifugation and resuspended in 25𝜇L high-salt buffer
(20mMHEPES-KOH pH 7.9; 1.5mMMgCl

2
; 420mMNaCl,

0.2mM EDTA; 25% glycerol). Both buffers were supple-
mented with a protease-inhibitor cocktail (Sigma), 0.2mM
PMSF, 0.5mM dithiothreitol (DTT), and 1mM sodium-
orthovanadate before use. Nuclei were incubated 15min
on ice and vortexed periodically. Nuclear extracts were
obtained by centrifugation at 12,500 g for 10min at 4∘C and
stored at −80∘C. Protein concentration was determined with
the BCA Protein Assay Reagent kit (Pierce, Rockford, IL),
according to manufacturer’s instructions. Single-stranded
oligonucleotides were purchased from Biomers.net (Ulm,
Germany): standard NF𝜅B probe: sense, 5-AGT TGA GGG
GAC TTT CCC AGG C-3; antisense, 5-GCC TGG GAA
AGT CCC CTC AAC T-3. The sense oligonucleotide was
labeled with 𝛾-32P-ATP (Amersham, Freiburg, Germany)
using T4-polynucleotide kinase (MBI Fermentas, St. Leon-
Rot, Germany). A 2-fold molar excess of unlabeled anti-
sense oligonucleotide was annealed, and the labeled double-
stranded oligonucleotide was purified with a spin column
(Micro Bio-Spin P30; Bio-Rad, Munich, Germany). Binding
reactions were performed for 30min on ice in 20𝜇L buffer
(1mMMgCl

2
, 0.5mMEDTA, 0.5mMDTT, 50mMNaCl,

10mMTris-HCl, pH 7.5; 4% glycerol) containing 5𝜇g nuclear
extract protein, 1 𝜇g poly (dI:dC) (Sigma), and 10,000 cpm-
labeled oligonucleotide.

2.7. Statistics. Data represents mean ± standard error of
means (SEM) of 3 independent experiments unless otherwise
stated. Statistics: statistical significance was evaluated using
one-way analysis of variants (ANOVA) considering 𝑃 < 0.05
as statistically significant.

3. Results

3.1. Concentration- and Time-Dependent Downregulation of
Human PAI-1 mRNA and Protein Levels by Resveratrol in
SGBS Adipocytes. To determine how resveratrol modulates
PAI-1 gene expression in SGBS adipocytes, we examined PAI-
1 mRNA and protein levels after treatment with increas-
ing concentrations of resveratrol at different time points
(Figure 1). Treatment of cells for 12 h, 24 h, and 48 h with
different concentrations of resveratrol resulted in a reduction
of PAI-1 mRNA levels in a dose-dependent manner (data not
shown); 100 𝜇M resveratrol reduced PAI-1 mRNA levels by
about 40% after 12 h and by about 60% after 48 h (Figures 1(a)
and 1(b)).The resveratrol-mediated decrease of PAI-1 mRNA
was followed by a decrease of PAI-1 protein levels. A resver-
atrol concentration of 50 𝜇M or 100 𝜇M diminished PAI-
1 protein levels in the medium by about 50% after 24 h
and by about 75% after 48 h (Figure 1(c)). Thus, resveratrol
reduced PAI-1 mRNA and PAI-1 protein levels in a time- and
concentration-dependent manner.

3.2. PAI-1 Gene Expression Is Upregulated in an In VitroModel
of Inflamed Human Adipose Tissue as well as in Primary
Human Adipocytes. Obesity is associated with low-grade
chronic inflammation [48] and increased circulating PAI-
1 levels [6]. Therefore, we mimicked human adipose tissue
inflammation by using our previously described in vitro
model system [49] where we incubated SGBS adipocytes with
medium supplementedwith increasing doses ofmacrophage-
conditioned medium (MacCM) for 48 h. As shown in
Figure 2(a), the presence of MacCM increased PAI-1 mRNA
in SGBS adipocytes; already 5% MacCM induced PAI-1
mRNA by about 2-fold. In line with these findings, treatment
of primary human ex vivo differentiated adipocytes obtained
from healthy donors with MacCM increasing PAI-1 mRNA
by about 1.6-fold (Figure 2(b)). Thus, these data suggested
that obesity mimicking inflammatory conditions lead to an
upregulation of PAI-1.

