
Introduction

 Clostridium botulinum and botulism, the disease 
it causes, have been known to man for centuries1. 
Botulism is a severe neuroparalytic disease caused by 
the action of botulinum neurotoxins (BoNTs) produced 
by anaerobic spore-forming C. botulinum and some of 
its close relatives2. The BoNTs are regarded as the most 
potent toxins known to mankind3. If left untreated, a 
severe case of botulism leads to death of the patient 
due to paralysis of respiratory muscles. Although the 
disease has been known to man since ancient time, 
Muller in 1870 coined the name ‘botulism’ for the 
newly described disease4. Following the advent of 
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microbiology in the late 19th century, the causative 
organism was isolated from contaminated meat and 
recognized as an anaerobic bacillus5. Cultivation of the 
bacillus and its subsequent introduction into animals 
leading to development of the symptoms of botulism 
has been reported6.

 One of the most fascinating aspects in the field 
of botulinum toxin research in recent years has been 
application of the most potent toxin in treatment of 
neurological disorders. It has become the first biological 
toxin which is licensed as drug for treatment of human 
diseases. As of January 2008, two BoNT serotypes 
(A and B) are approved for clinical use in the United 
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States by Food and Drug Administration (FDA). 
Subsequently, the neurotoxin has become a household 
name as clients line up at local gyms, parties, and 
spas for Botox injections, in order to temporarily rid 
themselves of wrinkles and sweaty armpits. This review 
provides updated information on warfare potential and 
medical uses of botulinum neurotoxin.

Botulism: Disease

 All four forms of botulisms (food borne, infant, 
wound and animal) cause illness through a common 
pathway regardless of the manner in which the toxin 
gains systemic access7. Botulism initiates with acute 
weakness of muscles, causing difficulty in speaking 
and swallowing and double with blurred vision in all 
forms of diseases. This is followed by a progressive 
symmetrical flaccid paralysis, descending from the 
muscles of the head and throat, which in severe cases 
causes death due to respiratory muscles paralysis8. 
Mental functioning is not impaired by BoNTs, so the 
patient remains alert and conscious throughout the 
disease9. Botulism is confirmed by detection of BoNT 
in a patient’s serum or stool, or in a sample of food 
consumed before onset of illness10. 

 Food-borne botulism is also known as “classical” 
botulism, as it was the first form of the disease described 
in literature. Food poisoning due to botulinum toxin 
emerged as a problem when food preservation became 
a widespread practice. BoNT is secreted in to food 
by toxigenic clostridia growing in it under suitable 
conditions. Ingestion of preformed toxin is responsible 
for the botulism thus this type of disease represents 
intoxication rather than an infection, which is the case 
of other form of human botulisms. In a study of 2622 
outbreaks in which BoNT types were determined, 34 
per cent were caused by type A, 52 per cent by type 
B and 12 per cent by type E. Only two food borne 
outbreaks were assigned to BoNT type F during this 
period11. More than 90 per cent cases of foodborne 
botulism have been reported due to home prepared or 
home preserved foods9. A wide variety of commercially 
produced (preserved and non-preserved) foods have 
caused botulism outbreaks. Examples include foil-
wrapped baked potatoes12, canned chili sauce13, jarred 
peanuts14, packed food15, hazelnut yogurt16, garlic in 
oil17, carrot juice18, and matambre (Argentine meat 
roll)19.  

 Infant botulism, recognized as a clinical identity 
over three decades ago20, has been the most diagnosed 
form of botulism in USA since 197921. The initial 

neurological symptoms of infant botulism are largely 
the same as in other forms of botulism, but these are 
usually missed by parents and doctors because the 
infant can not verbalize them. The case/fatality ratio 
among hospitalized patients was reported to be less 
than one per cent22. The source of spores for most 
cases remains unknown, although the most common 
sources of infection for infants appear to be honey 
and environmental exposure23,24. Analysis of infant 
botulism cases occurring globally from 1996 through 
2008 revealed 524 cases in 26 countries representing 
five continents25. 

 Another form of botulism is analogous to tetanus, 
in that BoNT is determined from C. botulinum growing 
in vivo in abscessed wounds called wound botulism. 
Most cases occur in physically active young males who 
are presumable at higher risk of traumatic injuries22. 
Wound botulism has emerged as a small-scale epidemic 
in San Francisco, USA, among Bay Area drug abusers 
following subcutaneous injection of heroin26. Similarly, 
in the United Kingdom, bacterial infections (particularly 
wound botulism) have increased markedly since 2000 
among injecting heroin users27. Some cases have also 
been reported in Germany28 and in Sweden, where real-
time PCR was used to diagnose a case of type E wound 
botulism29. The case / fatality ratio has been rather high 
(15%)9.

