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Microbial carbon use efficiency predicted from
genome-scale metabolic models
Mustafa Saifuddin1, Jennifer M. Bhatnagar 1, Daniel Segrè 1 & Adrien C. Finzi1

Respiration by soil bacteria and fungi is one of the largest fluxes of carbon (C) from the land

surface. Although this flux is a direct product of microbial metabolism, controls over meta-

bolism and their responses to global change are a major uncertainty in the global C cycle.

Here, we explore an in silico approach to predict bacterial C-use efficiency (CUE) for over

200 species using genome-specific constraint-based metabolic modeling. We find that

potential CUE averages 0.62 ± 0.17 with a range of 0.22 to 0.98 across taxa and phylogenetic

structuring at the subphylum levels. Potential CUE is negatively correlated with genome size,

while taxa with larger genomes are able to access a wider variety of C substrates. Incor-

porating the range of CUE values reported here into a next-generation model of soil bio-

geochemistry suggests that these differences in physiology across microbial taxa can feed

back on soil-C cycling.
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Soil respiration is one of the largest exchanges of carbon (C)
from the land surface to the atmosphere, releasing an esti-
mated amount of 98 ± 12 Pg C/year from soil as CO2

1,2.
Heterotrophic respiration (RH) by soil bacteria and fungi can
account for a large proportion of total global soil respiration
(35–69 Pg C/year3,4). Although this flux is a direct product of
microbial metabolism, controls over physiology and their
responses to global change are a major uncertainty in the global C
cycle5,6.

Soil respiration rates are influenced by microbial physiology
because cellular metabolism dictates what fraction of the C
consumed by soil bacteria and fungi is allocated to respiration,
biomass, extracellular enzyme production, and other metabolic
functions. Thus, the partitioning of microbial C can have a direct
impact on the global C cycle5. Variations in C partitioning among
microbial taxa is poorly characterized, yet critical to under-
standing relationships between physiology, community compo-
sition, and soil C cycling.

Carbon use efficiency (CUE) measures the partitioning of C
between microbial biomass and respiration7. Empirical estimates
of microbial CUE range from near zero to over 0.88,9. Most
biogeochemical models use a fixed value selected between 0.15
and 0.6, typically without careful parameterization8. Some of the
variation observed in CUE may be attributed to the sensitivity of
CUE to abiotic factors such as temperature and pH8,10. However,
an additional and often neglected source of variation in CUE may
be due to physiological differences between soil microbial groups
and their differential capacities for accessing particular substrate
types7,11,12. This single parameter in microbial biogeochemistry
models has direct impacts on estimates of greenhouse gas emis-
sions and terrestrial C storage5,6, and the sustainability of bioe-
nergy cropping systems13, making it necessary to survey how
CUE varies both among taxa and across substrate types.

Characterizing microbial C metabolism is particularly impor-
tant in the context of global change, which may alter the structure
and activity of microbial communities and their access to sub-
strates14. Previous work on functional and physiological varia-
bility suggests that defining bacterial taxa along a spectrum of
copiotrophy (fast-growing, adapted to high substrate availability)
to oligotrophy (slow-growing, adapted to limiting resource con-
centrations) may be one useful approach for understanding how
groups respond to changes in temperature and resource
availability15,16. Classification schemes based on trophic strategy
may be useful from a biogeochemical perspective if differences in
growth strategies correspond to variation in CUE. For example,
copiotrophs are hypothesized to show lower CUE than
oligotrophs12,17, and this could potentially alter the CUE of
microbial communities observed to shift toward a greater pro-
portion of copiotrophic bacteria in response to global change
manipulations that increase substrate availability, such as soil
warming18,19.

Observations from global change experiments and genome-
based estimates of minimal generation times have shown some
support for the classification of particular phyla, as oligotrophic
or copiotrophic14. However, these phylum-level classifications are
not consistent across studies20,21. An improved understanding of
the phylogenetic structure of biogeochemically relevant traits is
needed to identify how microbial community structure impacts C
cycling22,23. Many functional genes show strong conservation
within prokaryotes, leading to the possibility for strong phylo-
genetic structure in functional traits, particularly those that
emerge from the coordinated activity of multiple genes24. For
example, bacterial traits such as growth rates in the presence of
labile C show strong phylogenetic signals, whereas other traits
such as responses to priming show shallow phylogenetic
signals22,23. Thus, the level of phylogenetic resolution required to

characterize variation in CUE across bacterial taxa remains
unclear.

In addition to understanding the phylogenetic structure of
variation in CUE, it may be useful to explore whether particular
genomic traits predict CUE. For example, copy numbers of
ribosomal RNA operons are inversely related to growth efficiency
in bacteria, providing a method for predicting growth efficiencies
from genomes12. Similarly, genomic traits have been useful for
predicting microbial trophic strategies and biogeography, with
bacterial taxa with larger genomes occupying a wider range of
habitat types25 and dominating communities where resources are
available in diverse forms but limiting concentrations26. Com-
parable efforts for predicting CUE from genomic traits are
necessary to help overcome challenges with measuring taxa-
specific CUE for highly diverse soil bacterial communities.

