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Fragmentation in turbulence by small eddies

Yinghe Qi', Shiyong Tan', Noah Corbitt!, Carl Urbanik!, Ashwanth K. R. Salibindla' & Rui Ni@ '™

From air-sea gas exchange, oil pollution, to bioreactors, the ubiquitous fragmentation of
bubbles/drops in turbulence has been modeled by relying on the classical Kolmogorov-Hinze
paradigm since the 1950s. This framework hypothesizes that bubbles/drops are broken
solely by eddies of the same size, even though turbulence is well known for its wide spectrum
of scales. Here, by designing an experiment that can physically and cleanly disentangle eddies
of various sizes, we report the experimental evidence to challenge this hypothesis and show
that bubbles are preferentially broken by the sub-bubble-scale eddies. Our work also high-
lights that fragmentation cannot be quantified solely by the stress criterion or the Weber
number; The competition between different time scales is equally important. Instead of being
elongated slowly and persistently by flows at their own scales, bubbles are fragmented in
turbulence by small eddies via a burst of intense local deformation within a short time.
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problem more than bubble breakup! and turbulence

cascade? both by Andrey N. Kolmogorov, based on a key
idea of elementary entities, i.e., bubbles and eddies, being frag-
mented into smaller and smaller sizes, following a universal
mechanism. In 1955, Hinze® extended Kolmogorov’s original
ideal, and this Kolmogorov-Hinze (KH) framework has since
posed deep and lasting impacts on modeling turbulent bubble/
drop fragmentation in various flow configurations*-® and appli-
cations, including emulsion’, spray formation8, and raindrop
dynamics®.

The key hypothesis in the KH framework is that, in turbulence,
bubbles/drops with diameter D are broken by eddies of the same
size and the contribution from sub-bubble scale eddies is negli-
gible. The most important dimensionless number based on D is
thus the Weber number. The fundamental challenge associated
with this key hypothesis is not about its correctness but its fal-
sifiability. For fully-developed turbulence, eddies of many length
scales are present at the same time. In these situations, bubbles
always encounter eddies of various sizes, so it is extremely diffi-
cult to disentangle them cleanly!%, not to mention establishing
their roles in bubble breakup. Therefore, there has been no direct
experimental evidence so far to either support or refute this
hypothesis.

To overcome the aforementioned problem and to directly test
this hypothesis, we seek a “magic knife” to cleanly separate the
sub-bubble-scale eddies from the bubble-sized ones, and expose
bubbles to only one type at a time. A flow configuration that
features two identical vortex rings colliding symmetrically head-on
was identified as an excellent candidate because it possesses two
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unique stages. In the early stage, both rings expand but remain
intact (Fig. la, the red ring), and the vortical structure only con-
tains one large scale. As it progresses, two rings become unstable,
and the large-scale flow breaks down into a turbulent cloud,
comprised mainly of small eddies (Fig. 1a, the blue ring). Recently,
it has been shown that the generated turbulent cloud in this later
stage shares similar statistics with other types of fully-developed
turbulence! 112, The power spectrum follows the same —5/3 power
law in the inertial range, and it lasts for an extended period of time
before turbulence starts to decay. In this flow, a bubble tends to
experience either only the bubble-sized vortices or turbulence
consisting of the sub-bubble-scale eddies. This allows us to dis-
tinguish contributions from eddies with various sizes and directly
examine the key hypothesis in the classical KH framework.