 Most mammals are susceptible to botulinum 
neurotoxin and develop botulism with similar clinical 
features to humans30-32. A majority of cases are caused 
by C. botulinum group III, although groups I and II 
are also reported in animal botulism31. Horses are 
very sensitive to BoNTs and equine botulism occurs 
sporadically worldwide, both as feed poisoning and 
as toxico-infectious forms31. Avian botulism is usually 
caused by BoNT type C1, to which most birds seem 
to be susceptible. Botulism is very dangerous in fish 
farming33. Contaminated silage has been reported to 
cause botulism outbreaks among cattle34.

 Inhalational botulism is not a natural form of 
botulism and most likely to be seen on the battlefield, 
is rare. One incident involving accidental exposure of 
humans to BoNT/A in a laboratory of Germany was 
reported in 196135. More data are available on exposure 
of animals to toxin aerosols. Rhesus monkeys were 
exposed by inhalation to BoNT/A, in conjunction with 
toxoid and hyperimmune globulin efficacy trials36. Park 
and Simpson37 reported that BoNT/A, an inhalation 
poison, works by the active process of binding and 
transcytosis across airway epithelial cells.



 Iatrogenic botulism is caused inadvertently by 
injection of botulinum toxin for therapeutic or cosmetic 
reasons38. Four cases of iatrogenic botulism occurred in 
December 2004 in Florida following cosmetic injection 
with a botulinum toxin that was not approved for use in 
humans39.

Botulism in Indian scenario

 Food-borne botulism is thought to be an uncommon 
clinical condition in India and is rarely reported. First 
incidence of food borne botulism in India was reported 
in 1996 involving 34 students with two deaths and 
toxigenic C. butyricum was isolated40. Two patients of 
one family (42 yr old man and his 6 yr old daughter) 
consumed canned meat products were diagnosed 
clinically according to CDC guidelines as botulism41. 
Dhaked et al42 isolated toxigenic clostridia from soil of 
slaughter house, of which one was confirmed by PCR 
and mouse protection assay as C. botulinum type E. 
Prevalence and distribution of C. botulinum was also 
studied in fish from coastal and inland areas of India. 
Types A to D were found to be present on sediments, 
surface of wild fish and intestine with dominance of C. 
botulinum type C and D43,44. Recently, multiplex PCR 
for the detection of C. botulinum and C. perfringens 
toxin genes was reported on eight suspected food borne 
botulism cases45. 

Clostridium botulinum: Bacterium

 Bacteria isolated from the outbreaks of the 
beginning of the century were not all similar to the 
Van Ermengem’s strain46. The clinical manifestations 
of the intoxication were all alike, but the cultural 
characteristics and growth requirement of different 
isolates differed. By cross neutralization tests of their 
respective toxins the different C. botulinum isolates 
were divided into two types, A and B47. Bacteria were 
also isolated from animal botulism cases in 1920 
and were designated as type C48 and D49. Thereafter, 
a serotype E was isolated from fish food50. Moller 
& Scheibel51 isolated serotype F and Gimenez & 
Ciccarelli52 serotype G, respectively from a Danish 
patient and Argentinean soil. Thus, seven distinct 
serotypes of botulinum toxin have now been isolated, 
designated A through G. That means one serotype 
has been isolated approximately every 12 years since 
Van Ermengem’s original isolation. Serotypes A, B, 
E and F have been clearly identified in numerous 
human poisoning episodes. Serotype G has only been 
identified in a few outbreaks. Serotypes C and D have 
been found in outbreaks involving various animals. 

Why humans are typically not poisoned by serotypes 
C and D is not clear. 

 Early chromosomal DNA-DNA homology 
studies53 showed that the single species decision did 
not hold up to modern nucleic acid based taxonomical 
scrutiny and later C. botulinum was divided into three 
groups I to III54. This decision was validated through 
16S ribosomal RNA sequence analysis55-57. The non-
disease forming serotype G52, found at the time of 
grouping was termed as C. botulinum group IV by 
Smith & Hobbs58, but has subsequently been given a 
species name of its own, Clostridium argentinens59. It 
has been recognized that the botulinum neurotoxins are 
produced by four distinct groups of C. botulinum based 
on cultural and biochemical properties or DNA-DNA 
homology. However, in 1986, it was demonstrated that 
two clostridial species other than C. botulinum produced 
botulinum toxin in three cases of infant botulism, 
two in Rome, Italy60 and one in New Mexico61. Type 
BoNT/E producing C. butyricum was isolated from the 
cases in Rome and BoNT/F producing C. baratii from 
the infant botulism case in New Mexico. Generally a 
single organism expresses a single toxin type but some 
strains of C. botulinum are also reported to be capable 
of producing mixtures of two types of toxin, such as 
A+F, A+B or B+F2. In addition, strains that possess 
unexpressed, ‘silent’ genes have also been reported62. 

