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Abstract: Objectives: To create a novel preoperative prediction model based on a deep learning algo-
rithm to predict neoplasm T staging and grading in patients with upper tract urothelial carcinoma
(UTUC). Methods: We performed a retrospective cohort study of patients diagnosed with UTUC be-
tween 2001 and 2012 at our institution. Five deep learning algorithms (CGRU, BiGRU, CNN-BiGRU,
CBiLSTM, and CNN-BiLSTM) were used to develop a preoperative prediction model for neoplasm
T staging and grading. The Matthews correlation coefficient (MMC) and the receiver-operating
characteristic curve with the area under the curve (AUC) were used to evaluate the performance
of each prediction model. Results: The clinical data of a total of 884 patients with pathologically
confirmed UTUC were collected. The T-staging prediction model based on CNN-BiGRU achieved the
best performance, and the MMC and AUC were 0.598 (0.592–0.604) and 0.760 (0.755–0.765), respec-
tively. The grading prediction model [1973 World Health Organization (WHO) grading system] based
on CNN-BiGRU achieved the best performance, and the MMC and AUC were 0.612 (0.609–0.615)
and 0.804 (0.801–0.807), respectively. The grading prediction model [2004 WHO grading system]
based on BiGRU achieved the best performance, and the MMC and AUC were 0.621 (0.616–0.626)
and 0.824 (0.819–0.829), respectively. Conclusions: We developed an accurate UTUC preoperative
prediction model to predict neoplasm T staging and grading based on deep learning algorithms,
which will help urologists to make appropriate treatment decisions in the early stage.

Keywords: upper tract urothelial carcinoma; deep learning; early diagnosis; neoplasm staging;
neoplasm grading

1. Introduction

Upper tract urothelial carcinoma (UTUC) is a relatively rare group of tumours, ac-
counting for 5–10% of urothelial carcinomas [1]. Radical nephroureterectomy (RNU) is
considered the standard of care for nonmetastatic UTUC, and should be accompanied
by lymphatic dissection for patients with a locally progressive disease [2]. However,
treatment strategies that preserve the kidney are reasonable for selected patients with
low-stage UTUC, including endoscopic ablation and segmental ureterectomy. In low-risk
patients, kidney preservation treatment is beneficial to protect renal function and avoid
complications associated with radical surgery. There is no significant difference in 5-year
cancer-specific survival after surgery versus RNU [3]. Neoadjuvant chemotherapy may
be more beneficial for advanced UTUC because the loss of renal function after RNU may
make the patient unsuitable for cisplatin application, which is currently one of the most
effective chemotherapeutic agents in uroepithelial carcinoma [4]. The selection of appro-
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priate patients is a significant challenge for urologists due to the limitations of imaging
techniques and biopsy techniques [5].

If the pathologic characteristics of the tumour can be accurately predicted from rou-
tine clinical data before surgery, this information may improve the urologist’s strategy
for the treatment of the disease. Predicting the stage and grade of the tumour may in-
fluence the choice of the first treatment for patients with UTUC and whether it should
involve conservative treatment, RNU, RNU with lymph node dissection, or neoadjuvant
systemic chemotherapy. The appropriate selection of patients for individualized treatment
is beneficial in managing UTUC [6].

In recent years, prediction tools based on deep learning algorithms have developed
rapidly, especially in the field of oncology. Although there have been some multivariate
models based on preoperative information to predict the pathological features of postoper-
ative UTUC [7–9], no relevant studies have applied deep learning algorithms to address
this problem. Preliminary studies of deep learning prediction models have shown better
performance than traditional multivariate prediction models [10–12]. As a national high-
volume centre for UTUC in China [13], we are interested in determining how deep learning
algorithms can identify the staging and grading of UTUC based on our relatively large
sample size.

Therefore, the purpose of our study was to construct a preoperative prediction model
for UTUC based on five deep learning algorithms to predict the staging and grading of
UTUC to guide clinical decision-making.