Results

Turbulence production. Figure la shows a schematic of the
experimental apparatus that features a vortex collision sub-system
(Fig. 1b) and a bubble injection sub-system. The dashed box
indicates the measurement volume close to the bottom of the
rings. Additional details can be found in Methods. Two distinct
stages of the developed flows are highlighted in red and blue
colors. The early stage was dominated by smooth and intact
vortex rings, and the later stage was filled with many small eddies.
Careful system control was designed to ensure that a bubble
always rises to the same height when the two rings just touch each
other. As shown in Fig. 1c, bubbles (indicated by the green blobs)
that got entrained into one of the vortex rings were carried
downward and experienced two different types of flows.
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Fig. 1 Experimental setup and vortex ring cascade. a Schematic of the experimental setup with dimensions. The black dashed box marks the location of
the view volume. The smooth red ring and rough blue ring illustrate the intact vortex ring at the early stage and a turbulent cloud at the late stage,
respectively. b Picture of the linear actuator and piston-cylinder assembly for generating the vortex rings. ¢ Breaking bubbles (3D green blobs) at two
different stages within the view volume. d The longitudinal structure function D;;; The blue and green shaded areas represent the range of the bubble size
and vortex size, respectively. e The averaged ratio between the z-component vorticity w, and the total vorticity magnitude w in the vortex ring as a function
of time t. The two dashed lines indicate the two extreme limits from the uni-directional vorticity in the early stage to the fully-isotropic case later.
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Fig. 2 Geometric information of the primary and secondary breakups. a Examples of a primary breakup (red) driven by a smooth vortex ring and a
secondary breakup (blue) driven by a turbulent cloud. More examples can be found in Supplementary Information. b-d The distribution of b the bubble
aspect ratio a, ¢ the bubble orientation 6, and d the breakup time t. for both primary (red circles) and secondary (blue squares) breakups.

To quantify the statistics of the flow structures, the longitudinal
second-order structure functions D;; (for details, see Supplemen-
tary Information) at different times are shown in Fig. 1d. Dy
indicates the turbulence kinetic energy distributed across different
length scales. At early times (¢ < 0.1 s) after the ring collision, Dy
exhibits a clear peak at around 10-15 mm, close to the vortex size.
Most of the kinetic energy is kept within this scale. This peak
decays over time as the two vortex rings become unstable and
break. As the kinetic energy cascades down to smaller scales, Dy
at these scales rise up until +=0.12 s when D;; reaches a
2/3 scaling law. This inertial-range scaling law is well known in
the fully-developed turbulence based on the Kolmogorov theory?,
ie. Dy(r) = Cy((e)r)?3, which is indicated by solid lines in
Fig. 1d. The prefactor C, = 2 is the Kolmogorov constant, and (e)
is the mean turbulence energy dissipation rate. From ¢t =0.12 s to
0.18 s, although the kinetic energy at the vortex size continues to
drop rapidly, it does not decay as much for the inertial-range
scales where Dy; exhibits the 2/3 scaling. It implies that the
kinetic energy generated via the breakdown of large vortices
compensates the energy dissipated at the small scales, leaving a
much slower energy decay for the intermediate inertial-range
scales. This inertial-range scaling lasts for roughly one integral
timescale (56 ms), which is much longer than the typical bubble
breakup time that will be introduced later (see Fig. 2a bottom).
This 2/3 scaling law also covers the range of bubble sizes used in
the current experiments, marked by the blue shaded area. From
this scaling law, the range of turbulence energy dissipation rate
(€) can be estimated to be roughly 0.20-0.25 m2/s3.

One may expect that, as the vortex rings break down to a
turbulent cloud, the flow should become more isotropic. To
quantify the flow isotropy, the ratio between the z-component
vorticity w, and the total vorticity magnitude w (Supplementary
Information) is shown in Fig. le. Two dashed lines mark the two
limits of (w,/w): {(w,/w) =1 if the original vortex rings remain
intact and (w,/w) = 1/+/3 if the flow becomes fully isotropic. In
Fig. le, (w,/w) drops gradually with time, indicating that the flow
indeed approaches the isotropic turbulence as the cascade process
continues.

Bubble breakup modes. Once the bubble was entrained into one
of the vortices at the collision point, it was carried downwards by
the flow. During this process, we observed two distinct bubble
breakup modes, the examples of which are shown in Fig. 2a. For
the first case, a bubble was deformed consistently along the z-axis
until the moment of breakup. This process is relatively slow, and
the bubble’s interface seems to be smooth throughout the entire
process, similar to what was observed in the linear-extensional
flows!314, For the rest of the paper, this type of breakup is
referred to as the primary breakup as it occurs first and always
before the moment when the two vortex rings break down to a
turbulent cloud.