 Whole genome sequences of various C. botulinum 
strains along with their plasmids are available in the 
GenBank depositories. Total 17 C. botulinum complete 
genomes have been sequenced (till Oct, 2009), which 
include representatives of all the serotypes excepting 
C. botulinum type G63-68. These genomes provide an 
excellent opportunity for comparative analysis of C. 
botulinum and will undoubtedly provide valuable 
insights into the pathogenicity, metabolic diversity and 
evolution of these organisms.

Botulinum neurotoxins

 Botulinum neurotoxins are the most poisonous 
poison known to the humankind produced by strains 
of C. botulinum. The lethal dose for a person by the 
oral route is estimated at 30 ng69, by the inhalational 
route 0.80 to 0.90 µg, and by the intravenous route 
0.09 to 0.15 µg38. Assuming an average weight of 70 
kg each of 5.6 billion people, only 39.2 g of pure BoNT 
would be sufficient to eradicate humankind22. Due to 
their absolute neurospecificity these neurotoxins do 
not react with any substrates in the presynaptic motor 
neurons, BoNTs are extremely toxic17. The two most 
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likely mechanisms for use of botulinum toxin as a 
terrorist weapon include deliberate contamination of 
food or beverages or via an aerosol release71.

 In type A, three different sized progenitor toxins 
with molecular masses of 900 kDa (19 S, LL toxin), 
500 kDa (16 S, L toxin) and 300 kDa (12 S, M toxin) 
were observed72-74. Types B, C and D strains produce 
both 16 S and 12 S toxins, whereas types E and F 
produce 12 S toxins and type G produces only 16 S 
toxin75. Therefore, it was postulated that 19 S and 16 S 
toxins have both haemagglutinin (HA) and non-toxin 
non-haemagglutin (NTNH) proteins whereas 12 S 
toxin is formed by association of NTNH protein only.

 The neurotoxin is released as a single polypeptide 
chain of 150 kDa, which is later nicked to generate two 
disulphide linked fragments, the heavy chain (H, 100 
kDa) and light chain (L, 50 kDa) (Fig.). The H chain is 
responsible for binding, internalization and membrane 
translocation, whereas L chain for target modification 
in the cytosol76. The function of L chains has been 
established as zinc dependent endopeptidases77, and the 
substrates are one of the three proteins of the docking 
complex responsible for release of acetylcholine from 
synaptic vesicles. Light chain of types A, C and E 
acts on SNAP 25 78-81 and VAMP/ synaptobrevin is 

cleaved by BoNT B, D, F and G along with tetanus 
neurotoxin77,79,82-84 whereas syntaxin is cleaved by 
BoNT/C85,86. BoNT is internalized in cholinergic nerve 
endings and remain in the presynaptic motor neurons 
causing flaccid paralysis76.  

Characterization and detection of Clostridium 
botulinum and their toxins

 Basic principal of detection and isolation of C. 
botulinum from clinical, food and environmental 
samples has remained essentially unchanged since E 
Van Ermengem’s first report, more than a century ago5. 
Isolation of C. botulinum almost invariably starts with 
anaerobic enrichment of the samples in a non selective 
culture media87, e.g. Robertson cooked meat medium 
(CMM) or trypticase-peptone-yeast extract-glucose 
(TPYG) broth  for 3-10 days at 26-35˚C. Usually 
culture are heat (70˚C for 10 min) or ethanol treated 
(50 % for 1 h) prior to plating to get rid off vegetative 
cells which greatly improves subsequent isolation88. 
Although selective media89 for C. botulinum have been 
developed, their use has remained limited. The efficiency 
of selection in the media has been questioned90, since 
antibiotics used seems to inhibit some strains of type E 
and to alter the appearance of type G colonies91.

 The optimal and minimal growth temperatures for 
group I strains is 35-40 and 10˚C, for group II strains 
18-25 and 3.3˚C, and for group III strains 40 and 15˚C, 
respectively2. The cells of all strains of C. botulinum are 
straight to slightly curved sporulating, anaerobic bacilli 
with round ends, measuring 2 to 20 μM in length and 
0.5 to 2 μM in width31. The spores are oval and sub-
terminal and usually swell to occupy the sporangium92. 
The spores are resistant to heat, desiccation, chemicals, 
radiation and oxygen which facilitate their survival for 
very long periods. Most cultures retain Gram stain 
well, becoming Gram-negative only after sporulation 
or during late stationary phase31. 

