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The human visual system supports stable percepts of

object color even though the light that reflects from

object surfaces varies significantly with the scene

illumination. To understand the computations that

support stable color perception, we study how

estimating a target object’s luminous reflectance factor

(LRF; a measure of the light reflected from the object

under a standard illuminant) depends on variation in key

properties of naturalistic scenes. Specifically, we study

how variation in target object reflectance, illumination

spectra, and the reflectance of background objects in a

scene impact estimation of a target object’s LRF. To do

this, we applied supervised statistical learning methods

to the simulated excitations of human cone

photoreceptors, obtained from labeled naturalistic

images. The naturalistic images were rendered with

computer graphics. The illumination spectra of the light

sources and the reflectance spectra of the surfaces in the

scene were generated using statistical models of natural

spectral variation. Optimally decoding target object LRF

from the responses of a small learned set of task-specific

linear receptive fields that operate on a contrast

representation of the cone excitations yields estimates

that are within 13% of the correct LRF. Our work

provides a framework for evaluating how different

sources of scene variability limit performance on

luminance constancy.

Introduction

The perceived color of an object has important
behavioral implications because color helps to identify
objects and their surface properties (Jacobs, 1981;
Mollon, 1989). The computational challenge underly-
ing object color perception is that the light reflected
from an object depends not just on the object’s surface
reflectance, but also on object-extrinsic factors such as
the scene illumination, the pose of the object, and the
viewpoint of the observer in the scene (Figure 1a). To
compute a perceptual representation of object color
that is correlated with the object’s physical surface
reflectance, the visual system must account for these
object-extrinsic factors. The ability of a visual system to
compute a representation of object color that is stable
against variation in object-extrinsic factors is called
color constancy. A well-studied special case of color
constancy is when the stimuli are restricted to be
achromatic. This special case is called lightness
constancy (Gilchrist, 2006). Although human lightness
and color constancy are not perfect, they are often very
good (Adelson, 2000; Foster, 2011; Kingdom, 2011;
Brainard & Radonjić, 2014).

The computational problem of color constancy may
be framed as how to obtain stable descriptions of the
spectral surface reflectance functions of the objects in a
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scene. Early work on computational color constancy
considered a simplified imaging model where scenes
consisted of multiple flat matte objects and a single
spatially diffuse illuminant (Land, 1977; Buchsbaum,
1980; Maloney & Wandell, 1986). Subsequent work
incorporated probabilistic descriptions of the statistics
of naturally occurring scenes (D’Zmura & Iverson,
1994; D’Zmura, Iverson, & Singer, 1995; Brainard &
Freeman, 1997). A key insight from these computa-
tional studies is that stable color descriptors of a target
surface cannot be obtained solely from the light
reflected from that target object. It is possible, however,
to obtain stable color descriptors by jointly analyzing
the light reflected from multiple surfaces in the scene.
As a consequence, color constancy will be affected both
by variation in the illumination and by variation in the
surface reflectance of other objects in the scene. Color
constancy algorithms should therefore be evaluated
with respect to variation in both of these factors
(Brainard & Wandell, 1986; Brainard & Freeman,
1997).

Recently, supervised statistical learning methods
have been applied to the computational problem of
color constancy. These methods use the joint statistics
of labeled images and scene variables to learn mappings
that extract stable surface color descriptors from image
input (Barron, 2015). This general approach has been
useful for other perceptual problems in early and mid-
level vision. For example, a recently developed
technique called accuracy maximization analysis
(AMA) learns linear receptive fields optimized for

particular perceptual tasks (Geisler, Najemnik, & Ing,
2009; Burge & Jaini, 2017; Jaini & Burge, 2017). AMA
has been used to develop ideal observers for estimating
defocus blur, binocular disparity, and retinal motion
estimation with natural stimuli. These ideal observers
provide excellent predictions of human performance
(Burge & Geisler, 2011, 2012, 2014, 2015).