2. Materials and Methods

This analysis was reported according to the TRIPOD (transparent reporting of a multi-
variable prediction model for individual prognosis or diagnosis) guidelines, a reporting
specification for predictive models of disease diagnosis and prognosis [14]. A flow diagram
of the study is shown in Figure 1.

2.1. Patient Selection

We retrospectively collected the clinicopathological data of UTUC patients (884 cases)
who underwent RNU surgery at Peking University First Hospital from 2001 to 2012. Pa-
tients in this study met the following inclusion criteria: (1) UTUC confirmed pathologically
after surgery; (2) no distant metastasis. The following patients were excluded: (1) UTUC
with metastases before RNU and (2) patients with previous contralateral UTUC. In addition,
cases with incomplete data were excluded. Follow-up data were obtained by reviewing the
clinical and pathological databases at our institution. Overall survival (OS) was calculated
from the date of surgery to the date of all-cause death.

2.2. Feature Selection and Model Predictive Indicators

The information collected included medical record information and auxiliary test
results. Preoperative information on UTUC patients included general information, past
history, personal history, laboratory tests, and auxiliary examinations. Laboratory tests
included haematology tests, coagulation tests, and biochemical examinations. Auxiliary
examinations included, but were not limited to, the presence of hydronephrosis, tumour
site, tumour location, and longest diameter of the tumour. Cases with incomplete data
were excluded.

For feature selection, we first manually removed some features that were obviously
irrelevant to the prediction results, such as the case ID. Subsequently, Xgboost (a machine-
learning algorithm) was used to perform feature-correlation analysis to filter out features
with low correlation to the prediction results, while the literature review was combined with
the screening to retain the important features. The features were then modelled separately
using deep learning models to compare their impact on the prediction results. By comparing
and analysing different feature combinations, forty-four features were ultimately screened
out (Supplementary Table S1).
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The endpoint indicators predicted by the model were the specific staging and grading
of UTUC. We treated the prediction results of the model as a discrete classification problem
due to a lack of reliable weighting references for different T-stages or gradings and simpli-
fied the development of models. Information on the staging and grading of UTUC was
obtained by the pathologic evaluation of postoperative samples. Clinical samples were
obtained by experienced urologic oncologic surgeons using a standardized RNU approach,
including resection of the full length of the kidney and ureter and the adjacent portion of
the bladder cuff. All surgical samples were processed according to standard pathology
procedures. Tumour staging was evaluated according to the 2002 Union for International
Cancer Control (UICC) TNM classification of malignancies. There are two different clini-
cal grading systems for UTUC at this time: the 1973 World Health Organization (WHO)
classification and the 2004 WHO classification. No consensus has been made on which
classification should supersede the other, and both are recommended in the European
Association of Urology guidelines [15]. Tumour grading was assessed according to both
the 1973 WHO classification and 2004 WHO classification in this study. Two specialist
genitourinary pathologists independently reviewed each case. When a dispute arose, the
decision was discussed with a third genitourinary pathologist. Three cases diagnosed as
papillary urothelial neoplasms of low malignant potential according to the 2004 WHO
classification were removed in the construction of the follow-up model because the number
of cases was small.
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2.3. Deep Learning and Model Construction

Data were randomly split into training and test sets at a ratio of 8:2 using random
functions in Python. The training set was used to generate the prediction model, and the
test set was used to estimate the model’s accuracy. To improve the ability to generalize
and balance the different classes, the SMOTE algorithm was employed to counter the class
imbalance. By combining the oversampling of the minority class and the undersampling of
the majority class, SMOTE can achieve a better classifier performance [16].

We used five newer deep learning models that have been proposed in recent years
in the biomedical field to predict neoplasm staging and grading in patients with UTUC,
including CGRU, BiGRU, CNN-BiGRU, CBiLSTM, and CNN-BiLSTM.

CGRU is a multilabel classifier based on deep CNN. CNNs are a unique class of neural
network models designed to identify hidden patterns and relationships in large datasets.
GRU uses two gates: an update gate and a reset gate. The reset gate determines the amount
of past information to be forgotten, while the update gate determines which information to
keep and not to keep [17].