In the environment, microbial taxa are exposed to variations in
substrate chemistry and supply rates that impact rates of C uptake
and growth. These abiotic factors are likely to interact with
intrinsic differences in physiology among taxa to ultimately
determine CUE. For example, observations from bacterial cul-
tures show that CUE increases with limiting resource con-
centration and with the free energy content of available
resources17. These patterns are overlaid with differences between
taxa, with potentially oligotrophic groups showing less respon-
sivity to limiting resource availability than copiotrophic taxa17.
Thus, estimates of CUE must consider both biotic and abiotic
sources of variability, including bacterial physiology, substrate
availability, and substrate chemistry.

Prior work on estimating CUE is limited to a small set
of individual microbial taxa, or involves mixed, whole
communities10,11,17. Direct measurements of CUE have been
made using a wide range of methods including calor-
espirometry11 and stable isotope approaches23,27. CUE has also
been estimated indirectly for whole communities based on
environmental variables such as resource stoichiometry10,28.
These methods can lead to CUE estimates that vary by a factor of
two or more, making direct inter-comparisons challenging10.

Using a consistent methodology to measure CUE across a
broad range of microbial taxa is necessary to determine how
physiological variation in resource use between taxa impacts
CUE. Metabolic models of bacterial physiology can be generated
from annotated genomes29 and can be used to estimate taxa-
specific biological fluxes, including biomass growth and C
uptake30. Here, we explore an in silico approach to generate
theoretical predictions of CUE for over 200 taxa using genome-
scale constraint-based metabolic modeling. We find that intrinsic
physiological differences between taxa can lead to >300% varia-
tion in CUE, which is far greater than that assumed in global
models where CUE is either fixed or varies solely in relation to
abiotic factors. We find that CUE is primarily structured at
subphylum phylogenetic levels and is correlated negatively with
genome size and GC content. These findings provide a framework
for predicting CUE from genomic traits and for inferring
potential impacts of shifts in bacterial community composition
on C cycling. Using a recent ecosystem model of heterotrophic
soil respiration (DAMM-MCNiP), we demonstrate that
accounting for the observed variation in microbial physiology
across taxa alone can have persistent implications for estimates of
soil C emissions and soil C pool sizes.

Results
CUE from manually curated models varies by taxa and sub-
strate. We first calculated CUE using the set of 13 manually
curated, published metabolic models from diverse environments
found in the BiGG database31. Flux balance analysis was
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performed for each metabolic model with C supplied exclusively
through one of 14 individual C-containing metabolites, and CUE
was calculated as the proportion of C assimilated into biomass
relative to C uptake. We observe a mean CUE of 0.53 ± 0.25 (S.E.)
across taxa and substrate types, suggesting that nearly half of
consumed C is lost via respiration on average (Supplementary
Table 1). However, these models also indicate wide variation in
mean CUE between individual taxa (0.14 ± 0.07 to 0.84 ± 0.17,
Supplementary Table 1) and equally large variation in mean CUE
across substrate types (0.26 ± 0.24 to 0.66 ± 0.20, Supplementary
Table 1).

Potential CUE from draft models varies by taxa and substrate.
Potential CUE values represent intrinsic variation in CUE based
on genomic differences between taxa, and these values were most
useful for comparisons between taxa and for identifying rela-
tionships between genome traits and CUE. Potential CUE ranges
from 0.22 to 0.98 across all taxa, with a mean of 0.62 ± 0.17
(Fig. 1). The range of potential CUE values from this analysis
corresponds to the high end of parameter settings currently used
in microbial models of the C cycle (0.15–0.68).

To assess the impact of substrate chemistry on CUE, we
calculated the dependence of biomass production on all transport
reactions associated with C uptake and secretion. We then
identified the set of C-containing metabolites that most
commonly limited biomass production across the full set of taxa
in our analysis, and calculated CUE after reducing the availability
of each of these constraining metabolites individually. The most
common constraining reactions were related to amino acid and
dipeptide uptake (Supplementary Table 2, Fig. 2). When uptake
of individual constraining metabolites was set to reduce biomass
production by 75%, mean CUE across all 18 constraining
metabolites was 0.29 ± 0.19. This corresponds to an average
decline in CUE of 0.33, or a 53% reduction in CUE, compared to
the potential CUE scenario.