After the primary breakup, based on the KH framework, the
daughter bubbles should become harder to break because their
sizes are smaller and the bubble-scale eddies have weakened, yet it
is surprising to find that the daughter bubble experiences a more
violent breakup, as shown in the second case of Fig. 2a. This more
violent breakup is referred to as the secondary breakup hereafter.
The secondary breakups have three features: (i) a rough bubble
interface with large local curvatures; (ii) complicated deformation
along non-persistent directions; and (iii) short breakup time. The
secondary breakup occurs within 5.1 ms, which is much smaller
than 32.1 ms for the primary breakup. The two breakup modes
are always correlated with the bubble breakup locations. In
practice, a critical height at y. = —51 mm (corresponding to the
vortex ring bottom location at t = 0.10 s after their collision) was
used to separate the two breakup modes (primary y>y;
secondary y<y,). More discussions of this separation criterion
can be found in Supplementary Information.

To quantitatively compare the two breakup modes, several key
statistics of the bubble geometry, orientation, and breakup time,
obtained from the 3D shape reconstruction, are provided. In
Fig. 2b, the probability density functions (PDFs) of the bubble
aspect ratio «, obtained from the 3D reconstructed bubble
geometries from 6 ms before to the moment of breakup, for both
breakup modes are illustrated. It is evident that the primary
breakups typically feature a larger & compared with the secondary
breakups. Furthermore, Fig. 2c shows the PDF of the bubble
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Fig. 3 Visualization of flows around breaking bubbles and the PDFs of Weber numbers. a Experimentally reconstructed bubble geometries (red) and the
isosurfaces of the surrounding vorticity for the primary and secondary breakups. b-d The distribution of b Wes, € Wegq, and d the non-dimensionalized sub-
bubble-scale velocity variance, (uz< ), around breaking bubbles (primary, red circles; secondary, blue squares). The solid lines represent the log-normal fits

to the experiment data.

orientation, indicated by the angle between the bubble semi-
major axis and the z-axis (), suggesting that bubbles have
preferential alignment with the z-axis during the primary
breakup, while the distribution of 6 for the secondary breakup
is wider due to the disturbances from the surrounding turbulence.
The third statistics that can be used to distinguish the two
breakup modes is the breakup timescale ¢, which is defined as the
time delay between the start time to the breakup instant. Note
that the start time is not chosen immediately after the previous
breakup, but at the minimum bubble aspect ratio closest to the
breakup moment, when the bubble begins to be deformed by an
eddy that will eventually break it. Figure 2d shows the PDF of ¢,
for the two breakup modes. The secondary breakup skews
significantly more towards a smaller f, compared with the
primary breakup. These three statistical quantities show a
consistent picture as the two examples in Fig. 2a.

The difference in the two breakup modes can be linked to the
distinct breakup mechanisms involved. For the primary breakup,
the large-scale vortex entrains the bubble towards its center—a
local pressure minimum. For a bubble with a size close to the
vortex diameter, as it reaches the vortex center, it experiences a
pressure gradient that tends to compress it along the radial
direction and extend it along the z-axis. Secondary breakup is
more irregular, driven by a turbulent cloud filled with sub-bubble
scale eddies. Bubbles break without significant elongation because
the process is disrupted and accelerated by these eddies with
smaller timescales, which also explains the observed difference in
breakup time f,.

We emphasize that the primary breakup follows the key
hypothesis made in the classical KH framework, in which a
bubble is assumed to be broken by a clean and isolated vortex
filament with a size close to the bubble diameter. However, most
bubble breakups observed in fully developed turbulence are closer
to the secondary case, where the contribution from a cloud of
smaller eddies cannot be ignored.

Bubble breakup mechanism. To understand these two breakup
modes, we measured the 3D flow in the vicinity of a breaking
bubble along with its 3D geometry to show two examples of the
primary and secondary breakups in Fig. 3a. In particular, the 3D
isosurfaces of the vorticity magnitude at t = 0.06 s for the primary
breakup and t=0.14 s for the secondary breakup are used to
illustrate the flow structures. For the primary breakup, the bubble
is trapped within the bottom portion of one vortex ring and the
flow surrounding the bubble is smooth, whereas the secondary
breakup takes place in a chaotic turbulent cloud, indicated by the
rough isosurface of vorticity.

