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Abstract: Multiple myeloma (MM) is well-known for the development of drug resistance, leading to
relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics
assay on MM patient plasma, we aimed to identify new targets. We observed a dysregulation in
the sphingolipid metabolism, with the upregulation of several ceramides and downregulation of
sphingomyelin. This imbalance suggests an increase in sphingomyelinase, the enzyme responsible for
hydrolyzing sphingomyelin into ceramide. We confirmed the upregulation of acid sphingomyelinase
(ASM) in primary MM cells. Furthermore, we observed an increase in ASM expression in MM cell
lines treated with melphalan or bortezomib, as well as in their exosomes. Exosomes high in ASM
content were able to transfer the drug-resistant phenotype to chemosensitive cells, hereby suggesting
a tumor-protective role for ASM. Finally, inhibition of ASM by amitriptyline improved drug sensitivity
in MM cell lines and primary MM cells. In summary, this study is the first to analyze differences in
plasma lipid composition of MM patients and match the observed differences to an upregulation of
ASM. Moreover, we demonstrate that amitriptyline is able to inhibit ASM and increase sensitivity to
anti-myeloma drugs. This study, therefore, provides a rational to include ASM-targeting-drugs in
combination strategies in myeloma patients.

Keywords: lipidomics; drug resistance; exosomes; extracellular vesicles; multiple myeloma

1. Introduction

Multiple myeloma (MM) is a plasma cell malignancy in which the tumoral cells reside in
the bone marrow. As such, it is one of the most common hematological malignancies, second
only to non-Hodgkin lymphomas. MM is always preceded by a precursor state called monoclonal
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gammopathy of undetermined significance (MGUS) [1]. MM is notorious for its drug resistance, due
to both extrinsic mechanisms through interaction with the bone marrow microenvironment, as well as
intrinsic adaptations of the myeloma cells themselves [2]. So far, most efforts towards the identification
of novel targets have focused on the molecular pathways on genomic and transcriptomic levels.

In recent years, the lipid metabolism has become a more closely studied topic in the field of
cancer [3]. Besides being the building blocks of cell membranes or energetic fuel, lipids are also known
to serve as signaling molecules and are an integral part of cell metabolism.

In this paper, we investigate the lipidome in MM patients with a focus on sphingolipids.
These sphingolipids are of interest in cancer metabolism because of their importance in cell

signaling transduction, ultimately leading to proliferation or apoptosis. Bioactive sphingolipids are,
e.g., ceramides, sphingosine, and sphingosine-1-phosphate. Depending on the length of their fatty acid
chain, their function changes greatly from stimulating proliferation to inducing apoptosis in cancer
cells [4]. In breast cancer, Cai et al. found an increase in various ceramides (C16:0, C24:0, C24:1),
translating to increased tumor progression and drug resistance [5].

Ceramide levels can increase by either catabolizing membrane-bound sphingomyelin by neutral or
acid sphingomyelinase (SMase, a form of phospholipase C), or by de novo synthesis through ceramide
synthase, starting from the condensation of serine and palmitoyl-CoA [6].

While neutral SMase is only active on the inner leaflet of the cell membrane, acid SMase (ASM)
metabolizes sphingomyelin into ceramide on the outer leaflet of the membrane, as well as inside the
lysosomal compartment [6].

Ceramide may act by the alteration of membrane biophysics, the self-association of ceramide
molecules within the cell membrane and ultimately the formation of larger ceramide-enriched
membrane domains/platforms [7]. As Carpinteiro et al. showed in a melanoma model, a higher
secretion of ASM could result in the formation of ceramide-enriched membrane platforms on tumor
cells, allowing integrins to cluster on these platforms and thus allowing diffuse metastasis of melanoma
cells [8]. In multiple sclerosis, a higher secretion of ASM was attributed to the secretion of ASM-enriched
exosomes in the cerebrospinal fluid of these patients [9]. Exosomes are a type of small extracellular
vesicles (sEVs) formed inside multivesicular endosomes. They are actively secreted by cells via
either the endosomal sorting complex required for the transport (ESCRT)-dependent pathway or the
ESCRT-independent pathway, relying on ceramide generation by neutral sphingomyelinase 2 [10].
Our group has demonstrated that myeloma cells utilize exosomes for intercellular communication
with their microenvironment, hereby actively increasing immune suppression [11], angiogenesis [12],
osteolysis [13], and drug resistance [14]. This ultimately contributes to myeloma progression and the
development of therapy-refractory disease.

In this paper, the lipidome of peripheral blood plasma of MM patients was investigated. We
found that the lipidome of peripheral plasma in myeloma patients differed from healthy plasma: levels
of several ceramide species were increased while levels of sphingomyelin were decreased. In vitro,
we observed that the responsible enzyme ASM was expressed in several MM cell lines. Moreover,
this ASM was actively secreted in MM exosomes, and conferred drug resistance to recipient cells.
Resistance to standard-of-care agents bortezomib and melphalan could be abrogated by inhibiting
ASM using amitriptyline, a tricyclic antidepressant commonly used to treat neuropathic pain in MM
patients. Taken together, our data support the rationale of combining amitriptyline with front-line
therapy in MM patients.