In the BiGRU network, the input vector (forward) and the corresponding reverse
version (backwards) are fed into two GRUs, and the combination of the forward hidden-
state output and the reverse hidden-state output is the output of the network [18].

CNN-BiGRU can automatically measure and assign weights to different leads based
on their contributions. In short, the CNN module exploits interrelated features between
leads and extracts differentiated spatial features. In addition, the BiGRU module extracts
the underlying temporal features within each lead. The spatial and temporal features from
these two modules are fused as global features for classification [19].

CBiLSTM is a two-channel hybrid neural network model based on CNN and BiLSTM.
CNN and BiLSTM extract features from the original data and then connect them and
map them to a fully connected layer. BiLSTM consists of two independent LSTM neural
networks with a specific network structure consisting of an input gate structure and an
output gate structure. The gates only restrict the direction of the information flow, and the
LSTM affects the state of the RNN one at a time through the gate structure [20].

The CNN-BiLSTM neural network framework involves feature-extraction using a
pretrained convolutional network and then feeds the feature vectors to a bidirectional long-
and short-term memory network to capture the temporal features of the data [21]. The
preceding CNN layers in the models can help first to extract abstract features and then
provide them as inputs to the following RNN layers [22].

The hyperparameters were adjusted during model construction to construct high-
quality models, such as the number of layers and hidden cells, learning rate, learning rate
decay, dropout rate, batch size, and epoch.

2.4. Performance Verification

Considering the class imbalance that often occurs in biomedical datasets, we used
the Matthews correlation coefficient (MCC), which is a more-reliable statistical rate in
binary classification evaluation, to assess the model’s ability [23]. The receiver operating
characteristic (ROC) curve with the area under the curve (AUC) and F1-scores, which are
commonly used evaluation metrics, were also used to evaluate the performance of each
predictive model. Internal validation was performed using 1000 bootstrap resamples.

2.5. Statistical Analysis

Continuous variables were expressed as the interquartile range. Pearson’s chi-squared
test was conducted to analyse unordered categories data. Linear-by-linear association
was used for ordinal data. A normality test was used for continuous data, and Student’s
T test was used for data conforming to normal distribution. The log-rank test was used
to compare the difference in survival curves between groups. Python 3.8.1 for Windows
(https://www.python.org/, accessed on 14 July 2022) was used for deep learning analysis.

https://www.python.org/
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Other analyses were performed with R statistical software version 3.4.1 (R Core Team,
Vienna, Austria). p < 0.05 was considered as statistically significant.

3. Results
3.1. Patient Characteristics

A total of 884 patients with UTUC were finally included in this study. The patients’
median (interquartile range interquartile range, IQR) age was 69 (61, 75) years old. Among
the T-staging of tumours, Ta, T1, T2, T3, and T4 stage accounted for 2.7%, 34.2%, 33.8%,
27.1%, and 2%, respectively. Among the G stages of tumours, G1, G2, and G3 accounted
for 2.8%, 56.1%, and 41.0%, respectively. The mean follow-up time of the patients was
70.3 months. The clinical and pathological characteristics of patients with UTUC are
summarized in Table 1. Overall survival curves based on different stages and grades in
patients with UTUC are shown in Figure 2. The overall survival of UTUC patients was
significantly decreased with increased T staging and grading (p < 0.05).
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Table 1. Clinical and pathological characteristics in patients with UTUC. IQR, interquartile
range; UBC, urothelial bladder carcinoma; PUNLMP, papillary urothelial neoplasm of low
malignant potential.

Variables No. Pts (%)

Total 884
Gender

Male 395 (44.7)
Female 489 (55.3)

Age, median (IQR) 69 (61, 75)
BMI, kg/m2, median (IQR) 24.2 (22.0, 26.3)
History of UBC

No 833 (94.2)
Yes 51 (5.8)

Smoking
No 743 (84.0)
Yes 141 (16.0)

Hydronephrosis
No 349 (39.5)
Yes 535 (60.5)

Tumour site
Left 450 (50.9)
Right 434 (49.1)
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Table 1. Cont.