 It is thought that since C. botulinum is an anaerobic 
organism, it will be unable to grow in foods which are 
exposed to oxygen or in foods which do not have a low 
oxidation-reduction potential (Eh). Actually, the Eh of 
the food exposed to oxygen is low enough in most of 
the food to permit the growth of C. botulinum. Even 
though the maximum growth occurs at an Eh of -350 
mV93, C. botulinum can grow at Eh values as high as 
+ 250 mV94. A substantial body of research has shown 
no growth of C. botulinum at pH 4.8 or lower and led 
to the current government regulation that canned foods 
at pH 4.6 or lower would be safe without conventional 

Fig. The di-chain structure of a botulinum neurotoxin A (BoNT/A). 
Botulinum neurotoxins are ~150-kDa proteins, synthesized as 
single-chain polypeptides and post-translationally nicked to form 
di-chain molecules. They share the same domain architecture and 
overall structure. The light and heavy chains of BoNT/A are linked 
by a single disulphide bond, Cys430–Cys454. The light chain, 
shown in red, functions as zinc-dependent endopeptidase. The 
heavy chain comprises two functional domains of roughly equal 
size. The N-terminal section, shown in blue, is the translocation 
domain and is thought to be involved in translocation and activation 
of the LC. The C-terminal section, shown in green, is acting as 
binding domain. 
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sterilization95. One of the first definitive attempts to 
influence water activity (aw) was performed by Denny 
et al96 and reported that the growth of C. botulinum 
type A and B was dependent on aw of canned bread 
and not on moisture content. No toxin was produced in 
canned breads stored up to two years with aw values ≤ 
0.950. Emodi & Lechowich97 found that the minimum 
aw for the growth of type E ranges from 0.972 to 0.978 
in a wide variety of solutes. The minimum aw values 
for the growth of types A and B in food is 0.94 and 
for type E is 0.97 corresponding to a sodium chloride 
concentration of 10 and 5 per cent, respectively.

 Identity of C. botulinum and other BoNT producing 
clostridia is confirmed by toxin detection. Table I lists 
detection limits, field applicability and the types of 
samples for which BoNT assays were demonstrated. 

 In outbreaks of botulism, it is customary to assay 
suspected foods, patient’s sera, faeces samples and 
enrichment cultures for the presence of toxin91.  Half 
ml of undiluted toxin preparation with same amount 
of 1:2, 1:10 and 1:100 diluted antisera in gelatin 
phosphate buffer should be intra-peritoneally injected 
in pairs of 15-20 g mice. Through incorporation of 
serotype testing by Leuchs46 and Burke47, the method 
has evolved present day form, the mouse bioassay88. 
The second stage of the mouse lethality test is to 

identify the serological toxin type by mouse protection 
assay with specific monovalent (types A-G) antisera. 
Universally acknowledged for detecting biological 
activity of BoNTs in samples, the mouse bioassay, 
although is highly sensitive, has been criticized as being 
slow, laborious, expensive and lacking in specificity. 
Furthermore, the increasing public resistance to animal 
testing makes it clear that there is a need to replace 
bioassay with reliable in vitro test109. Recovery of 
C. botulinum from stools or gastric samples with 
symptoms and signs indicative of botulism is usually 
sufficient for confirmation. Recovery of the organism 
from food that does not contain demonstrable toxin is 
inconclusive. Electrophysiological studies can provide 
a presumptive diagnosis of botulism in patients with 
clinical signs of botulism110 and can be especially 
helpful when laboratory tests are negative.

 Numerous attempts were made to replace mouse 
bioassay with immunological based methods i.e., 
fluorescent antibody test111, immunodiffusion112, 
fiber optic biosensor113, streptavidin-biotin amplified 
ELISA114 and ELCA (enzyme linked coagulation 
assay) amplified ELISA115. Some of these methods 
are sensitive enough and used in some laboratories 
for screening samples, however, any of these methods 
is so far not authorized for official or clinical use due 

Table I. Performance of existing botulinum toxin assays
Assay Type of toxin Time of the  

assay
Detection limit Potential for field

Diagnostics*
Sample type

Mouse neutralization assay88 A, B, C, D, E, 
F, G

1-4 days 20-30 pg/ml ++ Foods, serum and stool

TRF98 A, B 2 h 20-200 pg/ml. + Clinical/environmental samples

Fluorometric
Biosensor99

A, B uncertain ? +/- Aassay  buffer and live cells

Modified ELISA100 A, B, E, F 6 h 0.6 ng/ml ++ Liquid and solid foods, serum
Micromechanosensor101 B 15 min >8 nM ++ Sample buffer
Mass Spectometry
MALDI-TOF-MS/
Endopeptidase-MS102