Potential CUE is associated with genomic traits. Potential CUE
shows a significant phylogenetic signal (K= 0.99, p < 0.01, Fig. 3),
indicating a Brownian pattern of trait evolution, with closely
related taxa showing similarity in potential CUE values. The class
(CI= 0.02 ± 0.019, Supplementary Table 3) and order (CI=
0.016 ± 0.020, Supplementary Table 3) levels explained the
most variation in CUE. Therefore, these phylogenetic levels may
be more appropriate than the phylum level for considering
relationships between C cycling and bacterial community
composition.

Consistent with our observations based on the BIGG models
(Fig. 4), we found a negative correlation between potential CUE

and GC content in the larger set of metabolic models from kBase
(Pseudo R2= 0.20, Supplementary Table 4). In addition, potential
CUE is significantly negatively correlated with genome size
(Pseudo R2= 0.36, Supplementary Table 4, Fig. 5), the number of
genes coded for within a genome (Pseudo R2= 0.34, Supple-
mentary Table 4) and the number of transport reactions
associated with C uptake and secretion (Pseudo R2= 0.50,
Supplementary Table 4).

Variation in potential CUE impacts ecosystem-level C cycling.
Under a scenario in which the microbial community exhibited
high efficiency (CUE= 0.9), soil organic C pool sizes were nearly
twice as large following 100 years of simulation compared to the
low efficiency scenario (CUE= 0.2, Fig. 6). This was driven, in
part, by large sustained increases in microbial biomass, with the
highly efficient microbial communities producing nearly four
times greater microbial biomass than low efficiency communities
over the same time span. Despite this large increase in microbial
biomass, rates of respiration were reduced by 25% compared to
the low efficiency communities (Fig. 6).

Discussion
Genome-specific metabolic models have typically been used to
explore variation in growth and microbial community interac-
tions for small sets of microbial taxa32,33. To date, this approach
has not been applied to better understand microbial CUE, a key
parameter in emerging microbial models of the C cycle. Here, we
show large, phylogenetically structured variation in potential
CUE attributed to differences in physiology among >200 indivi-
dual bacterial taxa. We observed that CUE was sensitive to sub-
strate chemistry, substrate supply, and variation in microbial
physiology between taxa. The intrinsic variation in CUE we
observed among taxa is as large as that previously attributed to
abiotic factors such as temperature and substrate chemistry8,10.
For example, the temperature sensitivity of CUE for whole
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Fig. 1 Potential and substrate-limited CUE. Histogram of predicted potential
CUE (purple) and predicted CUE under lysine-limitation (pink) across taxa
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Fig. 2 Substrate-limited CUE. Boxplot of average CUE values across all taxa
under potential and constrained scenarios. Boxplot width is proportional to
number of models with a given constraining reaction. Dashed red line
shows average for potential CUE. Shaded region shows range of values
typically used in biogeochemical models. Solid lines within boxplots show
median. Bottom and top edges of boxes represent 25th and 75th
percentiles, respectively. Whiskers demarcate minimum and maximum
datapoints within 1.5× of the interquartile range
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communities has been modeled as declining 0.4 units over a
range of 25 oC5, while we observed over 0.6 units of variation
in potential CUE between individual bacterial taxa. We detected
a significant phylogenetic signal in potential CUE corresponding
to clustering at sub-phylum levels, and we found that potential
CUE was negatively correlated with particular genome traits,
including genome size and GC content. In addition, we identified
a particular set of amino acids, dipeptides, fatty acids, and car-
bohydrates that resulted in large reductions in CUE when their
availability was constrained. Finally, we found that the range of
variation we observed in CUE across taxa could have major
implications for estimates of respiration and C storage at the
ecosystem level.

Overall, we observed a mean potential CUE of 0.62 ± 0.17
(Fig. 1), which may represent a mean maximum CUE for bacteria
in the absence of resource limitation. Potential CUE values
represent intrinsic variation in CUE based on genomic differences
between taxa, and these values were most useful for comparisons
between taxa and for identifying relationships between genome
traits and CUE. The range of observed potential CUE values from
this analysis corresponds to the high end of parameter settings
currently used in microbial models of the C cycle (0.15–0.68).
However, empirical measurements of CUE extend well above

this mean in the absence of resource limitation9. When the
availability of metabolites was constrained to reflect more rea-
sonable expectations of resource limitation in the environment,
we observed consistent declines of approximately 53% with CUE
averaging 0.29 ± 0.19 (Supplementary Table 2).

Potential CUE varied across bacterial lineages, although not at
the phylum-level. The significant phylogenetic signal in potential
CUE indicates a Brownian pattern of trait evolution, with closely
related taxa showing similarity in potential CUE values. However,
we did not observe significant differences in potential CUE
between bacterial phyla, and the greatest level of variation was
structured at finer phylogenetic resolutions, including the class
and order levels (Supplementary Table 3). Similar conclusions
warning against broad phylum-level generalizations regarding
carbon use traits have emerged from recent work using stable-
isotope approaches22.