2. Results

2.1. MM Patients Show a Dysregulation in Lipid Metabolism with an Increased Amount of Ceramides and a
Decrease in Sphingomyelin

A lipidomic assay was performed on plasma samples of MM patients (n = 38) and healthy controls
(n = 6), revealing the dysregulation of several lipids, of which the top 5 up- and downregulated lipids, are
shown as a heatmap in Figure 1A. The actual lipid concentrations are shown in Supplementary Figure
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S1A, demonstrating a similar trend. Furthermore, we also analyzed MGUS plasma samples (n = 4),
and by principal component analysis found that the lipid profile of MGUS patients is intermediate
between the healthy group and myeloma group (Supplemantary Figure S1B).
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Figure 1. MM patients contain increased levels of ceramides and decreased levels of sphingomyelin. (A)
Lipidomics analysis showing differences in plasma samples of healthy volunteers (n = 6) and multiple
myeloma patients (n = 38) such as an increase of Cer16:0, Cer18:0, and Cer 24:1(15Z) and a decrease of
SM 22:0. FDR adjusted p < 0.05 for fold changes. (B) Kaplan–Meier curve for progression-free survival
(PFS) after MaxStat analysis of SMPD1 expression in MM patients (MMSET subgroup). (C) Total SMase
levels measured in plasma samples of healthy volunteers (n = 6) and MM patients (n = 57). (D) Western
blot of CD138 negative and positive fractions for the presence of acid sphingomyelinase (ASM). Four
representative samples of CD138+ samples for a total n = 8. Immunoblot can be found in Supplementary
Figure S4A. PE = phosphatidylethanolamine, SM = sphingomyelin, PC = phosphatidylcholine, Cer =

ceramide, TPM = transcripts per million, SMase = sphingomyelinase, MM = multiple myeloma, ASM
= acid sphingomyelinase.

Comparing healthy samples vs. MM samples, we observed a significant upregulation of
phosphatidylethanolamine (PE) in two species (38:7; 38:6) and a downregulation in another (PE
36:1). More importantly, three ceramide species (d18:1/16:0), (d18:1/18:0), and (d18:1/24:1(15Z)) were
upregulated with a 1.5 to 2-fold increase in MM, while sphingomyelin (SM (d18:1/22:0)), the sixth
most frequent sphingomyelin species, was significantly downregulated (Figure 1A and Supplementary
Figure S1A). Patient and disease characteristics are provided in the supplementary materials, Table S1.
We observed no difference in lipid composition between newly diagnosed MM and relapsed/refractory
MM samples.

In view of the well-known role of the enzyme sphingomyelinase (SMase) in the conversion of
sphingomyelin into ceramide [6], we postulated that an upregulation of this enzyme in MM patients
could lead to the imbalance in ceramides and sphingomyelins.

We first determined the clinical impact of the different SMases by analyzing the correlation of
gene expression levels of both neutral (SMPD2-4) and acid SMase (SMPD1) with progression-free
survival (PFS) using the CoMMpass IA12 dataset released by the MMRF. In the subgroup of patients
overexpressing the MMSET gene, we see a negative impact of the presence of SMPD1, resulting in
an ultra-high-risk profile of patients overexpressing both MMSET and SMPD1 (Figure 1B). SMPD2
and SMPD4 overexpression also result in a worse PFS in this myeloma subgroup (Supplementary
Figure S1C).

We next quantified the amount of total SMase in the peripheral plasma of myeloma patient
samples. Compared to healthy controls, we did not see an increase in the peripheral plasma of MM
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patients (Figure 1C). Moreover, a waterfall plot of the total SMase of individual samples, based on ISS
stages, did not discern any differences (Supplementary Figure S1D). However, SMase might only be
increased in the tumor cells themselves. We indeed found that both total and acid SMase (ASM) were
present in the CD138+ MM cells isolated from the bone marrow in 63% of patients (n = 8). In contrast,
in the CD138- fraction, representing the non-clonal, non-malignant cell fraction of the bone marrow,
this enzyme was only marginally detected (n = 3; Figure 1D).

Next, we determined the presence of neutral and acid sphingomyelinase mRNA as well as total
secreted and cellular SMase in human multiple myeloma cell lines (HMCL) representing different
genetic subtypes of MM, including JJN3 (c-Maf), LP1 (MMSET/FGFR3), OPM2 (MMSET/FGFR3), and
U266 (CCND1). SMPD1 and SMPD4 were among the most expressed genes, respectively, coding for
ASM and neutral SMase 3 (Figure 2A). The secreted SMase amount measured in the supernatant after
24 h of cell culture (Figure 2B) was most consistent with the mRNA levels of SMPD1, coding for ASM.
Therefore we focused further on ASM and determined whether ASM could also be packaged into sEVs,
or exosomes, similar to what was described for exosomes in the cerebrospinal fluid of multiple sclerosis
patients [9]. The ASM content in the exosome enriched fraction differed from cell line to cell line. Both
OPM2 and U266 had remarkable higher quantities of ASM inside their vesicles than both JJN3 and LP1.
The isolated sEVs were less than 150 nm and were positive for tetraspanins CD63 and CD81 (exosome
markers), and as such can be considered exosomes (Figure 2C and Supplementary Figure S2A).
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2.2. Standard-of-Care Drugs Melphalan and Bortezomib Induce a Higher Expression in ASM in MM Cells 
and Their Exosomes  

Melphalan and bortezomib are used very effectively in the first-line treatment of MM patients. 
Unfortunately, many of the patients who first responded well to treatment will face a disease relapse 
whereby the tumor cells are no longer sensitive to these drugs.  