3.3. Resveratrol Reduces Upregulation of PAI-1 Gene Expres-
sion in an In Vitro Model of Inflamed Human Adipose
Tissue. To determine the effect of resveratrol on the ele-
vated PAI-1 mRNA and protein levels under inflammatory
conditions, SGBS adipocytes were cultured in the absence
or presence of different concentrations of resveratrol, 10%
MacCM, or a combination of both for 48 h. Treatment of
SGBS adipocytes with increasing doses of resveratrol alone
resulted in a concentration-dependent reduction of PAI-
1 mRNA and protein levels (Figures 3(a), 3(b) and 3(c)).
Incubation of cells with MacCM induced PAI-1 mRNA
levels and PAI-1 protein levels by about 3-fold (Figures 3(a),
3(b) and 3(c)). The MacCM-dependent induction of PAI-
1 mRNA and protein levels was abolished in the pres-
ence of 100𝜇M resveratrol (Figures 3(a), 3(b) and 3(c)).
Together, these data suggested that PAI-1 gene expres-
sion is enhanced under inflammatory conditions and that
this induction is antagonized by the action of resvera-
trol.
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Figure 1: Resveratrol-dependent downregulation of PAI-1 mRNA and protein levels in SGBS adipocytes. SGBS adipocytes were incubated
in adipogenic media with vehicle control (DMSO) or 100 𝜇M resveratrol (Res) for the indicated time points. (a) PAI-1 mRNA levels were
measured by semiquantitative RT-PCR. Sp1 was used as a reference gene. (b) A representative RT-PCR of PAI-1 and Sp1 mRNA levels after
treatment with DMSO or 100𝜇M Res. (c) The accumulation of PAI-1 in the media was measured by ELISA after treatment with increasing
doses of Res for 24 or 48 h.

3.4. The Effects of Resveratrol on PAI-1 Expression Are Not
Mediated via Sirt1, AMPK, or PI3K. Resveratrol has been
shown to modulate several key signaling molecules in
adipocytes, including Sirt1 [50, 51], AMPK [52–54], and
PI3K/Akt [52, 55–57]. To examine whether Sirt1, AMPK,
and/or PI3K are involved in the resveratrol-dependent
downregulation of PAI-1 gene expression, we used specific
inhibitors of these signaling pathways as well as knockout
cells. Concerning the inhibitor studies, SGBS adipocytes were

incubated with DMSO as a vehicle control, the Sirt1 inhibitor
sirtinol or PI3K inhibitor LY294002 along with resveratrol,
MacCM, or combinations, and the PAI-1 mRNA levels were
determined 48 h after treatment.

In line with the above mentioned results, resveratrol
decreased PAI-1 mRNA levels in SGBS adipocytes cultured
either with or without MacCM. Sirtinol treatment alone
slightly reduced the basal expression of PAI-1 mRNA in
SGBS adipocytes (Figure 4(a)). However, sirtinol had no
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Figure 2: PAI-1 gene expression is upregulated in an in vitromodel of inflamed human adipose tissue. (a) SGBS adipocytes were incubated
with increasing doses ofmacrophage-conditionedmedia (MacCM) or vehicle for 48 h. PAI-1 mRNA levels were analyzed by qPCR and results
were normalized to HPRT. ∗significant difference control versus MacCM. (b) Primary human ex vivo differentiated adipocytes isolated from
3 patients were treated with 10%macrophage-conditioned media (MacCM) or vehicle for 48 h. PAI-1 mRNA levels were analyzed with qPCR
and normalized to HPRT. ∗significant difference control versus MacCM.