Based on the 3D flows, the first quantity that can be acquired
is the Weber number. At the bubble scale, the flow can be
decomposed into the straining and rotational components. In
practice, the velocity gradient coarse-grained at a scale close to the
bubble size, i.e., K,»j, is extracted based on the velocity of multiple
tracer particles around the bubble (for details, see Supplementary

Information). From ZU’ the coarse-grained strain rate tensor S;
and rotation tensor ﬁij can be determined: Eij = (711-]- + Zﬁ) /2 and
ﬁij = (Zij - Xﬁ) /2, which lead to the definition of two Weber
numbers:
wD)’D
We,, = PWDD
o

M

where A; (the largest compression rate) is the smallest eigenvalue
of §;;, and w is the vorticity magnitude. The new definition of the
two Weber numbers extends the original one-dimensional
version in the KH framework to emphasize the contributions
from the 3D straining and rotational flows. Nevertheless, the key
assumption in the KH framework that the only relevant length
scale is the bubble size is still applied here.

Figure 3b, ¢ show the PDFs of Weg and Weg, over 6 ms duration
before the moment of breakup for both the primary and secondary
modes. For the primary breakup, Weg, appears to be systematically

D)*D
We, = P(M3(|7 ) ’
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Fig. 4 Bubble breakup model and its experimental validations. a Schematic of a bubble with an equivalent spherical diameter D =4 mm deformed by an
eddy of size D, in turbulence. b The eddy velocity u, required to break a bubble versus the dimensionless eddy size D./D based on the proposed new
dimensionless numbers: We, (blue) and Ti (red), and their imposed criteria. These two criteria together split the entire plot into the breakup (green) and
no breakup (gray) regions. ¢ The probability p(D,, D) of a bubble (size D, ranging from 2 mm (dark color) to 5 mm (light color)) broken by a single eddy
(size D) as a function of D,/D at two different (¢) = 0.2 m2/s3 (red) and 5.0 m2/s3 (green). The dashed line marks the peak location at D./D = 0.74.
d The weighted breakup probability p"(D,, D) versus D./D (the color is consistent with that adopted in (c)). e The normalized expected bubble breakup
time (t (D)), as a function of the bubble size D for experiments (blue symbols) and model (red line). The upper and lower bounds of the error bars mark the
30th and 70th percentiles of the bubble breakup time, respectively. f The breakup frequency g(D, (¢)) of bubbles with different sizes in turbulence with
various mean energy dissipation rates (¢), including the experimental data by Vajrazka et al.!® (symbols) and predictions from our model (solid lines). The
dashed line shows the scaling of g(D, {€)) x (¢)/3 predicted by the KH framework.

larger than Weg because the bubble is compressed more by the
radial pressure gradient due to the flow rotation than by the
straining flow. For the secondary breakup, the peaks of the PDFs of
Weg and Weg both locate at values smaller than one, and more
importantly, smaller than their primary breakup counterparts.

The KH framework implies that bubbles with larger Weber
numbers tend to break more easily. If it were right, we should
expect a more violent primary breakup. However, the observa-
tions suggested otherwise, which clearly refute the key hypothesis
in the KH framework. For the secondary breakup, although the
eddy of the bubble size is much weaker, many sub-bubble-scale
eddies begin to emerge. To demonstrate their appearance, we
apply a high-pass rolling-average spatial filter with a filter length
=3 mm (which is selected to be close to the bubble mean
diameter) to the velocity field. The residual fluctuation velocity u.
and its variance (42 ) only contain the contribution from small
eddies (D, < I). Figure 3d shows the PDF of non-dimensionalized
residue fluctuation velocity around bubbles for both primary and
secondary breakups. The secondary breakup has systematically
larger (u2) compared with the primary counterpart, which
implies that the contribution of sub-bubble scale eddies that were
missed in the KH framework may be the key to understand the
bubble breakup in turbulence.

Model. To extend the KH framework, we argue that both the
bubble diameter and eddy size are relevant length scales. To

include both, let us consider a simple scenario: a bubble with an
equivalent spherical diameter of D encounters and gets deformed
by a small eddy of size D, < D, as shown in Fig. 4a. Consistent
with the features observed in the secondary breakup in Fig. 2a, the
concave interface has a large local curvature that is presumably
linked to the eddy size D,, so the interfacial stress can be deter-
mined by using o/D,, instead of o/D in the KH framework.
Furthermore, the eddy inertia pu? has to overcome the interfacial
stress to break the bubble. Therefore, a new Weber number based
on the eddy velocity scale u, and length scale D, can be defined,
and this Weber number (We, based on the eddy size D,) has to be
larger than one for the bubble to break,

_ puD,

We >1  (Stress criterion) ()

e

In addition to this stress constraint, another key missing
piece in the KH framework is time. The eddy timescale has to
be shorter than the bubble’s relaxation time, otherwise, the bubble
will return back to the sphere. The eddy lifetime or turnover time
scales with D,/u,, whereas the bubble relaxation time can
be estimated by using the natural frequency of the bubble, i.e.