Supervised learning requires large labeled datasets.
Such datasets are not readily available for the study of
color constancy. Although there are datasets of
calibrated color images, these do not provide ground
truth information about surface reflectance and illu-
mination at each image location (Parraga, Brelstaff,
Troscianko, & Moorehead, 1998; Olmos & Kingdom,
2004; Chakrabarti & Zickler, 2011; Tkacik et al., 2011;
Skauli & Farrell, 2013; Nascimento, Amano, & Foster,
2016). There are a few databases consisting of images of
posed scenes where surface reflectances of individual
objects have been measured (Funt & Drew, 1988;
Ciurea & Funt, 2003), but these databases are not large
enough to drive supervised learning. Finally, recent
work has applied crowd-sourcing techniques to anno-
tate natural images with surface reflectance descriptors
(Bell, Bala, & Snavely, 2014).

In this paper, we use high-quality computer graphics
to generate large datasets of naturalistic images where
the surface reflectance corresponding to each image
pixel is known. This approach allows us to investigate
computational color constancy with naturalistic stim-
uli, while retaining the ability to control the properties
of objects and illuminants. We specifically tackle the

Figure 1. Color and luminance constancy: (a) The light reflected from an object to the eye depends both on the surface reflectance of

the object and on the scene illumination. The reflected light also depends on geometric factors, such as the object’s shape, pose, and

position. The human visual system accounts for variations in reflected light due to object-extrinsic factors and produces a percept of

object color that is relatively stable across such variations. (b) Images of a sphere under a fixed illuminant. Down each column, the

sphere’s luminous reflectance factor (LRF) varies, but its relative reflectance spectrum (i.e., its spectral shape) is held fixed. Across

each row, the relative reflectance spectrum varies, but the LRF is held fixed. We cast the problem of computational luminance

constancy to be that of estimating the LRF of a target object from the image, across variation in other scene factors. Specifically, we

study variation in target object relative surface reflectance, variation in illumination spectrum, and variation in the surface reflectance

of the other objects in the scene.
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problem of luminance constancy, a constitutive com-
ponent of the more general color constancy problem
(Figure 1b).

We define the computational problem of luminance
constancy1 as that of estimating the luminous reflec-
tance factor (LRF) of a target object’s surface
reflectance function. The LRF is a measure of the
overall amount of light reflected by a surface relative to
the reference illuminant itself.2 Obtaining the LRF
from a known surface reflectance function requires two
steps. First, one computes the luminance of the light
that would be reflected from the surface under a
reference illuminant. Second, one normalizes the result
by the luminance of the reference illuminant itself. Here
we use CIE daylight D65 as the reference illuminant
and the CIE 1931 photopic luminosity function to
compute luminance (Commission Internationale de
l’éclairage, 1986). Sometimes LRFs are expressed as a
percentage. Here we express LRFs as proportions, so
that they take on values between 0 and 1. An LRF of 0
means that none of the light from the reference
illuminant is reflected from the surface. An LRF of 1
means that the luminance of the surface reflectance
under the reference illuminant is the same as the
luminance of a perfect reflector under that same
illuminant.

Methods

Overview

There are four key steps to our methods. First, we
generate a labeled set of training images. Second, we
use a model of the early visual system to compute the
responses of the cone photoreceptor mosaic to the
labeled images. Third, we learn the receptive fields
(RFs) that extract the most useful information from the
cone responses for the task. Fourth, we evaluate how
well the responses of the receptive fields may be
decoded to achieve luminance constancy.

Labeled training data

Virtual naturalistic scenes

The light that reflects from objects to the eyes
depends on many factors. These include the surface
reflectance, texture, material and geometry of the
objects, the spectral power distribution of the illumi-
nants, and the position of the observer. We have
developed a rendering package, Virtual World Color
Constancy (https://github.com/BrainardLab/
VirtualWorldColorConstancy) that allows us to con-
struct models of naturalistic scenes, with key scene

factors under programmatic control. The package
builds on the RenderToolbox4 package (http://
rendertoolbox.org; Heasly, Cottaris, Lichtman, Xiao,
& Brainard, 2014) and harnesses the open-source
computer graphics renderer Mitsuba (https://www.
mitsuba-renderer.org; Jakob, 2010) to produce physi-
cally accurate images from the scene models. Because
the images are rendered from known scene models,
each image pixel can be labeled with the surface
reflectance of the corresponding object. By using
statistical models of daylight illumination and object
surface reflectance to guide the rendering of scenes, the
package allows us to produce large labeled sets of
images that capture key aspects of the task-relevant
statistical structure of natural scenes.