Certain genomic traits, such as GC content and genome
size, can be useful predictors of bacterial niche preferences
and the response of bacterial communities to environmental
changes12,25,34. Bacteria with larger genomes must allocate
greater resources towards maintenance, while smaller genomes
can exhibit greater efficiency35. In soil, taxa with larger genomes
tend to dominate communities where substrates are available in

beta29625
beta240270
beta207079
beta239760
beta20707

7
beta248

8
beta24

2115
beta24

2114
beta3

265
beta2

5772beta
2655

beta
326

8beta
214

586beta
244

921bet
a20

701
8

bet
a23

136bet
a31

045be
ta2

06
92
8

be
ta2

44
41

be
ta2

40
12
3

be
ta2

07
09
7

be
ta2

16
52
9

be
ta2

69
25

be
ta3

20
77

be
ta
20
84
07

be
ta
31
50
1

be
ta
24
48
14

be
ta
25
41
6

be
ta
12
74

be
ta
27
33

ga
m
m
a2
41
90
9

ga
m
m
a2
06
86
8

ga
m
m
a2
92
32

ga
m
m
a2
06
76
2

ga
m
m
a1

29
1

ga
m
m
a2

39
72

7

ga
m
m
a1

70
0

ga
m
m
a2

41
87

0

ga
m
m
a1

65
8

ga
m
m
a2

44
73

9

ga
m
m
a1

03
6

ga
m
m
a1

81
0

ga
m
m
a2

51
24

ga
m
m
a2

07
27

8

ga
m
m
a2

07
27

9

ga
m
m
a2

79
31

ga
m
m
a2

96
80

534042a
m

mag69
76

02
a

m
ma

g

v
17

79
2r

re

alpha23631

alpha239924

alpha239423

alpha216325

alpha23125

alpha210983

alpha210927

alpha240433

alpha242169

alpha210883

alpha242546

alpha3561

alpha27578

alpha216012

alpha1464

alpha2715

alpha29322

alpha25278

alpha1849

alpha240091

alpha884

alpha1480

alpha1262

alpha1263

alpha216407

alpha24923

alpha213861

alpha207171
alpha3854

alpha240427
alpha206960
alpha29554delta1591delta24611delta31404delta1143delta240449delta241294delta216275delta242777acido207147

acido28199
acido28550
acido26154
acido460

acido208549
acido240122

acido26089

acido341

acido23941
9

acido208
547

acido23
9421

acido4
70

acido
28399

acido
1294

acido
1295

acid
o301

0

acid
o30

09

acid
o20

854
8

acid
o24

043
8

aci
do2

394
17

aci
do2

157
05

aci
do2

957

aci
do
20
83
00

firm
20
70
30

ac
tin
o2
07
22
6

ac
tin
o2
04

ac
tin
o2
95
45

ac
tin
o2
44
09
1

ac
tin
o2
91
30

ac
tin
o2
16
38
1

ac
tin
o2
41
24
6

ac
tin
o2
07
26
1

ac
tin
o2
07
09
3

ac
tin
o2
11
00
1

ac
tin
o2
16
38
7

ac
tin
o1
54
3

ac
tin
o2
06
82
6

ac
tin
o2
96
33

ac
tin
o2
40
39
0

ac
tin
o2

40
25

0
ac
tin
o2

05
1

ac
tin
o2

07
48

9
ac
tin
o2

95
43

ac
tin

o2
07

00
3

ac
tin

o2
41

83
3

ac
tin

o2
41

81
0

ac
tin

o2
39

72
8

ac
tin

o2
16

32
0

pl
an

ct
o2

61
81

pl
an

ct
o2

57
36

pl
an

ct
o2

57
37 872902otcnalp

79342otcnalp 51
08

02
ot

cn
al

p plancto26116
plancto2443
plancto28067
plancto31613
plancto31529
plancto31528
plancto28854
plancto28853
plancto477
plancto3852
plancto31530

plancto32236
plancto2125

plancto768
plancto769

plancto24393

plancto1964

plancto1963

plancto26850

plancto978

plancto3245

verr216496

verr32425

verr32426

verr2493

verr1156

verr1567

verr26240

verr26239

verr27772

verr874

verr29794

verr215896

verr1746

verr24924

verr1806

verr471

verr244748

verr239716

verr1002

verr26477

verr241270

verr29679

verr23285

verr23289

verr23288

0.3 0.9CUE

Proteobacteria

V
errucom

icrobia

Planctomycetes

Actinobacte
ria

A
ci

do
ba

ct
er

ia

Fig. 3 Phylogenetic heatmap of potential CUE. Phylogenetic heatmap of potential CUE values from draft metabolic models. Labels on tips correspond to
kBase accession numbers

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11488-z

4 NATURE COMMUNICATIONS |         (2019) 10:3568 | https://doi.org/10.1038/s41467-019-11488-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


diverse forms but with limiting concentrations26, and bacterial
taxa with larger genomes tend to occupy a wider range of habitat
types25. In our analysis, potential CUE declined by 0.04 units per
additional Mbp in a genome (Fig. 5). However, there was a tra-
deoff between efficiency and access to substrates, as taxa with
larger genomes were able to access a larger breadth of C sources
at the cost of reductions in potential CUE. Thus, taxa with the
highest CUEs may be less adaptable to changes in substrate
chemistry, representing a more specialized trophic strategy. Prior
studies also observe copiotrophic taxa having large numbers of
genes associated with transport proteins, which would correspond
to large numbers of transport reactions associated with C uptake
and secretion34.