Variables No. Pts (%)

Tumour location
Renal pelvis 490 (55.4)
Ureter 394 (44.6)

Tumour diameter (cm), median (IQR) 3.0 (2.0, 4.2)
Pathological T stage

Ta 24 (2.7)
T1 302 (34.2)
T2 299 (33.8)
T3 240 (27.1)
T4 19 (2.1)

WHO 1973 grade
G1 25 (2.8)
G2 496 (56.1)
G3 362 (41.1)

WHO 2004 grade
PUNLMP 3 (0.3)
Low grade 225 (25.5)
High grade 656 (74.2)

Overall survival
Number 884
Mean follow-up times 70.3
Follow-up range [3, 193]

3.2. Performance of Different Models

The full dataset was randomly divided into two exclusive datasets, with 80% being the
training set (n = 707) and 20% the test set (n = 177). There were no statistically significant
differences in the characteristics between the two sets (p > 0.05) (Supplementary Table S2).
To solve the unbalanced problem of the test set data, we first used the SMOTE algorithm
to balance the test set data. For the distribution of neoplasm T-staging and grading, the
balance of the test set before and after using the SMOTE algorithm is shown in Figure 3.

Through multiple rounds of training and manual debugging, the final critical hyperpa-
rameters of the deep learning models were as follows: learning rate = 0.001, Adam = True,
optim momentum value = 0.9, weight decay = 1 × 10−8, and batch size = 16.

The ROC curves for the neoplasm T staging and grading of different deep learning
models are shown in Figure 4. The T-staging prediction model based on CNN-BiGRU
achieved the best performance, and the MMC, AUC, and F1 score were 0.598 (0.592–0.604),
0.760 (0.755–0.765), and 0.484 (0.479–0.489), respectively. The grading prediction model
[1973 World Health Organization (WHO) grading system] based on CNN-BiGRU achieved
the best performance, and the MMC, AUC, and F1 score were 0.612 (0.609–0.615), 0.804
(0.801–0.807), and 0.608 (0.605–0.611), respectively. The grading prediction model [2004
WHO grading system] based on BiGRU achieved the best performance, and the MMC,
AUC, and F1 score were 0.621 (0.616–0.626), 0.824 (0.819–0.829), and 0.617 (0.612–0.622),
respectively. Table 2 shows the performance of each model on the validation data.
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Figure 4. The ROC curve in the neoplasm T staging and grading of different deep learning prediction
models. (A) The ROC curve in neoplasm T staging of different deep learning prediction models.
(B) The ROC curve based on the 1973 WHO grading classification of different deep learning prediction
models. (C) The ROC curve based on the 2004 WHO grading classification of different deep learning
prediction models.
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Table 2. Performance of each model on validation data. MMC, Matthews correlation coefficient; AUC, area under the curve; WHO, World Health Organization.
The 95% confidence intervals are shown in parentheses.

Models
T-Staging Grading Based on the 1973 WHO Classification Grading Based on the 2004 WHO Classification

MMC AUC F1 Score MMC AUC F1 Score MMC AUC F1 Score

BiGRU 0.532
(0.525–0.539)

0.727
(0.722–0.732)

0.410
(0.405–0.415)

0.604
(0.599–0.609)

0.798
(0.793–0.803)

0.625
(0.620–0.630)

0.621
(0.616–0.626)

0.824
(0.819–0.829)

0.617
(0.612–0.622)

CBiLSTM 0.482
(0.477–0.487)

0.686
(0.681–0.691)

0.371
(0.366–0.376)

0.566
(0.592–0.600)

0.765
(0.759–0.771)

0.576
(0.570–0.582)

0.511
(0.507–0.515)

0.705
(0.701–0.709)

0.396
(0.391–0.401)

CGRU 0.554
(0.549–0.559)

0.753
(0.747–0.759)

0.482
(0.476–0.488)

0.565
(0.558–0.572)

0.764
(0.758–0.770)

0.574
(0.568–0.580)