\/960/(pD?)/(2m) (Lamb mode 21°). So the second criterion can

be set as D,/u,<2m\/pD?/(960). Rearranging this relationship
yields another new dimensionless number (Ti, which represents
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the time ratio) that involves both D and D,:
pulD’/D? 96
= >
o 4m?

Egs. (2) and (3) together provide two new dimensionless
numbers, We, and Ti, which set two constraints on the eddy
velocity u,, whose dependence on the eddy size D, are shown as
blue and red solid lines in Fig. 4b. Based on these two constraints,

the minimum eddy velocity to break a bubble (u,,,;,,(D,, D)) can
be estimated following:

o 96 o
. = [ = 4
ue,mm(De7 D) max ( pDe’ 47_[2 pD3 /Dﬁ) ( )

This equation divides Fig. 4b into two regions: breakup
(4e > e min(Des D)) and no breakup (u, < 4, pin(D,, D). It is
evident that u,,,;, has a non-monotonic dependence on D,/D,
reaching its own minimum at the intersection of the two lines:
\/0/(pD,) = /960 /(4n*pD’ / D?), which results in D,/D = 0.74.

To estimate the breakup probability, we ignore the bubble-
induced flow modulation and assume the surrounding turbulence
follows the same statistics as their single-phase counterpart, the
distribution of the eddy velocity can be calculated based on the
log-normal distribution of the energy dissipation rate!®17 follows:

1 (In (e./ () + o3,./2)°
Sl st — ?

Ti (Time criterion) (3)

Ine

where o}, =A+uln(L/D,) is the variance; A represents a
large-scale variability, which is set at A=0 for convenience;
p = 0.25 is the intermittency exponent; and L is the integral length
scale of turbulence. In this work, the original vortex diameter is
used to estimate the integral scale, which is L =15 mm; we use
(€) = 0.20 m2/s> based on the previous estimation. The instanta-
neous eddy velocity u, can be directly related to the eddy-size

based dissipation rate, following u, = ﬁ(eeDe)l/ 3. As a result,
the PDF of the eddy velocity, P(u,|D,), for any given eddy size D,
can be expressed as

3vV2 5
P(u,|D,) = T€§/3De 13p(e,) (6)

Based on this eddy velocity distribution, the probability of a
bubble of size D being broken by a single eddy of size D,, p(D,, D),
can be calculated by following p(D,,D)= [ P(u,|D,)du,,

where eddies with a velocity larger than u,,,;, (Eq. (4)) are
integrated. Figure 4c (the red-curve group) shows p(D,, D) versus
the non-dimensionalized eddy size D,/D for {(¢) = 0.2 m?/s3. In
contrast to the hypothesis made in the KH framework, a wide
range of eddies smaller than the bubble size can drive bubble
breakup; in fact, for the selected energy dissipation rate, eddies
with D, close to 0.74D are actually much more efficient in
breaking a bubble than bubble-sized eddies. Furthermore, p(D,,
D) of all D, increases systematically as D grows.

So far, the discussions were limited to the breakup probability
driven by a single eddy without considering that smaller eddies
are more abundant. To account for this effect, the collision rate w,
(for details, see Supplementary Information) is used to define a
weighted breakup probability (p*(D,, D)) following the expres-
sion of: p*(D,,D) = wp(D,, D)/ [y, @p(D,, D)dD,, which is
shown in Fig. 4d as red curves for different bubble sizes at
(€) =0.2m?/s3. Tt appears that bubbles of all sizes are still
preferentially broken by eddies of size D,=0.74D. But the
contributions by even smaller eddies are growing as D increases.