The RenderToolbox4 package includes a collection
of base scenes (Figure 2). Base scenes specify an
arrangement of objects and light sources. Base scenes
may be enriched by the insertion of additional objects,
chosen from an object library (Figure 3), and by the
insertion of additional light sources. Once the position,
size, and pose of the inserted objects and light sources
have been set, a surface reflectance function can be
assigned to each object in the scene, and a spectral
power distribution function can be assigned to each
light source (Figure 4). The resulting scene model can
then be rendered from any specified viewpoint.

In the present work, we used our package to generate
datasets of naturalistic scenes and corresponding
images. We used one fixed base scene and inserted a
spherical target object of fixed size into this scene. All
surfaces in the scene model were matte and did not
have specularities. There were multiple light sources in
the scene, and the rendering process simulated shadows
as well as mutual reflection of light between nearby
surfaces. We generated three distinct datasets, which we
refer to as Conditions 1–3 (Figure 5). These are
described below. Across these datasets the luminance
constancy problem (i.e., estimating the target object
LRF) becomes progressively more difficult.

The variation within our datasets captures the
essence of the computational problem of lightness
constancy up to effects of scene geometry, an addi-
tional richness that we do not address in this paper (see
Funt & Drew, 1988; Barron & Malik, 2012).

In Condition 1, the relative reflectance spectrum of
the target object was the only source of scene variation
other than the target object LRF. The reflectance
spectra of the background objects and the spectral
power distribution of the light sources were held fixed.
In Condition 2, the spectral power distribution of the
light sources varied in addition to the relative
reflectance spectrum of the target object. Finally, in
Condition 3 three distinct scene factors—target object
relative reflectance spectrum, spectral power distribu-
tion of the light sources, and reflectance spectra of the
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Figure 3. Library base scene with inserted objects. The rendering package can be used to insert objects into base scenes. Each image

shows a different object inserted into the Library base scene. The rendering viewpoint was set so that the object was at the center of

the images. The full rendered images have been cropped so that the inserted objects are easily visible.

Figure 4. Scene transformations. The properties of a visual scene can be broadly classified into two groups: geometrical (a–b) and

spectral (c–e). Our rendering package provides control over these properties as illustrated by the columns of the figure. (a) Variation

in inserted object positions. (b) Variation in object size and pose. (c) Variation in the surface reflectance of the target object. (d)

Variation in the spectral power distributions of the light sources. (e) Variation in surface reflectance of the background objects. All

images in this figure are rendered with common scaling and tone mapping.

Figure 2. Base scenes. Each image shows a rendering of one base scene without additional inserted objects. The reflectance spectra of

the distinct surfaces and the spectral power distributions of the light sources in each scene have been assigned randomly from

statistical models of naturally occurring spectra. The images have been scaled and tone mapped individually for illustrative purposes.

Journal of Vision (2018) 18(13):19, 1–17 Singh et al. 4



background objects—varied in addition to the target
object LRF. The datasets for Conditions 1 and 2
consisted of 1,000 scenes and images, 100 for each of 10
target object LRF values. The dataset for Condition 3
consisted of 3,000 scenes and images, 300 each for the
10 target LRF values. The LRF values were equally
spaced between 0.2 and 0.6. More than 90% of the
surface reflectance spectra (described below) fell within
this range. For each LRF value, we generated a
different relative target object surface reflectance for
each scene.