First, we determined whether ASM expression was increased in response to drug treatment. We 
focused on the effects of melphalan (Mel) and bortezomib (Bz) treatment on ASM expression, both in 
HMCL and their exosomes. HMCL were treated with low doses of melphalan and bortezomib in 

Figure 2. SMPD1 expression levels correlate with total SMase content in supernatant in MM cell
lines and their exosomes. (A) Basal-dCT values of all four genes coding for SMases (SMPD1–4)
measured by qRT-PCR in four human MM cell lines (JJN3, OPM2, LP1, and U266) after 24 h of culture.
The housekeeping gene ABL1 was used for data normalization, and differential gene expression
was determined using the comparative ∆∆Ct method. (B) Basal total SMase content determined in
supernatans by an AmplexRed SMase assay after 24 h of culture for all four cell lines. The amount of
SMase activity measured in these cell lines corresponded best to SMPD1 expression, coding for acid
SMase (ASM). (C) Cells and exosomes were isolated after 24 h of culture and analyzed for ASM content
and exosomal markers, CD81 and CD63. Nanoparticle tracking analysis by Zetaview analysis shows a
mean diameter of 50–150 nm, confirming the expected size of exosomes. Immunoblot can be found in
Supplementary Figure S4B. ASM = acid sphingomyelinase, exo = exosomes. In A and B, the averages
of n > 3 are shown.

2.2. Standard-of-Care Drugs Melphalan and Bortezomib Induce a Higher Expression in ASM in MM Cells and
Their Exosomes

Melphalan and bortezomib are used very effectively in the first-line treatment of MM patients.
Unfortunately, many of the patients who first responded well to treatment will face a disease relapse
whereby the tumor cells are no longer sensitive to these drugs.
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First, we determined whether ASM expression was increased in response to drug treatment. We
focused on the effects of melphalan (Mel) and bortezomib (Bz) treatment on ASM expression, both
in HMCL and their exosomes. HMCL were treated with low doses of melphalan and bortezomib
in medium without serum. After 24 h, the expression level of SMPD1 was measured by qRT-PCR
(Figure 3A). OPM2 and U266 cells increased their ASM expression in response to melphalan treatment
four-fold, while JJN3 and LP1 cells had a smaller but still significant response in ASM expression to
melphalan. Treatment with bortezomib induced a significantly higher ASM expression in the JJN3
cells while there was a slight increase in LP1 and OPM2 cells.
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Figure 3. Standard-of-care drugs melphalan and bortezomib increase acid SMase expression and
protein levels in MM cell lines and their exosomes, which contributes to drug resistance development.
(A) SMPD1 levels were measured by qRT-PCR in MM cell lines JJN3, OPM2, LP1, and U266, which
were treated for 24 h with melphalan (Mel) and bortezomib (Bz). (B) Nanoparticle tracking analysis
shows the amount of exosomes secreted after 24 h treatment with Bz and Mel. (C) Exosomes isolated
from Mel or Bz treated JJN3 cells were analyzed and quantified by Western blot for ASM and exosomal
marker CD81. Immunoblot can be found in Supplementary Figure S4C. (D,E) JJN3 cells were treated
with either 2.5 µM melphalan (D) or 10 nM bortezomib (E) with or without previously isolated JJN3
(ASM-low) or U266 (ASM-high) exosomes. After 24 h of culture, cell viability was measured by a
CellTiter Glo. Mel = melphalan, Bz = bortezomib, ASM = acid sphingomyelinase, exo = exosomes. p <

0.05 (*), and p < 0.01 (**) were considered statistically significant. The averages of n > 3 are shown.

When comparing the different myeloma cell lines, we observed that the U266 cells are most
resistant to therapy, as the IC50 of both melphalan and bortezomib is higher (Supplementary Figure
S2B). This seems to correlate with high ASM mRNA expression and ASM protein levels in supernatant
and exosomes (Figure 2A–C). Moreover, bortezomib treatment did not induce any increase in
SMPD1 expression.

Next, we investigated the effects of these standard-of-care (SoC) drugs on exosome secretion and
content. We treated 450 million JJN3 cells with sub-lethal doses of melphalan and bortezomib, and
isolated their sEVs after 24 h of treatment. By nanoparticle tracking analysis (NTA), we observed a
small, non-significant increase in the number of small particles (Figure 3B), while the mean diameter of
these particles remained roughly the same (Control: 85 nm, Mel: 98 nm, Bz: 90 nm). Next, we analyzed
the sEVs secreted from the same number of cells by Western blot analysis. We again confirmed the
presence of the exosomal tetraspanin CD81 (Figure 3C). Moreover, we saw an upregulation of CD81 in
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Mel and Bz-treated cells, mirroring the results obtained by NTA and confirming the fact that Mel and
Bz induce a higher exosome secretion by JJN3 cells. Interestingly, after normalization to the exosome
number, the ASM content of isolated sEVs was also increased in Mel and Bz treated cells (Figure 3C).