Nutrient limitation can lead to shifts in community composi-
tion that favor GC-poor genomes, potentially due to the greater
energetic cost of producing GTP and CTP bases36. Consistent
with these findings, we observed a strong negative correlation
between CUE and GC content (R2= 0.522; Fig. 4). Thus, envir-
onmental changes that favor GC-poor genomes may also have
ramifications for C cycling through correlated increases in CUE
and corresponding reductions in CO2 emissions.

In the environment, microbial taxa are exposed to variation in
substrate chemistry and availability, which can impact rates of C
uptake and growth37. In prior studies, CUE shows sensitivity to
substrate availability and stoichiometry at both the organismal9,17

and community levels8,28. In our analysis, we identified several
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specific amino acids and dipeptides whose availabilities limited
CUE. These findings comport with patterns of amino acid uptake
by bacteria in the environment38,39 and the incorporation of
amino acids, such as alanine, directly into cell wall components.
Amino acids represent a key input of N in soil40, and rapid
uptake by microbes results in short residence time of these
compounds in soil41,42. It is hypothesized that microbes consume
amino acids primarily as a C source, which may support the large
impact of constraining amino acid availability on CUE we
observed. Similarly, dipeptides contain higher C:N ratios than
their component amino acid monomers, and their uptake is
greater than that of amino acids43.

Structured variability in soil organic matter, chemistry in soil
could favor particular bacterial taxa over others based on their
capacity to consume available C sources. In our analysis, taxa
with the ability to consume a wide range of metabolites showed
the lowest potential CUE values because of increased uptake of
non-essential C-containing metabolites (Supplementary Table 4).
In contrast, taxa with fewer exchange reactions were able to
maintain higher CUE in the potential environment through
reduced C uptake. These differences may be related to differences
between copiotrophs and oligotrophs in terms of resource spe-
cialization, with less-specialized copiotrophic taxa showing lower
CUE. Prior studies also observe copiotrophs having large num-
bers of genes associated with transport proteins, which would
correspond to large numbers of C-containing exchange reactions
in this analysis34.

Accounting for the variation in CUE, we observed across taxa
can have significant consequences to ecosystem-level estimates of
C pool sizes and respiration rates (Fig. 6). Soil organic C pool
sizes were reduced by almost half when a community shift
towards low efficiency bacteria (CUE= 0.2, Fig. 6) was modeled
compared to a community comprised of high efficiency bacteria
(CUE= 0.9). These values represent the extremes of our potential
CUE observations and therefore represent the widest range of
expected outcomes. The change in soil organic C pool sizes we

observed was driven, in part, by large sustained increases in
microbial biomass, with the highly efficient microbial commu-
nities producing nearly four times greater microbial biomass than
low efficiency communities over the same time span. Despite this
large increase in microbial biomass, rates of respiration were
reduced by 25% compared to the low efficiency communities
(Fig. 6). Thus, accounting for variation in CUE among taxa alone
can have significant consequences to ecosystem-level estimates of
C storage and respiration rates, and these differences can persist
even at decadal timescales. While DAMM-MCNiP was para-
meterized and validated for a specific temperate forest ecosystem,
the general model structure and its dependence on CUE are
representative of soil C models used across several ecosystem
types44, suggesting that variation in CUE across taxa is likely to
have important implications for soil C cycling more broadly. In
this analysis, only CUE was varied across model runs to isolate
the impact of variation in microbial physiology while holding
other parameter settings constant. However, shifts in microbial
composition and physiology may also be concomitant with shifts
in other parameters, such as those describing enzyme activities,
making it critical to characterize these potential interacting effects
to fully describe parameter uncertainty in the future.

Direct comparisons between the values observed here and
those in other studies are challenging as potential CUE may not
have exact parallels to empirical observations in which CUE has
been measured for a small number of individual taxa or complex
soil communities. We interpret potential CUE values as intrinsic
variation based on genetic differences between taxa that may be
most useful in terms of exploring comparisons between taxa and
for identifying relationships between genome traits and CUE.
Despite the challenges with measuring CUE, developing empirical
approaches11,23 to directly estimate taxa-specific CUE will be
necessary and useful for validating these observations.