We used the Library base scene and a spherical
target object. The Library base scene contains two area
lights. We inserted one additional spherical light source
into the scene. In Conditions 2 and 3, the overall
intensities of the three light source illumination spectra
were equal, while their relative shape varied. The
overall intensity varied from scene to scene. The
position and size of the inserted object, the inserted
light source, and the viewpoint on the scene were held
fixed across all scenes. The geometry is shown in Figure
4a (top). Surface and illuminant spectra were sampled
from statistical models of naturally occurring spectra.
Multispectral images (320 3 240 pixels) were rendered
at 31 evenly spaced wavelengths between 400 nm and
700 nm.

Illumination spectra

To generate illumination spectra, we developed a
statistical model of the Granada daylight measure-
ments (Hernández-Andrés, Romero, Nieves, & Lee,
2001; http://colorimaginglab.ugr.es/pages/Data) and
then sampled randomly from the model. To match the
wavelength spacing we use in rendering, we resampled

the wavelength spacing of the Granada spectra to 31
evenly spaced wavelengths between 400 nm and 700
nm.

Our statistical model approximates normalized
spectra from the Granada dataset using the first six
principle components of the normalized measurements
from that dataset. The distribution of weights on these
components is approximated with a six-dimensional
Gaussian, where the mean and covariance matrix
match the sample mean and covariance of the weights
(Brainard & Freeman, 1997). To generate a random
relative illuminant spectrum, we sample weights ran-
domly from this Gaussian and then perform a weighted
sum of the components. Figure 6b illustrates the
relative spectra of draws obtained using this procedure.
Chromaticities and rendered color renditions of these
draws are shown in Figures 6c and 6d. Details of the
statistical model for illumination are provided in
Supplementary Appendix S1.

The multivariate Gaussian model described above is
based on normalized spectra. Thus, it does not embody
the large variation in overall intensity of natural
daylights. To restore the overall intensity variation in
the Granada dataset, which spans approximately three
orders of magnitude, we scaled each randomly gener-
ated spectrum with a random number sampled from a
log-uniform distribution spanning three orders of
magnitude. The particular range of scale factors was
chosen so that the mean number of cone isomerizations
from the target object ranged from approximately 100
to 100,000, given a 100 ms cone integration time (see
below). This range of cone isomerizations corresponds
approximately to that of natural daylight viewing.

Figure 5. Conditions 1–3: Illustrative images for the three types of spectral variations studied in this paper. (a) Condition 1: Variable

target object relative reflectance spectrum, fixed light source spectra, fixed background object spectra (same as Figure 1b). (b)

Condition 2: Variable target object relative reflectance spectrum, variable light source spectra, fixed background object spectra. (c)

Condition 3: Variable target object relative reflectance spectrum, variable light source spectra, variable background object spectra.

The spheres in each row of each panel have the same LRF, while the spheres in each column of each panel have the same relative

surface reflectance spectrum. Across Panels a–c, spheres in corresponding locations have the same surface reflectance. In all three

panels, the overall light source spectra scale factors (see Methods) were drawn from a uniform distribution on the range [0.5, 1.5].

This is smaller than the variation we studied, but allows us to show the variation within the dynamic range available for display in

publication. All images in this figure are rendered with common scaling and tone mapping.
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Surface reflectance spectra

To generate random reflectance spectra, we em-
ployed principles similar to those used to generate
random illuminant spectral power distributions. We
used measurements from the Munsell (Kelly, Gibson, &
Nickerson, 1943) and Vrhel (Vrhel, Gershon, & Iwan,
1994) surface reflectance datasets to create a dataset
containing 632 reflectance spectra (462 from the
Munsell data and 170 from the Vrhel data; Figure 7a).
We resampled the spectra to 31 evenly spaced
wavelengths between 400 nm and 700 nm. Figures 7b,
7c, and 7d illustrate reflectance samples obtained using
the model. Details of the statistical model for surface
reflectance spectra are provided in Supplementary
Appendix S1.

To generate the target object reflectance at a
particular LRF, the sampled reflectance spectrum was
scaled such that its LRF had the desired value (see
Supplementary Appendix S1). Figure 8 shows color
renderings of target reflectance spectra under CIE
illuminant D65, for the evenly spaced LRF values we
studied.