As it seems that drug resistance in U266 cells is partially mediated by high ASM levels, we next
evaluated whether this resistance could be transferred to receptor cells. Therefore, we transferred
exosomes/sEVs from U266 cells (which are less sensitive to Mel and Bz) to the Mel and Bz sensitive
JJN3 cells. As a control, we used autologous JJN3 exosomes, which contain about 100-fold less ASM
content than U266 exosomes. As shown in Figure 3D,E, U266 sEVs, which are high in ASM content,
provide protection to both Mel and Bz treatment in JJN3 cells and induce a relative increase of viability
of about 25%, whereas JJN3 sEVs do not. This suggests that U266 exosomes can transfer the drug
resistance of their parental cells to other MM cells by supplementing them with ASM. Moreover, when
either JJN3 cells themselves or U266 cells were treated with amitriptyline before exosome isolation,
this effect was countered (Supplementary Figure S2C).

2.3. Inhibiting SMase in MM Cells Strengthens the Effects of MM Treatment by Upregulating the PARP and
Caspase 3 Pathways

Since drug resistance seems to be correlated with a higher expression of SMase, and this resistance
can be provoked by the transfer of exosomes, we next tried to inhibit SMase to increase drug efficacy.

For the inhibition of ASM, we chose the drug amitriptyline, which is a tricyclic antidepressant often
used in MM patients to treat side effects of neuropathy induced by either bortezomib or thalidomide
treatment. For the inhibition of neutral SMase, we used GW4869. In our previous work, we have
already shown the efficacy of this drug in combination with bortezomib in vivo in a murine model by
inhibiting exosome secretion via the ceramide-pathway [13].

HMCL (JJN3, LP1, OPM2, U266) were treated with Mel or Bz in combination with amitriptyline
or GW4869 for 24 h and checked for apoptosis by flow cytometry. For JJN3, LP1, and OPM2 cells,
combination therapy of Mel or Bz with amitriptyline (Figure 4A and Supplementary Figure S2D) or
GW4869 (Supplementary Figure S3A) induced more cell death when compared to the single agents,
with a relative increase in apoptotic cells of 25% to 30%. Again, U266 cells only responded to high levels
(50 µM) of amitriptyline, underscoring their resistant nature. To determine whether amitriptyline can
work synergistically with either SoC drug, combination indexes were calculated for JJN3 and OPM2
cells (Supplementary Figure S3B). For the JJN3 cells, amitriptyline at the highest concentration (50 µM)
had a synergistic effect (combination index, CI < 0.8) on melphalan and bortezomib treatment, although
effects are more pronounced on the melphalan treatment. For the OPM2 cells, high dose-amitriptyline
showed a rather additive effect on SoC treatment, with only one synergistic effect observed when Ami
50 µM was combined with Mel 1 µM.

To verify the downstream effects of amitriptyline on these cells, treated cells were analyzed by
Western blot. As seen in Figure 4B, the combination therapy of Mel or Bz with amitriptyline shows an
increase in both cleaved PARP and cleaved caspase 3.

Importantly, when analyzing the secreted amount of lipids by these cells, we see an increase of
sphingomyelin when treating cells with amitriptyline in all conditions. This confirms the effect of
amitriptyline on the inhibition of SMase, resulting in higher sphingomyelin content (Supplementary
Figure S3C) Also, we did not observe a change in exosome secretion after treatment with amitriptyline,
indicating that the observed effects induced by amitriptyline are likely a direct effect and not due to
differential exosome secretion (Supplementary Figure S3D).

Finally, we confirmed the efficacy of the combination of amitriptyline and bortezomib or melphalan
in primary cells obtained from the bone marrow of relapsed/refractory MM patients. We isolated the
CD138+ fraction from bone marrow samples, treated them immediately with varying doses of Bz
(n = 5) and Mel (n = 2), and added amitriptyline as a single agent (10 µM) or in combination with
either Bz or Mel. When using low doses of either drug, we observed an increased drug effect of 24% to
50%, depending on the patient sample, by adding amitriptyline (Figure 5A,B).
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Figure 5. Amitriptyline stimulates drug efficacy of bortezomib and melphalan in primary MM bone
marrow samples. (A) Primary MM cells were treated for 24 h with bortezomib/melphalan and
amitriptyline, after which cell viability was assessed by CellTiter Glo (n = 5). (B) Primary MM cells
were treated for 24 h with bortezomib/melphalan and amitriptyline, after which cell viability was
assessed by CellTiter Glo (n = 2).
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3. Discussion

In this paper, we explored the lipid alterations in MM to unravel the role of these changes in drug
resistance. We found an increase in the amount of ceramide in the plasma of MM patients, which
correlated with an increased expression of acid sphingomyelinase (ASM) in MM cells. Importantly,
ASM was upregulated by treating MM cells with standard-of-care drugs melphalan and bortezomib.
Moreover, MM exosomes high in ASM content could induce resistance to these drugs, while inhibiting
ASM resulted in an increased sensitivity.

We performed a lipidomic analysis of patient plasma to determine which lipids are altered in MM.
We found that ceramides are upregulated in patient plasma compared to age-matched healthy controls,
at the expense of sphingomyelin.