A, B, E, F 4 - 16 h 5 pg/ml or lower +/- Milk, serum and stool extract

BoNT ALISSA103 A 2-3 h 0.5 fg/ml ++ Serum, milk, carrot juice, gelatin 
and phosphate diluents

Immuno-PCR104 A, B, E 4 - 6 h 50 fg/ml +/- Carbonate buffer
Liposome PCR assay105 A 6 h 0.2 fg/ml +/- Carbonate buffer
Enzyme-amplified protein 
microarray immunoassay106

A 10 min 1.4pg/ml + Blood and plasma

SPR170 B, F 5 min 0.1 pg/ml +/- Assay buffer
Ganglioside-liposome 
immunoassay108

A 20 min 15pg/ml +/- Assay buffer

*Potential for field diagnostics: ++ high, +intermediate, +/- low
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to their inability to differentiate active and inactive 
neurotoxin109. Recently, PCR-ELISA has been used for 
the study of prevalence of C. botulinum type A, B, E 
and F in fish and environmental samples in northern 
France116. In another attempt, extreme biological 
specificity of the BoNTs for proteins VAMP, SNAP25, 
etc., in the nerve cells, has been utilized in a novel 
‘second generation’ ELISA, the endopeptidase assay117. 
Attempts are also being made to develop sensitive 
endopeptidase assay utilizing small fluorigenic peptide 
substrates for the protease activities of botulinum 
neurotoxins, serotypes A, B, and F118.

 PCR-based methods119 detecting the botulinum 
neurotoxin (BoNT) gene was pioneered to replace 
the time consuming conventional methods and mouse 
bioassay. Since then different workers42,120-125 have 
applied this technique for the detection of BoNT genes 
in epidemics, environmental samples screening and 
epidemiological prevalence studies. Lindstrom et al126 
have described and detected four BoNT genes namely 
types A, B, E and F by multiplex PCR.

 The first report about genomic characterization 
of C. botulinum was published in 1995 and included 
MRP analysis of four type A strains by pulsed field 
gel electrophoresis (PFGE)127. Hielm et al128 described 
the use of PFGE in genomic analysis of group II C 
botulinum and found it to be highly discriminating and 
reproducible. However, not all strains were typeable 
either due to DNA degradation by active endonucleases 
or resistance of the cell wall to lysis. The application of 
rRNA gene restriction pattern analysis (ribotyping) for 
the genomic characterization of C. botulinum groups 
I and II strains has also been reported129. However, 
the discriminatory power was found to be lower than 
that of PFGE and there were some difficulties in the 
interpretation of patterns generated by certain restriction 
enzymes. Therefore, ribotyping was concluded to be 
suitable only for taxonomic purposes in C. botulinum 
species identification.

Protection against botulinum neurotoxin

 Since the reported cases of all forms of botulism are 
rare, vaccination for general population is not warranted 
on the basis of cost and expected adverse reactions 
with even the best vaccines. Moreover, vaccination 
against BoNT will restrict its therapeutic and cosmetic 
applications in the subjects. There are two basic 
alternatives for prophylaxis of high risk individuals 
from botulinum poisoning; active immunization 
using a vaccine, or passive immunotherapy using 

immunoglobulin. In cases of wound botulism, the wound 
should be surgically debrided and antibiotics should 
be administered (usually penicillin). A pentavalent 
crude toxoid vaccine (A-E) and a singular F toxoid are 
investigational drugs distributed by the CDC to military 
and research workers that might come into contact with 
toxin130. Since these have not acquired FDA approval, 
these toxoid vaccines are not licensed for general 
distribution. The impetus to meet FDA requirements 
is low, because these vaccines require frequent 
boosters and are toxic due to the formaldehyde used 
to inactivate the toxins131. Efficacy of the pentavalent 
botulinum toxoid (PBT) was evaluated and antibodies 
concentrations were found to be significantly higher (≥ 
0.25 U) in 99 per cent of the 508 military personnel 
vaccinated before and after Persian Gulf War132.