Model of early visual system

Light entering the eye is focused and blurred by eye’s
optics to form the retinal image. This image is then
sampled by a mosaic of cone photoreceptors. The
excitations of these photoreceptors provide the infor-
mation available to the neural visual system for further
processing. Because we are interested in how well
luminance constancy may be achieved by the human
visual system, we simulated the cone excitations to our
scenes using a model of the early visual system.

We focused our analysis on image regions local to
the target by cropping the rendered images to 1 3 1
degrees of visual angle around the target object (51351
pixels; Figure 9a and b). The local analysis is motivated
by the fact that neural receptive fields early in the visual
pathways (e.g., retina, primary visual cortex) pool
information locally. In primary visual cortex, foveal
receptive fields have a maximum spatial extent of
approximately 18 of visual angle (Gattass, Gross, &
Sandell, 1981; Gattass, Sousa, & Gross, 1988). We
sought to understand how well responses from AMA-

Figure 6. Statistical model of illumination spectra: (a) Normalized Granada dataset. Each spectrum is normalized by its mean power.

(b) Sample spectra generated using the statistical model derived from normalized Granada dataset. (c) CIE xy chromaticities of the

Granada dataset (black) and the samples shown in Panel b (red). (d) sRGB renditions of the samples shown in Panel b.

Figure 7. Statistical model of surface reflectance: (a) Surface reflectance spectra from the Munsell and Vrhel datasets. (b) Sample

spectra generated using the surface reflectance statistical model. (c) CIE xy chromaticity diagram of the Munsell and Vrhel

reflectances (black) and the sample spectra shown in Panel b (red). (d) sRGB renditions of the samples shown in panel b, rendered

under the CIE D65 daylight spectrum.

Journal of Vision (2018) 18(13):19, 1–17 Singh et al. 6



learned receptive fields at a similar scale could be used
to achieve luminance constancy.

We modeled a visual system having typical optical
blurring (including axial chromatic aberration; Mari-
mont & Wandell, 1994), and typical spatial sampling
with an interleaved rectangular mosaic of long (L),
middle (M), and short (S) wavelength-sensitive cones
(Brainard, 2015; Figure 9c). The cone mosaic contained
L:M:S cones in approximately the ratio 0.6:0.3:0.1
(1,523 L cones, 801 M cones, 277 S cones) and with
spectral sensitivities derived from the CIE physiological
standard (Commission Internationale de l’éclairage,
1986). Cone excitations were taken as the number of
photopigment isomerizations, assuming an integration
time of 100 msec. The Poisson nature of the photo-

pigment isomerization was also included (Hecht,
Shlaer, & Pirenne, 1942). This modeling was imple-
mented using the software infrastructure provided by
ISETBio (https://isetbio.org).

To put the computed cone excitations into a form for
further analysis, we demosaiced the excitations for each
cone class using linear interpolation to obtain a cone
excitation image for each cone class. The lens and
macular pigment absorb more short than long wave-
length light, so that the excitations of the S cones tend
to be smaller than those of the L and M cones. To
make the magnitude of the three cone excitation images
similar across cone classes, we normalized each cone
excitation image by the summed (over wavelength)
quantal efficiency of the corresponding cone class. The
demosaicing and normalization do not alter the
available information relative to that carried by the
cone excitations themselves.

To capture key properties of post-receptoral pro-
cessing, such as contrast normalization (Albrecht &
Geisler, 1991; Heeger, 1992; Carandini & Heeger,
2012), we processed the cone excitation images as
follows: We first converted each cone excitation image
to a corresponding cone contrast image. This was
accomplished by computing the mean response over the
three cone excitation images, and then subtracting off
and dividing by this mean. To model contrast
normalization, we then divided the contrast images by
the sum of squared contrasts taken over image pixels
and cone classes.