significant effect on the resveratrol-dependent downregula-
tion of the PAI-1 mRNA in SGBS adipocytes incubated with
MacCM (Figure 4(a)). To further rule out the role of Sirt1
in resveratrol-dependent regulation of PAI-1 expression, we
examined the effect of resveratrol on the PAI-1 protein lev-
els in Sirt1-deficient (Sirt1−/−) mouse embryonic fibroblasts
(MEFs). Although the basal PAI-1 protein levels were lower in
Sirt1−/−MEFs, resveratrol treatment decreased the PAI-1 lev-
els in bothwild-type (Sirt1+/+) and the Sirt1−/−MEFs by about
50% (Figures 4(b) and 4(c)). Together, these results indicate
that although Sirt1 per semight be involved in the regulation
of PAI-1 gene expression, the resveratrol-dependent modula-
tion of PAI-1 gene expression is independent of Sirt1.

Next we investigated the role of AMPK in the resveratrol-
dependent regulation of PAI-1 expression. For this pur-
pose we used wild-type AMPK𝛼1/2+/+ (AMPK𝛽1/2+/+) and
AMPK𝛼1/2-deficient (AMPK𝛼1/2−/−) MEFs and measured
PAI-1 protein levels after treatment with resveratrol by West-
ern blot. The basal PAI-1 protein levels were significantly
lower inAMPK𝛼1/2−/−MEFs, but again resveratrol treatment
resulted in a significant decrease (by about 65%) of the PAI-1
protein levels in both wild-type and the AMPK𝛼1/2−/−MEFs
(Figures 4(d) and 4(e)). Together, these data show that even
though AMPK itself might be involved in the regulation
of PAI-1 gene expression, the resveratrol-dependent down-
regulation of PAI-1 is mediated by an AMPK-independent
mechanism.

We further studied whether the PI3K/Akt pathway is
involved in resveratrol-dependent downregulation of PAI-
1 and used the PI3K inhibitor LY294002. While resveratrol
treatment reduced PAI-1 mRNA levels by about 50% in both

untreated and MacCM-treated SGBS adipocytes, LY294002
treatment did not change the basal PAI-1 mRNA levels
(Figure 4(f)). Furthermore, incubation with LY294002 did
not block the decline of PAI-1 mRNA levels by resveratrol
in both untreated and MacCM-treated SGBS adipocytes,
implicating that the PI3K/Akt pathway is not involved in the
resveratrol-modulated downregulation of PAI-1.

3.5. ROS Formation and the Antioxidant Transcription Factor
Nrf2 Do Not Contribute to the Effects of Resveratrol on PAI-
1 Gene Expression. Obesity and inflammation are associated
with increased ROS formation [58, 59] and ROS-mediated
signaling has been reported to regulate PAI-1 gene expression
[60, 61]. Resveratrol is well known for its antioxidant potential
and therefore we aimed to determine whether the observed
MacCM-dependent induction of PAI-1 gene expression and
hence the effects of resveratrol were dependent on ROS
generation. To address this issue, ROS levels were examined
in SGBS adipocytes treated with MacCM or for the purpose
of a positive control with H

2
O
2
. Intracellular ROS levels

increased upon treatmentwithH
2
O
2
. By contrast, no changes

in ROS generation were detected in MacCM-treated SGBS
adipocytes (Figures 5(a) and 5(b)) implying that MacCM-
dependent PAI-1 induction is independent of ROS.