When analyzing an additional four MGUS patients, we could see in the PCA (Supplementary
Figure S1B) of the lipid profile that these patients form an intermediate group between healthy and
MM samples. This suggests that some, but not all, of the lipid alterations are already present in this
premalignant stage; however, our sample size of MGUS patients is too small to draw exact conclusions
on which lipids were already dysregulated and which were not. It bears no surprise that some of the
lipid changes can already be observed in the MGUS stadium of MM since the same holds true for
genetic changes. Our patient population contained newly diagnosed as well as relapsed refractory
patients. There were no obvious differences in plasma lipid composition between both groups, and as
such, it would seem that myeloma therapy does not influence lipid composition directly.

A dysregulation in the lipid profile of plasma has been described for some forms of cancer;
however, only very limited data is available for hematological malignancies. Our study is the first
to uncover differences in the sphingolipid profile of MM patient plasma. In the future, it would be
interesting to perform a lipidomic analysis on a larger number of MM patients, which would ideally
also include MGUS and SMM patients to study the evolution at the level of lipid metabolism from
MGUS to MM.

To determine whether the altered lipids in the plasma truly originate from the MM cells, the lipid
constitution of the MM cells should be compared to healthy counterparts. However, healthy plasma
cells are difficult to isolate. We did compare for six patients the lipid profile of the peripheral plasma to
CD138+ plasma cells isolated from the bone marrow [15]; however we found no correlation between
these samples. This is not so surprising since the composition of plasma differs considerably from
the composition of cells or tissue. Moreover, ceramide in the peripheral plasma is mainly associated
with extracellular vesicles, and since MM is associated with higher levels of circulating EVs derived
from the MM cells themselves, the alteration in the plasma lipid profile might be the result of a higher
concentration of EVs in the plasma [16–19]. Other studies have also performed lipidomic analysis
on patient plasma to discover potential biomarkers for solid tumors, such as lung, breast, pancreas,
ovarian, and colorectal cancer. Especially, breast and lung cancer patients had significantly higher
levels of sphingolipids and glycerophospholipids than healthy controls [20].

When examining the ceramide pathway, we hypothesized that the sphingomyelin/ceramide
dysregulation is possibly due to a higher expression of SMase in MM patients. However, a change
in SMase quantity in the MM cells might not necessarily be reflected in an increase in SMase in the
peripheral plasma. Indeed, in 62.5% of CD138+ MM cells isolated from bone marrow samples, we
could measure an increase in ASM compared to the other BM cells (CD138−), while the total SMase in
plasma from healthy and MM patients did not vary significantly. When examining the expression of
the different SMase subtypes in the overall MMRF patient cohort, we saw that especially for SMPD4,
coding for neutral SMase 3 consistently entailed a worse prognosis (data not shown). However, when
we focused on the aggressive genetic subtypes of MM, we found that in the MMSET subgroup, the
presence of both SMPD1 and SMPD4 separately present a group of ultra-high-risk MM with a PFS of
about one year. MMSET is the molecular target of the t(4;14)(p16;q32) translocation, which is one of
the most common occurring translocations in MM, associated with a very poor prognosis [21,22].
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Both SMPD1 (acid SMase, ASM) and SMPD4 (neutral SMase 3) were most expressed in four
different MM cell lines. The profile of total secreted SMase was most consistent with the expression of
SMPD1 or ASM. SMase generates ceramide by hydrolyzing sphingomyelin molecules. The resulting
ceramide molecules can form ceramide-enriched membrane platforms, which will cluster specific
receptors and enrich intracellular signaling molecules. This leads to an increase of the initiating signal,
eventually generating a transmission of the signal into the cell. In this way, ceramide is involved in
many cellular processes such as apoptosis, inflammation, and autophagy. [23].

ASM has been described in extent for its role in autophagy in cancer [24]. The enzyme can be
activated by various stimuli, including infections, stress stimuli, and reactive oxygen species [23]. Both
pro-apoptotic [25,26] as well as tumor protective roles have been attributed to this enzyme.

The presence of ASM in MM cells is reflected in the amount of ASM present in the exosomes isolated
from these MM cells. Exosomes are actively secreted by the cells, and often mirror the contents of their
originating cell, both in lipid, protein, and nucleic acid content [27]. In MM, it was recently described
that drugs such as bortezomib and melphalan induce a stimulation of exosome-secretion. These
so-called chemoexosomes differ substantially from control exosomes in their protein content, with some
proteins being up- or downregulated and others being exclusively present in either chemoexosomes or
control exosomes. Bandari et al. described that these chemoexosomes are rich in heparanase-content,
thereby altering the extracellular matrix and ultimately contributing to drug resistance [28].

The stimulation in exosome secretion as the result of intracellular stress could be a way for the
cells to dispose of any waste material, or at the same time, communicate with neighboring cells [27]. In
our results, we confirmed that exosome release is stimulated by anti-myeloma drugs, and particularly
observed that the ASM content of the exosomes was increased. The increased presence of ASM in
the MM cells and their exosomes upon treatment could reflect a tumor-protective effect of ASM by
stabilizing cancer lysosomes and increasing autophagic flux [24,29].