Computational luminance constancy

We used our datasets to determine how well target
object LRF can be estimated from cone excitations and

Figure 8. Target object surface reflectance spectra: sRGB

renditions of the target object surface reflectance rendered

under CIE D65 daylight spectrum. The figure shows 10 random

samples at 10 equally spaced LRF levels in the range [0.2, 0.6].

Each row contains 10 random samples of reflectance spectra

generated at the LRF shown on the left.

Figure 9. Pipeline for generating labeled datasets: The labeled images used in this paper are generated as follows: (a) A 3D virtual

scene, containing a target object is created. The rendering viewpoint is selected so that the target object is in the center of the image.

Spectra are assigned to the target object, illuminants, and other objects in the scene using the statistical models described in the text.

A multispectral image of the scene is then rendered. (b) The central portion of the rendered image is cropped around the target

object. (c) The retinal image corresponding to the rendered image is computed, which is then used to compute the number of

photopigment isomerizations in the cone photoreceptors. The figure shows a rendering of the retinal image after optical blurring,

with the location and identity of the cones indicated by an overlay (L cones: red, M cones: green, S cones: blue). (d) The cone

excitations are linearly interpolated to estimate the responses of all the three types of cone at each location (demosaicing). Finally,

the demosaiced images are contrast normalized.

Journal of Vision (2018) 18(13):19, 1–17 Singh et al. 7
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from normalized cone contrasts. Studying both repre-
sentations allows us to understand how early contrast
coding and normalization affect luminance constancy.
We applied accuracy maximization analysis (AMA) to
learn the optimal receptive fields for estimating LRF,
and evaluated performance when the responses of these
receptive fields are optimally decoded.

Learning optimal receptive fields

AMA is a task-specific Bayesian method for
dimensionality reduction. When provided with a
labeled training set, a receptive field response model, a
decoder that uses these responses to estimate the
stimulus label, and a cost function, AMA returns a set
of N linear receptive fields, where N is a parameter of
the procedure. These receptive fields are chosen so that
decoding their responses leads to minimum expected-
cost estimation, relative to any other choice of N linear
receptive fields. This is possible because given a training
set together with a set of N linear receptive fields and an
explicit cost function, it is possible to determine the
minimum expected-cost estimator that maps receptive
field responses to the stimulus labels. Moreover, a close
approximation to the corresponding expected estima-
tion cost may be explicitly computed. Thus, AMA
searches over the space of linear receptive fields to find
the set that minimizes the expected estimation cost. For
each condition, we learned the receptive fields with a
training set consisting of 90% of the images.

In our implementation of AMA, we used both the
Kullback-Leibler divergence cost function (corre-
sponding to the maximum a posteriori estimator) and
the mean squared error cost function (corresponding to
the posterior mean estimator) to evaluate the accuracy
of the AMA estimates of LRF. Training with both cost
functions yielded similar estimation performance; the
results reported here are for when the Kullback-Leibler
divergence cost function was used in training. We chose
this cost function because the estimates it yields at the
boundaries of the LRF range are less biased than those
obtained with the mean squared error cost function.

Details of how AMA learns receptive fields and how
the receptive field responses are optimally decoded are
provided in previously published work (Geisler et al.,
2009; Burge & Jaini, 2017; Jaini & Burge, 2017).

Decoding optimal receptive fields

Once the AMA receptive fields have been learned, a
general decoder is needed that can be used with arbitrary
test images. A general decoder is necessary because the
decoder used to learn the receptive fields can be used
only with the training set. Specifically, the decoder used
to learn the receptive fields requires the response mean
and response variance of each receptive field to every

labelled stimulus in the training set (Geisler et al., 2009;
Burge & Jaini, 2017). To proceed, first we use the AMA
receptive fields and the training dataset to find the
distributions of the receptive field responses conditional
on the target object LRFs. Then, we model these
conditional response distributions with multivariate
Gaussians. To estimate the LRF of the target object in a
test image, we use Bayes’ rule together with the Gaussian
conditional distributions and a uniform prior to obtain
the posterior distribution over LRF values, given the
receptive field responses. The optimal estimate is the
LRF value that minimizes the expected value of the cost
function, where the expectation is taken over the
posterior. For the results we report, we again used the
Kullback-Leibler divergence cost function.