0.596
(0.590–0.602)

0.789
(0.783–0.795)

0.607
(0.601–0.613)

CNN-BiGRU 0.598
(0.592–0.604)

0.760
(0.755–0.765)

0.484
(0.479–0.489)

0.612
(0.609–0.615)

0.804
(0.801–0.807)

0.608
(0.605–0.611)

0.578
(0.574–0.582)

0.776
(0.772–0.780)

0.593
(0.589–0.597)

CNN-BiLSTM 0.542
(0.536–0.548)

0.748
(0.743–0.753)

0.451
(0.446–0.456)

0.595
(0.588–0.602)

0.788
(0.781–0.795)

0.602
(0.595–0.609)

0.615
(0.609–0.621)

0.806
(0.800–0.812)

0.605
(0.599–0.611)



J. Clin. Med. 2022, 11, 5815 9 of 13

4. Discussion

UTUC is a relatively rare tumour of the urinary tract for which RNU is the standard
of treatment. For patients assessed as low-risk, nephron-sparing treatments such as endo-
scopic ablative treatments may be appropriate [24]. In the case of high-risk nonmetastatic
UTUC patients, lymph node dissection or perioperative chemotherapy should be con-
sidered [25]. Hence, it is critical to evaluate the staging of the tumour accurately before
deciding on treatment. The clinical stage of UTUC can be determined by ureteroscopy
specimens combined with imaging, but the clinical and pathological stage of UTUC is
usually discordant [26,27]. We, therefore, need more accurate predictive pathological tools
to develop personalized treatment strategies for UTUC.

Our study used multiple deep learning algorithms to construct a preoperative pre-
diction model for UTUC for the first time. It achieved AUCs of 0.760, 0.804, and 0.824 for
tumour T staging (CNN-BiGRU), tumour grading based on the 1973 WHO classification
(CNN-BiGRU), and tumour grading based on the 2004 WHO classification (BiGRU), re-
spectively, demonstrating a better prediction performance. These results indicate that the
deep learning model has a good application value as a preoperative prediction model in
patients with UTUC. Previously, other investigators published tools of UTUC to predict
muscle-invasive disease and/or nonorgan-confined disease. Table 3 summarizes the publi-
cations on preoperative prediction models for UTUC over the last ten years [7–9,13,28–32].
In contrast, our study has the following characteristics. First, previous studies used a pre-
diction model based on multivariate analysis, which predicted a muscle-invasive disease or
nonorgan-confined disease. Our study used a new deep learning algorithm developed to
construct the prediction model in recent years. The feasibility and accuracy were confirmed
in other studies [19,33–35] and achieved better prediction results. Compared with previous
studies in which the predicted outcome was muscle-invasive disease or nonorgan-confined
disease, our model predicts specific tumour T-staging and grading, with a richer clinical
reference value. Based on the survival analysis of nearly 200 months in the overall cohort
of UTUC patients in this study (Figure 2), we found significant differences in their overall
survival prognosis in T2, T3, and T4 included in muscle-invasive disease and T3 and T4
included in nonorgan-confined disease. This suggests that we should pay more attention
to personalized treatment selection in the above-categorized populations. For patients
with predicted tumour stage T3, T4, or high tumour grade, more aggressive treatment
strategies should be actively pursued to benefit patients, such as neoadjuvant systemic
chemotherapy followed by surgery [36]. Conversely, patients with Ta stage and selective T1,
who have a better prognosis, should be considered for kidney-preserving surgery to avoid
postoperative renal loss and improve their quality of life. Moreover, although UTUC is a rel-
atively rare tumour, as a national high-volume centre for UTUC in China, a relatively large
number of cases were included in our study, and the cases were well represented [13]. A
significant portion of the previous studies of preoperative dichotomous prediction models
for UTUC did not perform model predictive validation, and our more-complex multivariate
output model obtained better predictive performance in internal validation, suggesting the
application prospects of deep learning algorithms in clinical prediction models.