It is important to note that the limited capacity of ascribing
functions to genes through annotation pipelines, the poor
knowledge of taxon-specific microbial biomass composition, and
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the need to implement a gap-filling algorithm to compensate for
missing reactions in genome scale reconstructions can each
impact flux estimates generated through FBA models. Despite
these limitations, models generated through the pipeline used for
our draft predictions have been demonstrated to closely match
empirical phenotype data32, have been used to explore complex
community interactions45, and have been shown to successfully
predict community structure and environmental metabolomics46.
We expect that future advancements in genome annotation and
metabolic model construction paired with taxa-specific empirical
observations of CUE could use the same conceptual framework
proposed here to provide predictions with improved precision
and fidelity. Collecting empirical measurements of taxa-specific
bacterial CUE across a range of substrate types using a consistent
methodology is recommended for further validation of these
hypotheses.

The range of potential CUE values we observed between taxa is
comparable to that observed in other studies in which wide
ranges of CUE are attributed to differences between ecosystems
or due to abiotic factors10. Soil microbial communities undergo
shifts in composition under global change47, and these changes
may alter the overall soil microbial CUE if particular taxa with
uniquely high or low CUE values are favored based on growth
strategy or substrate preference. Failing to account for relation-
ships between CUE and microbial community composition may
cause ecosystem models to miss important biotic feedbacks that
can impact respiration fluxes and soil-C balance6. This analysis
explores a method for generating draft predictions of taxa-specific
CUE from metabolic models and identifies genome size and
GC content as traits that may link genomic variation with C
utilization strategies. We show that large phylogenetic variation in
CUE between individual taxa make microbial physiology and
community composition important factors to consider when
estimating microbial contributions to C cycling.

Methods
Metabolic modeling. Genome-scale metabolic modeling (also known as stoi-
chiometric modeling, or constraint-based modeling) can be used to quantitatively
analyze the complete set of metabolic reactions in an organism. This approach has
been successfully used to represent bacterial metabolism and growth patterns32,48,
uptake and secretion49,50, and complex community interactions33 in silico. The
metabolic model for a given organism can be generated by extracting the list of all
biochemical reactions available to an organism from its annotated genome. In
addition to intracellular reactions, the model includes exchange reactions, which
involve uptake or secretion of metabolites, either through genome-encoded
transporters, or expected free diffusion through the membrane. For convenience of
subsequent mathematical analysis, this list is converted into a stoichiometric
matrix, S, whose element Sij corresponds to the stoichiometric coefficients of
metabolite i in reaction j. Due to incomplete genome annotations, gapfilling is
often required to supplement models with additional reactions before models are
capable of producing a nonzero biomass flux.

Genome-scale metabolic models were selected for analysis from two separate
databases. Thirteen microbial models were selected from the Biochemically,
Genetically, and Genomically structured knowledgebase of metabolic
reconstructions (BiGG), which contains a small set of manually curated metabolic
models from diverse environments31. We utilized the following thirteen taxa in this
analysis: Clostridium ljungdahlii DSM 13528, Staphylococcus aureus subsp. aureus
N315, Saccharomyces cerevisiae S288c, Methanosarcina barkeri str. Fusaro, Bacillus
subtilis subsp. subtilis str. 168, Thermotoga maritima MSB8, Synechocystis sp. PCC
6803, Escherichia coli str. K-12 substr. MG1655, Shigella boydii Sb227, Salmonella
enterica subsp. enterica serovar Typhimurium str. LT2, Klebsiella pneumoniae
subsp. pneumoniae MGH 78578, Geobacter metallireducens GS-15, and
Mycobacterium tuberculosis H37Rv. Mean CUE was calculated from CUE on
growth on each of the following C-sources individually: D-Glucose, Fumarate,
Acetate, Acetaldehyde, 2-Oxoglutarate, Ethanol, Formate, D-Fructose,
L-Glutamine, L-Glutamate, D-lactate, L-Malate, Pyruvate, Succinate. Due to the
limited number of manually curated microbial metabolic models, we expanded our
approach to include models generated using automated pipelines (described below)
for over 200 bacterial taxa from phyla commonly observed in soil environments.

Genome selection. The BiGG database primarily includes microbial models
associated with the human microbiome, limiting our capacity to extrapolate our

findings from these well-curated metabolic models to environmental microbial
communities. We expanded our approach to target bacterial genomes belonging to
phyla commonly observed in soil environments19,47, which are of particular
interest due to their major contributions to global respiration. We queried the
Department of Energy’s kBase for over 200 taxa and used automated pipelines to
construct a large set of draft metabolic models.

The Department of Energy systems biology knowledgebase51 (kBase) was
searched in March 2016 for bacterial genomes belonging to phyla that have been
observed to dominate forest soil bacterial community composition based on 16S
ribosomal RNA and DNA sequencing15,47. A total of 23,530 genomes belonging to
the six selected phyla were identified in kBase, corresponding to 1064 unique
genera. For each phylum, at least 25 genomes were selected for analysis. For phyla
with more than 50 available genomes, the full list of unique genera was scanned to
target genera that have been observed in soil environments when possible
(Supplementary Fig. 2).