The Gaussian approximations for the posterior
were estimated using the same training set that was
used to learn the receptive fields. Estimation perfor-
mance was evaluated on a test set consisting of the
10% of images in the dataset that were not in the
training set. For our primary results, estimation was
based on six receptive fields. The AMA analysis
package is available at: https://github.com/
BrainardLab/LuminanceConstancyAmaAnalysis.

Baseline methods

To provide baselines for evaluation of the estimation
method described above, we used linear regression.
First, we solved for the weights on the average L, M,
and S cone excitations corresponding to the target
object that best predicted the target LRF values. We
took the average cone responses from a 3 3 3 pixel
region at the center of the target object. This baseline
method disregards information carried by the image
regions corresponding to the background objects. We
also performed regression on the contrast normalized
version of the cone excitation images. This second
baseline method indirectly incorporates information
carried in the image regions corresponding to the
background objects, through their effect on the
contrast normalized responses at the center of the
target object. We also evaluated the performance of a
naive model that uses the mean LRF value in the
training set as the estimate, irrespective of the image
data; that is, the naive model always estimated the LRF
to be equal to 0.4.

Quantifying estimation performance

We quantified the performance of AMA and the
baseline methods at estimating LRF with relative root
mean squared error (relative RMSE). Relative RMSE is
the square root of the mean of the squared difference
between the estimated and true LRF divided by the true
LRF. The mean is taken over all stimuli in the test set.
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Results

Condition 1

In Condition 1, only the LRF and the relative
reflectance spectrum of the target object vary across
scenes. We used accuracy maximization analysis
(AMA) to learn a set of linear receptive fields that are
optimal for estimating target LRF from the cone
excitations in this condition. Decoding performance is
shown in Figure 10a. Figure 10a also shows the
performance of the baseline linear regression method.
Both methods are trained on 90% of the images in the
dataset and tested on the remaining 10%. The LRF
estimates obtained for both methods are essentially
perfect.

Figure 10b shows the responses of the first two AMA
receptive fields to all the image patches in the training
set. Each individual point represents the receptive field
responses to an individual image patch and is color
coded by target object LRF. The responses segregate
according to the target LRF, which supports the high
level of estimation performance shown in Figure 10a.
Note that even the responses of the first receptive field
separate well (vertical lines would accurately distin-
guish the LRFs), so that one receptive field is sufficient
for accurately performing the task.

Figure 10c shows the first three AMA receptive
fields. Each receptive field performs a weighted sum of
the L, M, and S cone excitations. The L and M cone
excitations at the target object location receive large
weights. The L and M cone excitations at the

background object locations and the S cone excitations
at all locations receive small weights and are thus
largely ignored. For this condition, the background
regions provide very little task-relevant information. In
addition, luminance is primarily determined by L and
M cones, so the S cones should make little direct
contribution. The first three receptive fields are similar
to each other, reflecting the fact that here the main
benefit of multiple receptive fields is to reduce the
impact of noise on estimation performance.

The results in Figure 10 were obtained for one
particular draw from our statistical model of illumi-
nation. We verified that performance remained excel-
lent for other draws.

Condition 2

Condition 2 includes variation in the spectral power
distribution of the light sources, in addition to the
variation present in Condition 1. This illumination
variation makes the task more difficult because it
causes variation in the cone excitations that is not due
to target object LRF. We learned AMA receptive fields
on the cone excitations to the images in this new
condition, and again evaluated decoding performance
(Figure 11a, b). Performance is poor. Indeed, the
estimates deviate considerably from the true LRF, as
seen by the fact that the mean estimate (red line) does
not lie on the positive diagonal and by the fact that
there is large estimation variability for each value of the
true LRF. For this case, linear regression also does
poorly. Indeed, the linear regression estimates are