 Even though toxoid vaccines are available, there 
are numerous shortcomings with their current use133. 
(i) C. botulinum being spore former, a dedicated 
facility is required; (ii) yields of toxin production are 
very low; (iii) the toxoiding process involves large 
quantities of toxin and thus dangerous; (iv) toxoid 
proteins are not purified thus other proteins may 
influence immunogenicity or reactivity of the vaccine; 
and (v) since the residual levels of formalin are part 
of the product formulation to prevent reactivation of 
toxin, the vaccine is reactogenic. The development of 
a new generation recombinant vaccine could alleviate 
many of the problems associated with the toxoid. So 
the alternative approaches to develop vaccines against 
the botulinum neurotoxins are currently being pursued 
by several laboratories. Attassi & Oshima134 have 
synthesized a series of overlapping 19 mer peptides that 
spawned the entire Hc region of BoNT/A and reported 
as vaccine candidate. Lee et al135 introduced a gene 
fragment encoding non-toxic Hc region of BoNT/A 
into Venezuelan equine encephalitis virus replicon 
vector to yield high levels of Hc that protected mice 
against a 105 LD50 challenge of BoNT/A. Byrne et al136 
expressed the region of BoNT/A in Pichia pastoris 
and recombinant BoNT/A Hc prevented botulinum 
intoxication. Immunization of mice with three doses of 
1 mg heavy chain of BoNT/B was fully protective when 
mice were challenged with 106 LD50 BoNT/B after 1 
year of vaccination133. DNA vaccine137 fused with signal 
peptide could protect mice against 104 MLD challenge 
of BoNT/F. Recently, a single dose of adenovirus-
vectored vaccine molecules derived from heavy chain 
of type C are reported to provide protection against 
botulism138,139.
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 Antitoxin therapy140 is more effective if undertaken 
early in the course of illness. The only antitoxins 
available are equine antitoxin from CDC (neutralizing 
antibodies against BoNT/A, /B, and /E) and an 
investigational heptavalent (against ABCDEFG) 
antitoxin. BabyBIG®, derived from the blood of human 
donors vaccinated with a pentavalent (ABCDE) toxoid 
vaccine, is only available for infant botulism141.  This is 
not surprising when one considers that equine antitoxin 
neutralizes only toxin molecules yet unbound to nerve 
endings142. More than 80 per cent of persons reported 
with adult botulism in the United States are treated 
with antitoxin. However, treatment is not without 
risk, as approximately 9 per cent of persons treated 
experience hypersensitivity reactions143. A human-
derived botulism antitoxin, termed “botulism immune 
globulin”144, has been prepared, and a clinical trial of 
its efficacy when given early in the course of illness is 
in progress in California. 

Molecular inhibitors against neurotoxin 

 The BoNT molecule is divided in clear functional 
domains that can operate independently. This feature 
provides multiple targets for designing therapeutics to 
treat botulism. Therapeutics against BoNT can target 
any of the three steps of mode of action of BoNT: 
binding, endocytosis/translocation, and endopeptidase 
activity. Humanized monoclonal antibodies, small 
peptides, peptide mimetics, receptor mimics, and 
small molecules targeting active sites are candidates 
for inhibiting botulinum toxin and may eventually 
be used in treatment strategies. Studies reported that 
toosendanin145-147 (major limonoid constituent of the 
bark of the tree M. toosendan) could protect monkeys 
from BoNT/A, BoNT/B, and BoNT/E-induced death 
in a dose dependent fashion when co-administered 
with, or several hours after, neurotoxin administration. 
A semisynthetic strategy to identify inhibitors based on 
toosendanin, has been reported by Fischer et al148 to 
protect from BoNT intoxication. 

 Based on the substrate information, several small 
peptides have been developed as competitive inhibitors 
for the BoNT endopeptidase activity. Peptidomimetics 
and hydroxamic acid-based inhibitors have been 
developed that display inhibitory effects149-152 in the high 
nm range for the light chain of the BoNT serotype A.

 Many drug-like small molecule libraries are 
available commercially as well as in national 
repositories. Screening these drug-like compounds has 
become critical in finding new therapeutic candidates. 

Screening such libraries requires a robust assay 
feasible for the high throughput screening. Such assays 
have been developed for screening the endopeptidase 
activity of BoNT106,107, making it feasible to find 
inhibitors against the protease activity of BoNT by 
screening large library of compounds.

 Other target to design antagonists against botulism 
is to block the binding between BoNTs and their 
receptors. Cai et al153 have demonstrated that the 
quinic acid can inhibit the binding between HcQ and 
the ganglioside at the concentration of 10 mM. While 
receptor mimics are valid targets for designing inhibitors 
against the botulism, like antibody based therapy, the 
treatment window for such agents is short, since they 
can only target at the circulation level. Once the toxin 
gets internalized into the nerve cells, effectiveness of 
receptor-based inhibitors will be very limited.

 Aptamers form unique structures that provide basis 
for high affinity and specificity towards their targets 
(proteins or the small molecules). Their specific and 
tight interactions serve as valuable tools to modulate or 
block functions of proteins. The screening process for 
aptamers is popularly termed as SELEX (Systematic 
Evolution of Ligands through EXponential enrichment). 
An efficient and easy-to-execute single microbead 
SELEX approach is developed to generate high affinity 
ssDNA aptamers against botulinum neurotoxin154.