In addition to the size dependence, p(D,, D) and p*(D,, D) for
the same range of D but using a higher (¢) at 5.0 m?/s3 is shown

as green curves in Fig. 4c, d, respectively. In Fig. 4c, as (¢)
increases, the probability (p(D,, D)) of one bubble being broken
by one eddy of size D, increases for all D,, while maintaining its
peak at D, = 0.74D, until p(D,, D) saturates for a range of D,. But
once accounting for the number density difference of eddies of
different sizes, the peak locations of p*(De, D) for all bubble sizes
shift to a much smaller D,, suggesting that bubbles are preferably
fragmented by much smaller eddies in stronger turbulence. This
result implies that the deviation from the hypothesis in the KH
framework becomes more significant for either larger bubbles or
stronger turbulence.

To validate the proposed model, we quantify the breakup time
of the secondary breakups since these events are driven by small
eddies. The expected bubble breakup time for different bubble
sizes D is shown as open circles in Fig. 4e, and their respective
distributions are indicated by the error bars with the upper and
lower bounds marking the 30th and 70th percentiles, respectively.

In the model, if we assume that the breakup time scales with
D/u,, the mean breakup time (¢(D,, D)) for a bubble of size D
being broken by an eddy of size D, can thus be expressed as:
t(D,,D) = ffmm D/u,P(u,|D,)du,/ f;jm P(u,|D,)du,. By con-

sidering the contribution of all sub-bubble scale eddies within
the inertial range (10n <D, < D), the expected bubble breakup
time can finally be estimated following:

JP 1D, D)w,dD,
(t(D)), = "1
flOn w.dD,

™)

where (...), represents the integration over all eddy sizes. The
model predicted breakup time (t(D)), is shown in Fig. 4e in
comparison with the experimental results of the secondary
breakups. A nice overall agreement can be observed without using
any fitting parameters.

To ensure that the generalization of the model to other types of
turbulent flow configuration is appropriate, in addition to our
experiments, we also compare the model prediction against
another dataset in fully-developed turbulence driven by a jet
array!8. In this experiment, the breakup frequency g(D, {(€)) is
measured for different bubble sizes (D) over a wide range of ().
The results are shown in Fig. 4f as open symbols. The dashed line
indicates the scaling predicted based on the KH framework by
assuming that the breakup frequency scales with the reciprocal of
the turnover time of the bubble-sized eddies, i.e. (¢D)}/3/D « ¢1/3.
It is evident that the measured breakup frequency exhibits a much
steeper scaling than the 1/3 power law suggested by the KH
framework.

Based on our model, g(D, (¢)) can be estimated by including
the contributions from all small eddies, following g(D, (€)) =

/; 1?);1 wp(D,, D)dD,. The model predictions for different (¢) and D

are shown in Fig. 4f as solid lines. It can be seen that the modeled
breakup frequency agrees with the experimental results well,
capturing the steeper scaling that the data suggests. This scaling
originates from the growing contributions from small eddies with
a larger frequency as (€) increases. Furthermore, our model
suggests that there is no simple power law relationship between
the breakup frequency and (€) because of the non-trivial
dependence of p*(D,, D) on D and ().

Discussion

The classical KH framework hypothesized that bubbles tend to be
broken by eddies of similar sizes in turbulence. So the only length
scale used in the definition of the Weber number is the bubble
diameter (D), and the contributions by the sub-bubble-scale
eddies are ignored. To directly test this hypothesis, one would
need to conceive an experiment that can cleanly disentangle
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eddies of different sizes. To that end, we developed an experiment
by injecting a bubble into the flow driven by the head-on collision
between the two vortex rings. As the rings break down into
turbulence, the flow experiences two distinct stages with the early
stage consisting of only the large vortical structures of the bubble
size and the late fully-developed turbulence filled with a spectrum
of the sub-bubble-scale eddies. In this flow, two distinct bubble
breakup modes were observed. Against our intuition, the more
violent and rapid secondary breakup occurred when the bubble
was smaller, the flow kinetic energy was lower, and the resulting
Weber number was much weaker. This observation clearly shows
the inadequacies of employing only the Weber number and the
bubble length scale, disapproving the key hypothesis in the KH
framework. A model for bubble breakup in turbulence based on
two new dimensionless numbers that account for two scales, the
bubble and eddy sizes, is therefore proposed. Our framework
supplement the classical framework that relies only on the stress
criterion by adding a key criterion-the time scale. Our model is
validated by the excellent agreement between the model predic-
tion and experiments from two seemingly different flow config-
urations. Our work emphasizes the importance of the sub-bubble
scale eddies for bubble fragmentation and adds a dimension to
the existing framework on the bubble/drop dynamics in
turbulence!”-21.