To further investigate the effect of ASM-rich exosomes on myeloma cells, we added ASM-high
exosomes from U266 cells unto ASM-low JJN3 cells, simultaneously treating the cells with bortezomib
or melphalan. We noticed increased viability after adding the U266 exosomes, but not when adding
the JJN3 exosomes. Therefore, U266 cells which are more resistant to both melphalan and bortezomib
treatment than JJN3 cells seem to be able to transfer their drug resistance to these JJN3 cells through
exosomes, which are high in ASM content. Moreover, treating U266 cells with amitriptyline prior
to exosome collection, abrogated this effect. Furthermore, we also investigated the effects of LP1
exosomes on the bortezomib response in JJN3 cells since LP1 cells and exosomes express low levels of
ASM but are also relatively resistant to bortezomib. These LP1 exosomes did not induce resistance to
bortezomib in JJN3 cells [30].

Petersen et al. demonstrated that inhibition of ASM using cationic amphiphilic drugs (CAD,
such as amitriptyline) led to lysosomal cell death in cancer cells, including ovarian, breast, prostate,
cervix, and bone cancer cell lines [29]. These inhibitors of ASM were proven to be effective in
a multidrug-resistant type of prostate cancer cells, and could even resensitize them to standard
chemotherapy. They demonstrated that CAD accumulates inside the lysosome and inhibits ASM,
leading to sphingomyelin accumulation in the lysosomes, which then leads to a leakage of lysosomal
proteases into the cell by permeabilization of the lysosomal membrane. Interestingly, cancer cells
are more sensitive to these drugs because their lysosomes are already less stable [29]. Amitriptyline
was initially introduced by Merck in 1961 as a tricyclic antidepressant with strong antidepressant
activity owing to its potent serotonin–norepinephrin reuptake inhibitor activities [23]. Several years
later, its activity as an inhibitor of ASM was described [29,31,32]. In a more recent study, Gulbins et al.
demonstrated that amitriptyline actually executes its antidepressant function by the ASM/ceramide
pathway, leading to neuronal proliferation and survival rather than a direct effect on neurotransmitter
reuptake [33]. Other functional inhibitors of ASM include other tricyclic antidepressants, antihistamines,
and calcium channel blockers [29]. Here, we demonstrated that amitriptyline could increase the efficacy
of the SoC drugs, bortezomib and melphalan. Others have also shown that amitriptyline induces an
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extended survival of myeloma-bearing mice [34]. Amitriptyline is a particularly attractive drug in
MM treatment since it is often used to treat neuropathic pain elicited by anti-myeloma treatment with
proteasome inhibitors (e.g., bortezomib) or immunomodulatory drugs (e.g., thalidomide). Because of
its long-standing use, amitriptyline has a well-known side effect profile, is cheap, and easily accessible.

Finally, we also inhibited neutral SMase 2 by using GW4869. Here too, we saw a more
pronounced effect of SoC drug treatment. GW4869 is also used for blocking exosome secretion
via the ceramide-pathway [27], therefore, we cannot exclude exosome-dependent effects. It is known
that blocking the neutral sphingomyelinase pathway blocks exosome secretion in some, but not all,
cell lines. However, these results suggest a role for both acid and neutral SMase in MM cells, both
ultimately increasing ceramide production. From a translational point of view, amitriptyline is the
more interesting choice of the two since it is already used on MM patients.

4. Materials and Methods

4.1. Cell Lines

The human MM cell lines (HMCL) JJN3, LP1, OPM2, U266 were obtained from ATCC (Molsheim,
France). The identity of the cell lines was regularly checked by short-tandem repeat analysis.
Cell lines were regularly tested for mycoplasma contamination and passaged no more than one
month prior to experiments. Cells were cultured in RPMI-1640 medium (Lonza, Basel, Switzerland)
supplemented with 10% fetal bovine serum (FBS) (Hycone, Logan, UT, USA), 2 mM L-glutamine and
1% penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C in 5% CO2.

4.2. Isolation of CD138+ Cells from Bone Marrow Samples

Mononuclear cells were isolated from freshly obtained bone marrow samples by using density
gradient centrifugation with Lymphoprep™ (Catalog # 07801, STEMCELL™ technologies, Grenoble,
France). CD138+ cells were selected by positive selection using human CD138 MicroBeads (Catalog #
130-051-301, Miltenyi Biotec, Gladbach, Germany) according to the manufacturer’s instructions.

4.3. Lipidomic Analysis

Bone marrow and blood samples were collected for routine diagnostic or evaluation purposes after
patients’ written informed consent and in accordance with the Declaration of Helsinki and institutional
Ethical board approval (B.U.N. 143201628501) from UZ Brussels University hospital.

Blood was sampled in EDTA tubes at the time of diagnosis or disease relapse at morning time,
and platelet-free plasma was collected by double centrifugation at 1200× g for 10 min, after which
supernatant was collected, snap-frozen, and stored air-tight at −80 ◦C. Samples were analyzed in one
analytical batch, eliminating batch-to-batch variations.