The NFE2-related factor 2 (Nrf2) is a key transcription
factor, involved in the primary cellular defense against the
cytotoxic effects of oxidative stress [62]. To further exclude
the possibility that the effects of MacCM and resveratrol
on PAI-1 gene expression are independent of ROS, we used
wild-type and Nrf2 knockdown MEFs. Interestingly, the
knockdown of Nrf2 increased PAI-1 protein levels compared
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Figure 3: Resveratrol abolished theMacCM-dependent PAI-1 induction in SGBS adipocytes. SGBS adipocytes were treatedwith the indicated
doses of resveratrol (Res), 10% MacCM, or a combination of Res and 10% MacCM for 48 h. (a) PAI-1 mRNA levels were analyzed by qPCR
and results were normalized to HPRT. ∗Significant difference untreated versus Res orMacCM, ∗∗significant differenceMacCM treated versus
MacCM + Res. (b) Total cell protein lysates were isolated and subjected to Western blot analysis using an antibody against PAI-1 and 𝛽-actin
as a loading control. (c) Accumulation of PAI-1 protein in media was measured by ELISA. ∗Significant difference untreated versus Res or
MacCM, ∗∗Significant difference MacCM treated versus MacCM + Res.

to the wild-type cells (Figures 5(c) and 5(d)) but the addition
of resveratrol caused a decrease in PAI-1 levels by about 80%
in wild-type cells and by about 35% in Nrf2 knockdown cells
(Figures 5(c) and 5(d)). Thus, the antioxidant transcription
factor Nrf2 is not involved inmediating the resveratrol effects
on PAI-1 expression.

3.6. The Effects of Resveratrol on PAI-1 Gene Expression in
an In Vitro Model of Inflamed Adipose Tissue Are NF𝜅B
Dependent. The reduction of PAI-1 expression by resveratrol
under inflammatory conditions may be partially explained
by the ability of resveratrol to suppress the activity of NF𝜅B,
a transcription factor critically involved in inflammation.
Therefore, we examined the effect of resveratrol on the DNA-
binding activity of NF𝜅B in the model of inflamed adipose
tissue. By performing EMSA, we found that an oligonu-
cleotide with a NF𝜅B binding site was able to form a single
DNA-protein complex (Figure 6(a)) when incubated with
nuclear extracts from SGBS adipocytes treated with either
MacCMor the establishedNF𝜅B activator, TNF-𝛼.TheNF𝜅B
DNA-binding activity was significantly reduced in nuclear

extracts from cells treated with MacCM and resveratrol or
MacCM and SC-514 (Figure 6(a)). These data demonstrate
that resveratrol can lead to a suppression of NF𝜅B DNA-
binding activity under inflammatory conditions in SGBS
adipocytes. Based on the above findings, demonstrating the
suppressive effect of resveratrol on NF𝜅B DNA-binding, we
expected that inhibition of NF𝜅B by resveratrol would reduce
PAI-1 gene expression. Accordingly, SGBS adipocytes were
treated with MacCM, resveratrol, and SC-514 alone or in
combination, and PAI-1 protein levels were measured by
ELISA. In line, resveratrol and SC-514 reduced MacCM-
dependent PAI-1 protein induction (Figure 6(b)), though
the effects of resveratrol were much more pronounced than
the effects of the NF𝜅B inhibitor SC-514 alone. These data
strongly suggest that the effects of resveratrol on PAI-1 gene
expression in SGBS adipocytes are NF𝜅B dependent.

4. Discussion

In this study we investigated the human PAI-1 expression
in response to resveratrol in human SGBS adipocytes and
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Figure 4: The effects of resveratrol on PAI-1 gene expression in SGBS adipocytes are not mediated via SIRT1, AMPK and PI3K. (a) Where
indicated SGBS adipocytes were treatedwith 10𝜇Msirtinol, resveratrol (Res, 100𝜇M), andMacCM(10%) for 48 h. (a) PAI-1mRNA levels were
analyzed with qPCR and results were normalized to HPRT. ∗significant difference untreated versus Res, sirtinol, or MacCM; ∗∗significant
difference untreated versus Res + sirtinol or Res + MacCM; ∗∗∗significant difference MacCM versus MacCM + Res or MacCM + sirtinol;
#significant difference MacCM versus MacCM + Res + sirtinol. (b) SIRT1+/+ and SIRT1−/− mouse embryonic fibroblasts were treated with
100𝜇M resveratrol (Res) or vehicle control (DMSO) for 24 h.The PAI-1 and SIRT1 protein levels were measured byWestern blot. ∗Significant
difference untreated versus Res, ∗∗significant difference wild-type versus knockout cells. (c) Representative Western blot. (d) AMPK𝛼1/2+/+