 Targeting extracellular neutralization and binding 
of BoNT to cell surface will provide effective 
prophylactic treatment and prevention measures to 
botulism. An effective BoNT-based drug delivery 
vehicle can be used to directly deliver toxin inhibitors 
into intoxicated nerve terminal cytosol to reverse the 
paralysis. Recently, amino dextran based drug delivery 
vehicle has been reported to deliver BoNT-A antidotes 
into BoNT-A intoxicated cultured mouse spinal cord 
cells155. This approach can potentially be utilized for 
targeted drug delivery to treat other neuronal and 
neuromuscular disorders.

BoNTs as magic drug

 One of the most fascinating aspects on C. botulinum 
in recent years has been development of the most 
potent toxin into a molecule of significant therapeutic 
utility. Purified protein derived from the bacterium C. 
botulinum type A was originally developed about three 
decades ago by US scientists for medical use156,157. 
BoNT is the first bacterial toxin licensed by USFDA as 
‘occulinum’ a drug for the treatment of blepharospasm 
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in 1989. Botox® (from Allergan), minute amount of 
purified BoNT/A, is the only botulinum toxin treatment 
to have undergone the rigorous approval process in 15 
countries required to secure a license for the treatment 
of facial wrinkles. This holds a unique position in that it 
is a safe and effective medical treatment for a number of 
highly distressing conditions, while also being used as a 
cosmetic therapy where there is no underlying medical 
condition. Lately, BoNT/B158 and BoNT/F159 were also 
successfully used to prevent muscles hyperactivity. 
As of January 2008, two BoNT serotypes (A and B) 
are approved for clinical use in the United States by 
Food and Drug Administration (www.fda.gov). A 
carefully purified and defined quantity of the botulinum 
neurotoxin is injected by a trained surgeon within the 
spastic muscle which considerably reduce presynaptic 
outflow of acetylcholine at the neuromuscular junction, 
with a consequent diminution in muscle hyperactivity/
contraction, while leaving some strength for the 
physiological function. A basal rate of acetylcholine 
secretion across the synaptic cleft occurs continuously, 
with each packet of acetylcholine depolarizing the 
post-synaptic membrane to create miniature end plate 
potentials (MEPPs). MEPPs summate to maintain 
the motor end-plate potential (EPP). Botulinum 
neurotoxins prevent acetylcholine secretion, reducing 
the frequency and quantity, but not amplitude of 
MEPPs. The motor EPP is reduced below the muscle 
membrane threshold and the ability to generate muscle 
fiber action potentials and subsequent contraction is 
diminished160. These toxins are safe drugs. One reason 
is that upon injection the protein does not diffuse 
beyond 2 cm, exerting its paralyzing activity around 
the injection site with very limited spreading. Several 
pharmaceutical preparations of botulinum toxins for 
the treatment of human diseases in ophthalmology, 
neurology and dermatology are currently marketed 
under the trade names Botox® , Dysport® and Xeomin® 
(based on botulinum neurotoxin A), and Myoblock® /
Neuroblock® (based on botulinum neurotoxin B)161-163. 
With the exception of Xeomin, which is practically 
devoid of complexing proteins164, the other commercial 
formulations of botulinum toxins include, besides the 
neurotoxin, other bacterial complexing haemagglutinins 
and nonhaemagglutinin proteins as well. Several 
additional substances (e.g., albumin, sucrose, lactose) 
are included in these preparations and aim at drug 
stabilization and facilitation of administration by 
intramuscular injection. In lyophilized form the toxins 
may be kept in long storage; however, if diluted with 
saline for injection, these must be used within a few 

hours. The biological potency of these preparations is 
expressed in mouse units. One mouse unit is defined 
as the intraperitoneally injected quantity of each 
pharmaceutical product required to kill 50 per cent 
(LD50) of an experimental group of female Swiss-
Webster mice, each of 20 g body weight. The US FDA 
has approved use of these preparations in cervical 
dystonia, blepharospasm, spasmodic, torticollis, 
strabismus and glabellar frown lines. These are being 
used in approximately 150 different indications, e.g., 
disorders of ocular motility, writer’s cramp, hemi facial 
spasm and spasticity, achalasia, chronic anal fissure 
and hyperhidrosis (Table II). The new uses for this 
‘wonder drug’ are under constant evaluation, including 
gastrointestinal smooth muscles and skeletal muscle 
spasm following CNS injury, cosmetic management of 
wrinkles179 and debarking of dogs178. One vial of Botox 
contains 100 units (U) of purified neurotoxin complex 
produced by C. botulinum type A, 0.5 mg of albumin 
(human), and 0.9 mg of sodium chloride in a sterile, 
vacuum-dried form without a preservative. The lethal 
dose of the Botox   preparation for a person of 70 kg is 
calculated to be 2,500-3,000 units. The recommended 