Targeted lipidomics were performed. Phospholipid species were analyzed by electrospray
ionization tandem mass spectrometry (ESI-MS/MS) on a hybrid triple quadrupole/linear ion trap mass
spectrometer (4000 QTRAP system; Applied Biosystems SCIEX) equipped with a TriVersa NanoMate
(Advion Biosciences) robotic nanosource for automated sample injection and spraying. Briefly,
lipids were extracted by mixing 700 µL of sample (100 µL of plasma diluted in PBS) with 800 µlL 1 N
CH3OH:HCl 8:1 (v/v), 900µL CHCl3, and 200µg/mL of the antioxidant 2,6-di-tert-butyl-4-methylphenol.
The organic phase was evaporated using a Savant Speedvac spd111v (Thermo Fisher Scientific), and the
remaining lipid pellet was stored under argon at –20 ◦C. Mass spectrometry analysis of the extracted
lipids was performed as described previously [35,36].

Differences in the lipid species in the plasma of healthy donors and MM patients were calculated
using marker analysis in GENE-E software. We calculated the signal-to-noise statistic, p-value and
Benjamini-Hochberg false discovery rate (FDR). The top 5 hits with FDR < 0.05 in either direction were
selected and shown as a heatmap using GENE-E software. Principal component analysis (PCA) was
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performed on lipidomic profiles of healthy donors, MGUS, and MM patients. Normalized data were
analyzed in R using the Clustvis package [37].

The lipidome datasets analyzed during the current study is available from the corresponding
author on reasonable request.

4.4. CoMMpass Patient Sample Analysis

The MMRF CoMMpass Trial (NCT01454297) is a longitudinal study of multiple myeloma patients
in which genomic data is collected at diagnosis and relapse. The sequencing and clinical data,
including survival information, are publically available through the MMRF research gateway portal
(https://research.themmrf.org) [38]. We used the Interim Analysis 12 data which consists of 767 patient
bone marrow samples taken at diagnosis for which both survival data and RNA sequencing data are
available. We correlated gene expression levels with survival information to analyze the prognostic
value of genes of interest using the MaxStat R package as previously described [39].

4.5. Drugs and Reagents

Bortezomib and amitriptyline were purchased from Selleckchem (Munich, Germany), GW4869 and
melphalan were purchased from Sigma-Aldrich (St-Louis, MO, USA). Bortezomib and amitriptyline
were dissolved in dimethylsulfoxide while melphalan was dissolved in ethanol with a few drops of HCl,
all according to the manufacturer’s instructions. GW4869 was also dissolved in DMSO, resuspended,
and vortexed, after which the solution was incubated at 37 ◦C for 15 min to reach maximum solubility.

4.6. Isolation and Characterization of Small EVs

JJN3, LP1, OPM2, and U266 cells were cultured without serum for 24 h and conditioned medium
was collected after centrifugation and filtered using a 0.22 µM pore filter. The filtered medium was
concentrated using a 150 kD Protein Concentrator (Thermo Scientific, Waltham, MA, USA) and filtered
again with a 0.22 µM pore filter.

From this concentrated conditioned medium, small EVs were isolated using a Exoquick-TC
exosome precipitation solution (System biosciences, Mountain View, CA, USA) according to the
manufacturer’s instructions, with the addition of a final high speed centrifugation step (10 000× g, 2
min) to eliminate contaminating cell debris. The concentration of EV proteins was determined by BCA
protein analysis (Thermo Scientific). The size and number of EVs was determined by nanoparticle
tracking analysis using Zetaview®NTA (Particle-Metrix, Germany), with the average size and number
calculated from 11 independent replicates using NTA. Western blot analysis was used to confirm the
presence of exosomal tetraspanins, CD63 and CD81.

4.7. Viability and Apoptosis Assay

OPM2, U266, JJN3, and LP1 cell lines were seeded at 500,000 cells/ml in RPMI-1640 medium
without serum, supplemented with 2 mM L-glutamine and 1% penicillin/streptomycin. Cells were
treated with 2.5 µM (for OPM2, JJN3, and LP1) or 5 µM (U266) melphalan, 10 nM (OPM2, JJN3, and
LP1) or 20 nM (U266) bortezomib, 10 µM (OPM2, JJN3) or 15 µM (LP1, U266) GW4869 and 10 µM
amitriptyline (OPM2, U266, JJN3, and LP1). Viability was measured after 24 h by a CellTiter Glo
Luminescent Cell Viability Assay (Promega, Madison, WI, USA). Luminescence was measured using a
Glomax luminometer (Promega). Viable cells were quantified after 24 h by AnnexinV-FITC staining
(BD Biosciences, Belgium) and 7-AAD staining (BD Biosciences) by Flow Cytometry analysis on a
FACSCanto flow cytometer (BD Biosciences).

4.8. Quantitative Real-Time PCR

RNA was isolated using the RNeasy kit (Qiagen) and 1 µg of RNA was converted to cDNA by
the Verso cDNA Synthesis Kit (ThermoFisher Scientific, Waltham, MA, USA). Gene-specific primer

https://research.themmrf.org
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sequences were as follows: SMPD1: forward (5’ – TGC CAG GTT ACA TCG CAT AG – 3’), reverse (5’ –
AGG TTG ATG GCG GTG AAT AG – 3’); SMPD2: forward (5’ – CTT ACC CAG CAC ATC TAC ACT
C – 3’), reverse (5’ – GAG CAC CAT GCC ACT TAG AT – 3’); SMPD3: forward (5’ – ATA CCC ACC
ACC TAC GAG AA – 3’), reverse (5’ – GAA AGC CGA GAA ACG CAA AG – 3’), SMPD4: forward (5’
– CCC ACA GTG GTT TGC TAA GA – 3’), reverse (5’ – TTT CAG GCT AGC CAG TAG AAA G – 3’).