andAMPK𝛼1/2−/−mouse embryonic fibroblasts were treated with 100𝜇Mresveratrol (Res) or vehicle control (DMSO) for 24 h.The PAI-1 and
AMPK𝛼1/2 protein levels weremeasured byWestern blot. ∗significant difference untreated versus Res, ∗∗significant differencewild type versus
knockout cells. (e) RepresentativeWestern blot. (f)Where indicated SGBS adipocytes were treated with 20𝜇MLY294002, 100𝜇M resveratrol
(Res), and 10%MacCM for 48 h.ThePAI-1mRNA levels weremeasured by qPCRand results were normalized toHPRT. ∗Significant difference
untreated versus Res, LY294002, or MacCM; ∗∗significant difference untreated versus Res + LY294002 or Res + MacCM; ∗∗∗significant
difference MacCM versus MacCM + Res or MacCM + LY204002; #significant difference MacCM versus MacCM + Res + LY294002.
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Figure 5: Macrophage-conditioned media do not induce ROS formation in human adipocytes and the antioxidant transcription factor Nrf2
does not contribute to the resveratrol effects on PAI-1 gene expression. (a), (b) SGBS adipocytes were labelledwith 2.5𝜇MCM-H

2
DCFDAand

then treated with 50𝜇M H
2
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2
and 10% MacCM for 15min. ROS production was analyzed by flow cytometry. (a) ROS-positive adipocytes

after treatment with H
2
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and MacCM; ∗significant difference untreated versus H
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. (b) Histograms of ROS-positive cell percentage in

cells cultured in medium or treated with H
2
O
2
for 15min. (c) Nrf2+/+ and Nrf2 knock-down mouse embryonic fibroblasts were treated with

100𝜇M resveratrol (Res) or corresponding vehicle control (DMSO) for 24 h. The PAI-1 and Nrf2 protein levels were measured by Western
blot. ∗Significant difference untreated versus Res, ∗∗significant difference wild type versus knockout cells. (d) Representative Western blot.

in a model of inflamed human adipose tissue. Our data
demonstrated several new findings with respect to resvera-
trol and human PAI-1 regulation under obesity-mimicking
conditions. First, it was found that resveratrol downregulated
PAI-1 mRNA and protein levels in a time- and concentration-
dependent manner in human SGBS adipocytes. Second, the
inhibitory effect of resveratrol on PAI-1 was even stronger on
the obesity-associated and inflammation-dependent induc-
tion of PAI-1. Third, while resveratrol exerted its effects on
inflammatory-dependent PAI-1 gene expression mainly via
inhibition of NF𝜅B, signaling via Sirt1, AMPK, PI3K, ROS,
and Nrf2 did not mediate the effect of resveratrol on PAI-1
production.

Obesity represents a risk factor for the development of
diseases like type 2 diabetes, hypertension, atherosclerosis
and myocardial infarction. Intriguingly, obesity is also asso-
ciated with a state of chronic low-grade inflammation char-
acterized by elevated plasma concentrations of proinflamma-
tory cytokines (IL-6, IL-1 andTNF𝛼), chemokines (monocyte