Deep learning models have been widely used in many fields, such as environmental
atmosphere prediction and financial-risk models. They have been rapidly developed in
the medical field in the recent years [37]. Deep learning applications have been used
successfully in cardiovascular, pulmonary, and urological diseases [38–40]. However, deep
learning applications in UTUC are rare at the present stage. Lazo et al. proposed a spatial-
temporal ensemble of convolutional neural networks for lumen segmentation to identify
UTUC during ureteroscopy [41]. As an exploration of ureteroscopic image recognition,
this technology is still far from clinical application. Deep learning methods can be further
applied to various aspects of UTUC, such as tumour image diagnosis, prognosis analysis,
and drug efficacy evaluation.
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Table 3. Preoperative prediction tools in patients with upper tract urothelial carcinoma. PPV, positive predictive value; NPV, negative predictive value; AUC,
area under the curve; HGB, haemoglobin.

Author Publication Years Prediction Form Outcome No. of Patients Variables Evaluation Index Validation

Brien et al. [8] 2010 Preoperative risk
group stratification

Nonorgan-confined
disease 172 Hydronephrosis, ureteroscopic grade,

and urinary cytology
PPV 73% NPV

100% None

Brien et al. [8] 2010 Preoperative risk
group stratification Muscle-invasive disease 172 Hydronephrosis, ureteroscopic grade,

and urinary cytology
PPV 89% NPV

100% None

Margulis et al. [9] 2010 Preoperative
nomogram

Nonorgan-confined
disease 659 Grade, architecture, and location 76.6% AUC Internal

Favaretto et al. [7] 2012 Preoperative risk
group stratification

Nonorgan-confined
disease 274 Ureteroscopic grade, location, invasion,

and hydronephrosis on imaging 70% AUC None

Favaretto et al. [7] 2012 Preoperative risk
group stratification Muscle-invasive disease 274 Ureteroscopic grade, location, invasion,

and hydronephrosis on imaging 71% AUC None

Chen et al. [13] 2013 Preoperative
nomogram

Nonorgan-confined
disease 693 Gender, architecture, multifocality,

location, and grade 79% C-index Internal

Chen et al. [13] 2013 Preoperative
nomogram Muscle-invasive disease 693 Gender, architecture, multifocality,

location, and grade 79% C-index Internal

Jeon et al. [28] 2017 Preoperative
nomogram

Nonorgan-confined
disease or

muscle-invasive disease
172

Urine cytology, hydronephrosis, local
invasion, lamina propria invasion,

high-grade tumour, and ureteroscopic
scoring

82% AUC None

Petros et al. [29] 2019 Preoperative
nomogram

Nonorgan-confined
disease 566 Clinical stage, biopsy tumour grade,

tumour architecture, and HGB levels 82% C-index Internal and
external

Ma et al. [30]. 2020 Preoperative
nomogram Muscle-invasive disease 245 Age, sessile, urine cytology,

ureteroscopic, and high-grade biopsy 78% AUC None

Yoshida et al. [31] 2020 Preoperative
nomogram Muscle-invasive disease 1101

Neutrophil to lymphocyte ratio, chronic
kidney disease, local invasion on

imaging, tumour location, and
hydronephrosis

77% AUC Internal and
external

Wang et al. [32] 2021 Preoperative
nomogram Muscle-invasive disease 4149

Age, tumour size, T-stage, N-stage,
M-stage, LN surgery, histology,
radiation, and chemotherapy

74% C-index Internal and
external
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There are some potential limitations in our study. First, as a deep learning model,
cases in the test set are still insufficient, and further samples need to be included in the
future to improve the model’s performance. Second, it is necessary to validate this in a
multicentre or international cohort model soon. In addition, since the deep learning model
is a “black box” model and some computational principles are challenging to explain,
we will consider developing a visualization program in the future to facilitate clinical
promotion and application.

5. Conclusions

In contrast to the traditional multivariate model, we have developed an accurate
UTUC preoperative prediction model to predict neoplasm T staging and grading based
on deep learning algorithms, which will help urologists to make appropriate treatment
decisions in the early stage.
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