Real-time PCR was performed using SYBR Green (PowerUpTM SYBRTM Green Master Mix,
Applied Biosystems) in a final volume of 25 µL, consisting of 1 µL of cDNA, 12.5 µL of SYBR Green,
1 µL of Primer Mix 10 µM, and 10.5 µL of nuclease-free water. The expression level of mRNA was
quantified by qRT-PCR using the QuantStudio 12K Flex Real-Time PCR System (ThermoFisher). The
housekeeping gene ABL1 was used for data normalization, and differential gene expression was
determined using the comparative ∆∆Ct method, in which gene expression levels are normalized
in relation to a household gene, and then are compared between cell lines and different conditions
(Figure 3A). For the basal expression levels of SMPD genes in MM cell lines (Figure 2A), the -dCt value
is portrayed.

4.9. Western Blotting

HMCL was seeded in a 6-well plate and cultured during 24 h with medium without serum,
melphalan, or bortezomib, with or without amitriptyline at the same concentrations used for the
viability assay. Cells were lysed in lysis buffer containing 50 mM Tris, 150 mM NaCl, 1% Nonidet
P40, and 0.25% sodium deoxycholate. The following protease and phosphatase inhibitors were
added: 4 mM Na3VO4, 1 mM Na4P2O7, 2 µg/mL aprotinin, 50 µg/mL leupeptin, 500 µg/mL
trypsin inhibitor, 10 µM benzamidine, 2.5 mM pnp benzoate (all from Sigma-Aldrich), 50 mM
NaF, 5 mM ethylenediaminetetraacetic acid (both from VWR International), 1 mM 4-(2-aminoethyl)
benzenesulfonyl fluoride hydrochloride, and 50µg/mL pepstatin A (both from ICN).

Western blot analysis on these cell lysates was performed as previously described [13].
Chemiluminescence was visualized and analyzed using a Li-Cor Odyssey Fc. Quantification was
performed using Image Studio Lite version 5.2 software.

Antibodies used for analysis were: ASM (#3687), β-ACTIN (#4967), PARP (#9542), Caspase 3
(#9665), all from Cell Signaling Technology. For exosome characterization, we used CD63 (H-193,
sc-15363), and CD81 (B-11, sc-166029) from Santa Cruz Biotechnology (Heidelberg, Germany).

4.10. Total SMase Measurement in Samples

Total SMase activity was measured by an Amplex Red Sphingomyelinase Assay Kit (A12220,
Thermo Fisher, Waltham, MA, USA) using the continuous assay, according to the manufacturer’s
instructions. Briefly, diluted samples and controls were added in a 96-well plate, after which the
working solution containing Amplex Red reagent was added to these samples. After three hours of
incubation at 37 ◦C, fluorescence was measured using a Glomax fluorometer (Promega).

SMase activity was determined in supernatants and lysates of HMCL and on plasma samples
according to the manufacturer’s conditions.

4.11. Sphingomyelin Assay

HMCL was seeded in a 6-well plate and cultured during 24 h with medium without serum,
melphalan or bortezomib, with or without amitriptyline at the same concentrations used for the viability
assay. The supernatant was collected and analyzed for sphingomyelin content using a fluorometric
Sphingomyelin Assay Kit (ab138877, Abcam, Cambridge, UK). Fluorescence was measured after
2 h of incubation at room temperature using a Glomax fluorometer (Promega), according to the
manufacturer’s instructions.
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4.12. Statistical Analysis

Results were analyzed with GraphPad Prism 5.0 software (GraphPad Software Inc, La Jolla, CA,
USA). All data represent the mean ± standard deviation (SD), and results were analyzed using the
Mann–Whitney U test and one-way ANOVA (combination indexes, CI). p < 0.05 (*), p < 0.01 (**), and
p < 0.001 (***) were considered statistically significant.

5. Conclusions

In conclusion, in this paper, we analyzed for the first time the differences in the lipid profiles of
myeloma patients and could correspond the imbalance in ceramide and sphingomyelin to changes in
ASM levels in MM cells. Furthermore, we saw an upregulation in ASM expression in MM cells and
their exosomes upon exposure to anti-myeloma drugs. Exosomes high in ASM content were able to
transfer the resistant nature of their cells of origin unto other, initially sensitive MM cells. Importantly,
amitriptyline and GW4869, as inhibitors of SMase, are able to increase sensitivity to standard-of-care
anti-myeloma drugs, providing a rational to use SMase targeting drugs in combination strategies for
MM patients (graphical abstract).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1823/s1,
Figure S1: Alterations in the MM lipidome, Figure S2: Exosomes confer resistance to MM cells, Figure S3: Effects
of amitriptyline and GW4869 on MM cells, Figure S4: Whole western blots with molecular weights. Table S1:
Patient and disease characteristics are shown for all Multiple Myeloma patients (n = 38) who were included in the
lipidomic analysis.
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