Methods

Vortex ring. Vortex rings were generated using two identical piston-cylinder
assemblies in a water tank with a size of 60 x 60 x 150 cm?. The cylinders and pistons
were carefully adjusted to make sure they are aligned. Both cylinders have an inner
diameter D, of 2.54 cm with the separation between their exits about 27.9 cm. Within
each cylinder, a piston is driven by a stainless steel shaft connected to a pneumatic
linear actuator. The piston can be moved forward and backward at different stroke
times T controlled by the air pressure. The stroke length L, was kept at 10.2 cm, and
the stroke ratio was, therefore, SR = L/Dy = 4. Each assembly can generate vortex
rings with different Reynolds numbers Re = V},Dy/v based on the mean velocity of the
piston V, = L/T and the kinematic viscosity of the water v. A hypodermic needle
with a 1.7 mm inner diameter connected to a syringe filled with air was used to
generate bubbles. By altering the injection rate through a computer-controlled syringe
pump and needle size, bubbles with diameters ranging roughly from 2 to 5 mm can be
generated. In this study, the initial bubble size is fixed at around 5 mm.

Time delays and system control. One critical element of our experiments is the
timing. Bubbles must be entrained into the vortices exactly at the moment when
the two rings collide with each other. Therefore, three sub-systems, including two
vortex-ring generators, one syringe pump for bubble injection, and four cameras
were all controlled by a digital data acquisition (DAQ) system. Since t=0 s is the
reference time when two vortex rings began to touch each other, the syringe pump
was activated at t; = —1.34 s for bubbles to naturally rise into the collision point;
the vortex-ring generators were actuated at , = —0.63 s for vortex rings to travel
from the generators to the collision point; and the cameras were triggered at

t; = —0.18 s to capture some frames before the collision. Even though the three
time delays can be accurately controlled by our DAQ system, bubbles or vortex
rings may not arrive at the exact same moment from one run to another. In order
to quantify the uncertainty of the arrival time, we used high-speed cameras
(7500 fps with 0.13 ms uncertainty) to capture the arrival time of rings and bubbles.
The measured uncertainty of the arrival time difference between rings and bubbles
is about + 38 frames, corresponding to about +5.1 ms. This number is much
smaller than the time that it takes for the two vortex rings to break down into
turbulence, i.e., about 100 ms, or the integral timescale of the turbulence generated,
i.e., about 60 ms, which suggests that the synchronization is sufficiently accurate for
reproducible experiments.

3D measurements. In each run, the shadows of bubbles and many surrounding
tracer particles were projected onto all four cameras by the back LED panels. The
images of individual phases were segmented based on the contrast and size differ-
ences. For the liquid phase, the 3D tracer trajectories were determined by performing
the Lagrangian particle tracking with the in-house OpenLPT code?? that imple-
mented the parallelized Shake-The-Box algorithm?3. These trajectories were then
smoothed by convoluting them with the Gaussian kernels?#2°, from which the
particle velocity and acceleration could be obtained along their trajectories. For the
gas phase, the bubble 3D geometry was reconstructed using the virtual-camera visual
hull method?® that calculates the intersection of the cone-like volume extruded from
the silhouette on each camera. Once the 3D bubble geometry was obtained, the
bubble center of mass was linked frame by frame to get the bubble trajectory.

Statistics. In total, we collected 83 datasets and observed about 150 breakup events
for vortex ring Reynolds number ranging from 7.5 x 104 to 1.1 x 10%. The majority
of the data were taken at the largest Reynolds number, in which almost each
experiment yielded both primary and secondary breakups. For smaller Reynolds
number, the turbulence generated is not sufficiently intense to fragment bubbles.
So, these datasets were not included in the statistics. The breakups that were used
in this manuscript are plotted as a point cloud in the Supplementary Fig. S7 to
show the breakup locations relative to the flow.

Data availability
All the data supporting this work are available from the corresponding author upon
reasonable request.

Code availability

The OpenLPT code used for 3D particle tracking is available at https://github.com/JHU-
NI-LAB/OpenLPT_Shake-The-Box (https://doi.org/10.5281/zenodo.5750942). Other
codes for image processing and analyses that are reported in the paper are available from
the corresponding author upon request.
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