Table II. Uses of botulinum neurotoxin
Indication Example
Dystonias165 Cervical dystonia, Oromandibular      

dystonia, Pharyngolaryngial 
dystonias, Jaw closure/opening 
dystonias, Occupational cramps, 
Limb and axial dystonias

Spasticity166 Cerebral palsy, Brain injury, Spinal 
cord injury

Eyelid spasm167 Blepharospasm, Hemifacial spasm, 
Eyelid twitch

Exocrine gland 
hyperactivity168

Focal hyperhidrosis, Relative 
sialorrohoea, Crocodile tears 
syndrome,

Movement disorders169 Tremors, Bruxism, Tic
Pain syndromes170 Migraine, Back spasm
Urinary bladder 
dysfunction171

Sphincter- detrusor dyssenergia, 
detrusor 
hyperreflexia,

Opthalmology172 Strabismus, Entropion, Protective 
ptosis

Cosmetology173 Hyperactive facial lines-brow lines, 
Frown lines,

Gastroenterology174 Achalasia, Anal fissures, Anismus
Gynecology175 Vaginismus
Urology176 Sterile prostatitis
Dentistry177 Muscle spasm associated with 

temporomandibular joint pathology
Veterinary178 Barking dogs
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dose for large muscles, localized by touch, (e.g. 
gastrocnemius) is 100-400 units, whereas for cosmetic 
purposes usually less than 30 units are injected directly 
into the targeted muscle. For smaller muscles or deeper 
muscles, detected through electrostimulation, (e.g. 
orbicularis oculi) 1-2 sites of injection and a quantity 
of 3–4 units are effective, whereas a large muscle (e.g. 
gastrocnemius) requires 4-5 injections and 300-400 
units180,181.

 Inherent in the use of a protein-based therapeutic 
is the potential for antibody formation leading to 
a decrease in effectiveness of the treatment. Such 
secondary non-responders are seen in a relatively low 
percentage of patients, most commonly requiring large 
doses of BoNT, often on repeated occasions. Since 
the majority of the immune response is generated 
toward the Hc fragment, future protein engineering of 
hybrid toxins could provide one route to prolong the 
therapeutic efficacy of BoNT treatment.

Future directions

 Although some progress has been made in recent 
years, identification and characterization of the protein 
receptors for the BoNTs and determination of the 
mechanism of specificity of CNT binding domains 
for their receptors is an outstanding problem. Further, 
understanding the mechanism of LC translocation and 
activation within the motorneuron, including the effects 
of pH on the tertiary structures of BoNTs, will be crucial 
for rational design of engineered BoNT therapeutics. 
Further structural studies on the endopeptidase domains 
of BoNTs, including the structural basis behind BoNT 
substrate specificity, might lead to the development of 
serotype-specific inhibitors. 

 It has been proposed that the extreme 
neurospecificity of BoNT heavy chains could be applied 
to deliver engineered molecule in to nerve cells. This 
can be achieved by the replacement of light chain with 
desired therapeutic agent that could be reached in the 
nerve endings without iatrogenic complications which 
might otherwise occur182. Use of fragments of BoNT 
for the therapeutics of the future is also exciting. For 
example, harnessing the properties of the BoNT LC 
endopeptidase fragments for the creation of a range of 
‘designer’ therapeutics is a real possibility following 
the successful retargeting of the LC/A domain to cells of 
neuronal and non-neuronal origin183. Additionally, the 
ability of BoNTs to transport large polypeptides across 
the membranes could be harnessed for the delivery of 
biopharmaceuticals to cytosolic targets184. Derivatives 

of BoNT/A and BoNT/B can target compounds 
specifically to human neuroblastoma cells. The 
therapeutic potential of clostridial toxins is not limited 
to the neurotoxin for the inhibition of neurotransmitter 
release, but also has potential as an anticancer drug62. 
The technology termed ‘clostridia directed enzyme 
pro-drug therapy’ (CDEPT) in which intravenously 
injected clostridial spores are used to target hypoxic 
regions of solid tumours. Spores get localized to solid 
tumours exclusively for germination, as they cannot 
grow in healthy tissues. Genetic modification of the 
clostridial host to express anti cancer compounds 
or pro-drug converting enzymes (as in CEDPT), has 
the potential to lead the localized destruction of solid 
tumour tissue.

 Botulinum neurotoxins are of great interest to the 
medical and scientific communities. Despite causing 
disease, they have become valuable research tools and 
have wide-ranging applications as pharmaceuticals. 
As the structure and mechanism of action of the toxins 
are further dissected, the development of vaccines, 
serotype-specific inhibitors and novel therapeutics will 
undoubtedly follow.
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