chemotactic protein 1, MCP-1), and adipokines (haptoglobin,
PAI-1, leptin, visfatin, resistin and VEGF) [63]. Plasma PAI-
1 levels are considerably enhanced in obese humans and
in patients with insulin resistance, type 2 diabetes, and
cardiovascular diseases [23, 64]. The adipose tissue appears
to be the major source of elevated PAI-1 levels observed in
obesity [65, 66] maybe as a result of its increased capacity
to produce PAI-1 and/or as an effect of direct stimulation
of adipocytes by hormones and cytokines upregulated in
obesity [67]. Resveratrol is capable of attenuating obesity-
associated inflammatory responses by inducing changes in
the secretion profile of adipocytes [68–71]. In particular
resveratrol inhibited TNF𝛼-dependent PAI-1 upregulation in
3T3-L1 adipocytes [68, 70], IL1𝛽-stimulated PAI-1 secretion
[69], and PAI-1 production in human SGBS adipocytes [71].
These data are very much in line with the results from the
present study where we have shown that resveratrol not
only downregulated PAI-1 expression (Figure 1) but even
exerted a stronger effect on PAI-1 in a model of inflamed
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Figure 6: Resveratrol-mediated suppression of NF𝜅B DNA binding activity did not abrogate PAI-1 gene expression. (a) Electrophoretic
mobility shift assay using a 5-end-labelled consensus oligonucleotide for NF𝜅B binding and nuclear extracts from SGBS adipocytes. SGBS
adipocytes were treated with 10% MacCM, 100 𝜇M resveratrol, 100𝜇M SC-514, or combination of them and then incubated for 1 h. The
DNA-protein complexes were separated by electrophoresis on 5% native polyacrilamide gels and visualized by phosphoimaging. (b) SGBS
adipocytes were treated with 10%MacCM, 100 𝜇Mresveratrol (Res), 100 𝜇MSC-514, or a combination of both Res and 10%MacCMor SC-514
andMacCM for 48 h. Accumulation of PAI-1 protein in media was measured by ELISA. ∗Significant difference untreated versusMacCM, Res
or SC-514; ∗∗significant difference MacCM treated versus MacCM + Res or MacCM + SC-514.

human adipose tissue (Figures 2 and 3). Although all these
data indicate that resveratrol can alleviate obesity-induced
upregulation of PAI-1 in adipose tissue, it has not been fully
elucidated bywhichmolecularmechanisms resveratrol exerts
its effect on PAI-1 under inflammatory conditions.

Calorie restriction is considered to be one of the most
effective nutritional interventions protecting against obesity,
diabetes, and cardiovascular disease [72].The obesity-related
enhancement of PAI-1 levels also appeared to be reversible
by calorie restriction diet or calorie restriction mimetics
[26, 27]. Several signaling pathways have been implicated
in mediating the calorie restriction effect—the sirtuin path-
way, the adenosine monophosphate (AMP) activated protein
kinase (AMPK) pathway, and the insulin-like growth factor
(IGF-1)/insulin signaling pathway (as discussed by [73]). In
rodents calorie restriction and calorie restriction mimetics
seem to extend the life span and are linked to silent mating
type information regulation 2 homolog 1 (Sirt1) activation
(references in [74]). Resveratrol was identified as a Sirt1
activator [75] and gained interest in a number of pathological
settings—among them obesity. In line, the anti-inflammatory
effects of resveratrol in adipocytes aswell as in human adipose
tissue were shown to be mainly dependent on Sirt1 activation
[69, 76, 77]. However, in our study, neither inhibition of
Sirt1 with sirtinol nor deficiency of Sirt1 was able to abrogate
the resveratrol effects on PAI-1 (Figures 4(a), 4(b) and
4(c)) implicating that Sirt1 activation is not necessary to
mediate the action of resveratrol on PAI-1 synthesis under
inflammatory conditions.

Resveratrol is known to exert pleiotropic effects on cells
and Sirt1 activation is not the only effect via which resveratrol
exerts its beneficial actions on obesity-associated pathologi-
cal consequences [29, 30, 78]. Therefore, the inhibitory effect
of resveratrol on PAI-1 production in obesity may result
frommodulation of different signaling pathways. Some of the
beneficial effects of resveratrol against diet-induced obesity
and insulin resistance were mediated via AMPK activation
[29, 35, 36, 38, 78, 79]. In addition, increasing evidence
suggests that AMPK has anti-inflammatory actions [80, 81].
Therefore, we have tested whether the effects of resveratrol
on PAI-1 expression are mediated via AMPK. Our results
demonstrated that resveratrol-dependent downregulation of
PAI-1 was still preserved in AMPK-deficient cells (Figures
4(d) and 4(e)) pointing out that resveratrol acts on PAI-1 in
an AMPK-independent mechanism.