The Build Metabolic Model tool was used in kBase to generate metabolic
models from 231 selected genomes32. Model construction in kBase involves
functional annotation of the genome to identify metabolic genes and their
associated biochemical reactions using the Rapid Annotation of microbial genomes
using Subsystems Technology (RAST) genome annotation pipeline and the model
SEED framework32,52. Draft metabolic models were gapfilled using the Gapfill
Metabolic Model tool in kBase to add the minimal set of reactions required to
produce biomass on complete media, which contains all possible metabolites
available for uptake53. Gapfilling on complete media results in conservative
gapfilling by assuming that metabolites necessary for growth but not produced
intracellularly based on genome annotation are available in the environment.

Flux balance analysis. Flux balance analysis (FBA) allows for an estimation of
metabolic fluxes, such as rates of C uptake and utilization, through a metabolic
model based on linear optimization of a specified objective function, such as
biomass production. FBA makes a steady-state assumption, circumventing the
need for knowledge of kinetic parameters, and uses the stoichiometry of meta-
bolic reactions to determine the feasible space of all possible combinations of
reaction rates. By prescribing an optimization scheme, it is possible to identify
specific points in this feasible space, resulting in putative predictions of all
metabolic reaction rates in the organism, including uptake and secretion fluxes
and growth. This approach requires specification of (1) a flux or set of fluxes to
maximize (or minimize) and (2) upper and lower bounds for all reactions within
the metabolic model. Upon specification of these inputs, FBA is able to estimate
the particular combination of fluxes through all reactions in the model that
satisfy the given conditions. FBA was performed in MATLAB R2014a using the
optimizeCbModel command in the COnstraint-Based Reconstruction and Ana-
lysis (COBRA) Toolbox54. All FBA analyses were set to maximize bacterial
biomass production in this analysis, in accordance with standard FBA
assumptions33.

C use efficiency. C use efficiency (CUE) is calculated as the proportion of C
retained in biomass relative to total C uptake (Eq. 1). For a metabolic model with n
exchange reactions, and where C is equal to the number of C atoms taken up or
secreted in a given reaction:

CUE ¼
Pn

1 Uptake fluxi ´Ci�
Pn

1 Secretion fluxi ´CiPn
1 Uptake fluxi ´Ci

ð1Þ

For the set of manually curated models, the availability of one of 14 individual C
sources was manipulated, and CUE was calculated under exclusive uptake of each
metabolite separately. For the larger set of models from kBase, CUE was explored
under two scenarios. (1) potential CUE was calculated by allowing a model to
utilize all exchange reactions present, and (2) constrained CUE was calculated by
limiting the availability of a single C-containing metabolite relative to the avail-
ability of all other metabolites. Potential CUE was calculated to explore intrinsic
metabolic variation in CUE, and these values were most useful for comparisons
between taxa and for identifying relationships between genome traits and CUE. All
exchange reactions present in a model were made available for uptake by allowing
for a default maximum flux of 1000 mmol grDW−1 h−1, where grDW indicates the
cellular biomass dry weight in grams. As CUE was calculated as a ratio of fluxes,
values were not sensitive to the order of magnitude of maximum flux bounds as
long as these were consistent across reactions. Certain models produced a
respiration flux of 0 mmol grDW−1 h−1 and were excluded from subsequent
analyses of CUE.

To calculate CUE under conditions of limited substrate availability, reactions
in each metabolic model were first classified according to the following hierarchy:
(1) exchange, (2) C-containing, (3) utilized when available, (4) essential to
biomass production, and (5) constraining to biomass production (Supplementary
Fig. 1). For a given model, all C-containing exchange reactions with a nonzero
flux under potential conditions were classified as utilized. The maximum uptake
flux for each individual utilized reaction was then set to 0 mmol grDW−1 h−1 and
FBA was performed again to identify reactions that were essential for biomass
production. Finally, maximum uptake for all essential reactions was individually
set to 5% of the maximum uptake flux for all other metabolites (50 mmol grDW
−1 h−1), and FBA was performed again to detect the impact of constraining
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particular essential reactions. Reactions that resulted in a reduction of the
biomass flux by at least 5% were classified as constraining, meaning that the
biomass production flux showed a direct response to the availability of
metabolites dictated by these reactions.