A number of experimental observations have demon-
strated that the PI3K/Akt pathway represents an important
signaling cascade in the initiation of the inflammatory
response. Although we showed in an earlier study that resver-
atrol inhibits PI3K-driven Akt phosphorylation in SGBS cells
[55] the PI3K inhibitor, LY294002, could not abrogate the
resveratrol-dependent downregulation of PAI-1 (Figure 4(f))
implicating that the PI3K/Akt pathway is also not involved in
the modulation of PAI-1 expression by resveratrol.

Inflammation is well known to exist in combination with
oxidative stress which in turn is a potent modulator of PAI-
1 gene expression in different systems [60, 82] as well as
in this study. In this context, an important transcription
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factor mediating responses to oxidative stress is Nrf-2 [83].
Resveratrol supplementation has been shown significantly to
increase Nrf2 activity in humans after a meal [84]. However,
the conditions of our inflammatory model did not induce
ROS generation (Figures 5(a) and 5(b)). In line with that, the
knockdown of Nrf2 did not impair the resveratrol effect on
PAI-1 secretion (Figures 5(c) and 5(d)).

An increase in plasmaPAI-1 levels observed in obesity can
also be the result of a cytokine-dependent induction of PAI-
1 transcription where the proinflammatory cytokines such as
IL-1, IL-6, and TNF𝛼 play the major role [85–87]. Interest-
ingly, no STAT3 binding element participating in the IL-6
response could be mapped in the PAI-1 promoter whereas
the so-called NF𝜅B-like sites within the PAI-1 promoter and
a TNF𝛼-responsive enhancer located 15 kb upstream of the
transcription start site were shown to participate in response
to IL-1 and TNF𝛼 (references in [14]).

Nuclear factor (NF)𝜅B is a transcription factor with a
central role in the induction of a chronic inflammatory
state associated with obesity, development of type 2 diabetes,
cardiovascular risk, and insulin resistance [88]. Previous
reports established resveratrol as an inhibitor of NF𝜅B [41,
89] and resveratrol treatment of TNF𝛼-stimulated adipocytes
reduced the expression of proinflammatory cytokines [88].
Therefore, our results showing that the resveratrol effects on
PAI-1 gene expression were NF𝜅B-dependent (Figure 6) are
in line with those findings.

Interestingly a number of in vivo and in vitro studies
showed an inhibitory role of the resveratrol target Sirt1 on
NF𝜅B signaling [76, 77, 90, 91]. Similarly, AMPK signal-
ing has been shown to inhibit the inflammatory responses
induced by NF𝜅B via several downstream targets of AMPK
(references in [92]). Moreover, several previous findings have
demonstrated that the PI3K/Akt pathway has a crucial role
in the activation of the NF𝜅B pathway [93, 94]. Based on
these studies and the role of resveratrol as a Sirt and AMPK
activator, PI3K inhibitor as well as ROS scavenger, and we
were expecting that Sirt, AMPK, PI3K, or ROS would be
involved in the resveratrol effects. Surprisingly, none of these
upstream NF𝜅B modulators contributed to the effects of
resveratrol; however, in line with previous studies [77, 88, 95–
100] our findings show that resveratrol can act as an NF𝜅B
inhibitor, most likely via so far not a characterized pathway.

5. Conclusions

Together, our study showing that resveratrol mediates an
inhibitory effect on PAI-1 may be useful to further establish
PAI-1 as a marker for obesity-associated inflammatory con-
ditions. In addition, we add at least one novel aspect to the
pleiotropy of the resveratrol action by showing that it can act
as anNF𝜅B inhibitor without involving Sirt1, AMPK, PI3K or
ROS.
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