Uptake fluxes for the most commonly occurring constraining reactions across
all models were analyzed to determine the response of biomass production relative
to availability for each metabolite (biomass/uptake). For 18 of the most commonly
constraining reactions, the uptake flux corresponding to a 75% reduction in the
biomass flux was identified for each model. For all models containing a given
constraining reaction, FBA was performed after setting the maximum uptake flux
for the constraining reaction to this reduced value while leaving all other exchange
reaction fluxes potential. Constrained CUE was then calculated according to
equation (1). Constrained CUE was compared to potential CUE for all models with
a given constraining reaction using paired T-tests and Cohen’s D calculated from
the lsr package55 in R Studio56.

Model evaluation and empirical comparisons. To test the sensitivity of our
results to the method of gapfilling, two parallel sets of models were constructed for
each taxon. One set of models were gapfilled to achieve a minimum biomass flux of
0.1 mmol grDW−1 h−1 while a second set was more heavily gapfilled to achieve a
(default) minimum biomass flux of 1000 mmol grDW−1 h−1. A total of 246
exchange reactions, including 211 C-containing exchange reactions, were observed
across 231 models gapfilled to the lower biomass threshold. A total of 318 exchange
reactions, including 279 C-containing exchange reactions, were observed across
231 models gapfilled to the higher biomass threshold. On average, models gapfilled
to the higher biomass threshold had only 8 additional C-containing exchange
reactions. Gapfilling intensity had a significant impact on subsequent calculations
including CUE, but inter-model comparisons and rank order were not strongly
affected by gapfilling intensity. Potential CUE values calculated from models
gapfilled at the two intensities were strongly correlated (Pearson’s rank correlation
coefficient= 0.7).

Phylogenetic analyses. The Build Phylogenetic Tree tool was used in the DOE
kBase to generate a phylogenetic tree for 220 of the 231 genomes analyzed based
on 49 highly conserved clusters of orthologous group (COG) families and the
FastTree maximum likelihood method57. Branch lengths were computed
according to the Grafen method58 using the compute.brlen command in the ape
package59 in R Studio. To test for phylogenetic signals, Blomberg’s K statistic60

was calculated using the multiPhylosignal function in the Picante package61 in R
Studio. Mean differences in potential CUE between phyla were compared using
phylogenetic ANOVA with the phylANOVA function in the phytools package62

in R Studio.
In order to determine the taxonomic level which best describes variation in

potential CUE, we used Phylocom to calculate the contribution index (CI) for
each of the 191 nodes in the bacterial phylogeny63. The CI indicates how much a
particular node on the phylogeny accounts for the total variation in potential
CUE64. After calculating the CI for all 191 nodes in our analysis, we classified the
subset of nodes where collective contributions accounted 90% of the variation in
potential CUE based on the taxonomic level at which descendent species
diverged.

The relationship between potential CUE and (1) the number of exchange
reactions, (2) the number of C-containing exchange reactions, (3) genome size, (4)
guanine-cytosine (GC) content, and (5) number of genes was assessed using
phylogenetic generalized least-squares regression with the nlme package65 in R
Studio. The proportion of variance explained by each predictor was estimated using
a pseudo R2 value designed for nonlinear regression66 using the r.squaredLR
function in the MuMIn package67, which estimates the improvement of the fit
model relative to a null model based on a likelihood ratio test. The stepAIC
function in the MASS package68 was additionally used to determine the simplest
regression model with multiple predictors.

Ecosystem modeling. The Dual-Arrhenius Michaelis-Menten Microbial C and
Nitrogen Physiology (DAMM-MCNiP) model was used to estimate potential
impacts of the observed variation in CUE on ecosystem-level C fluxes. DAMM-
MCNiP models the effects of soil moisture and temperature on coupled C and
nitrogen fluxes through soil pools and microbial biomass69. Specifically, the model
uses Michaelis-Menten kinetics to describe the depolymerization of soil organic C
and soil organic Nitrogen by microbial extracellular enzymes to produce dissolved
organic C (DOC) and dissolved organic N (DON). Maximum reaction velocities
are governed by temperature-sensitive Arrhenius functions. Uptake of DOC and
DON by microbial biomass is governed by a second series of Arrhenius and
Michaelis-Menten kinetic equations, which are sensitive to moisture-mediated O2

availability. Following uptake, the parameter CUE is used to determine the parti-
tioning of C between microbial biomass and soil respiration. DAMM-MCNiP has
been parameterized to describe seasonal patterns in heterotrophic soil respiration
at a temperate forest site, and is able to capture 56% of variation in empirical
observations of seasonal heterotrophic respiration at an hourly scale69 (RMSE=
0.25, R2 adjusted= 56). The published model uses a default CUE value of 0.3 as
used in several other ecosystem models. We modified the parameterization of CUE

in this model (while retaining all other parameter settings as described in detail in
Abramoff et al. 2017, Supplementary Table 5) to reflect the range of variation
observed in CUE across taxa. We then quantified the impact of this variation on
model estimates over 100 repeated cycles of annual variation in temperature and
moisture to assess long-term impacts.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data used in this analysis are available in the supplementary material and additionally
available upon request.
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