Figure 10. Condition 1 results: (a) Mean estimated LRF 6 1 SD for images in the test set obtained using the AMA-based estimator and

linear regression on the cone excitations. Solid lines show the mean estimate, the filled region in lighter color shows 61 SD. The

diagonal identity line (dotted black) indicates veridical estimation. The filled regions representing standard deviations are too small to

be visible. Relative RMSE (see Methods: Quantifying estimation performance) is 0.7% for linear regression and 1.1% for AMA-based

estimation. (b) Training image cone excitations in Condition 1 projected onto the first two AMA receptive fields. Each cluster of

responses represents the image patches associated with a particular LRF. The response clusters are approximated by a multivariate

Gaussians whose means and covariances are represented by the ellipses shown in the figure. (c) The first three AMA receptive fields.

These are specified over the same 18 3 18 patch as the stimuli.
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essentially the same as would be obtained by simply
guessing the mean LRF of the training set (0.4).

Recall that there are two qualitatively distinct factors
contributing to the variation in illumination spectra:
changes in overall intensity, and changes in the relative
spectral power distribution. To separate the effect of
these two factors, we trained and evaluated AMA on
the contrast normalized cone excitations. By contrast
normalizing the cone excitations, the contribution of
overall intensity is essentially removed. Figure 11c, d
shows that performance improves greatly with contrast
normalization. Estimates obtained from the AMA
receptive field responses are essentially perfect. Esti-
mates obtained from linear regression are substantially
improved. This observation is consistent with previous
results on computational color constancy that show
that contrast-based representations are effective for
supporting color constancy when only illumination
spectra vary (e.g., Land, 1986). However, contrast-
based representations are less effective at supporting
constancy when the spectra of background objects in
the scene vary (e.g., Brainard & Wandell, 1986).

Condition 3

Condition 3 introduces variation in the reflectance
spectra of the background objects, in addition to the
sources of variation in Conditions 1 and 2. This
condition models the sources of real-world spectral
variation that are most relevant for the computational
problem of luminance constancy. We again trained and
evaluated AMA for labeled image patches, using the
contrast normalized cone excitations. The LRF esti-

mates obtained via AMA are more variable and less
accurate than for the previous conditions (Figure 12a).
Nevertheless, the estimates provide useful information
about the target LRF. Indeed, the estimates track the
true LRF on average, as seen by the fact that the mean
estimate (red line) lies along the positive diagonal. The
increased estimation variability is indicated by the
increased width of the shaded red region, relative to its
width for the results of Condition 1 and 2. Performance
of the baseline linear regression method (also evaluated
using contrast normalized cone excitations) is worse
than that of the AMA-based estimates.

Figure 12b shows the responses of the first two AMA
receptive fields to the training stimuli. Although the
responses vary systematically with target object LRF,
there is considerable overlap in the receptive field
responses for stimuli having different LRF values. This
overlap is due to the combined effect of the variation in
the illumination and background surface spectra.
Recall, however, that the performance shown in Figure
12a is based on six rather than two receptive fields;
there is likely to be less overlap in the full six-
dimensional response space. That is, inclusion of more
receptive fields will in general reduce the ambiguity that
is seen when we visualize the responses of just the first
two receptive fields. This effect is shown in the right
panel of Figure 13. That figure also illustrates the effect
of training set size on estimation performance.

Figure 12c shows the first three receptive fields (RFs)
learned for Condition 3. The first two are similar to the
receptive fields for Condition 1, in that the L and M
cone excitations receive large weights, while the S cone
excitations are less heavily weighted. In contrast to the
Condition 1 receptive fields, there is also systematic

Figure 11. Condition 2 results: (a) Mean estimated LRF 6 1 SD for images in the test set obtained using the AMA-based estimator and

linear regression from the cone excitations. The relative RMSE is high (41.4% for linear regression and 26.4% for AMA-based

estimation). (b) Cone excitations projected onto AMA receptive fields. (c) Mean estimated LRF 6 1 SD for images in the test set

obtained using the AMA-based estimator and linear regression from the contrast normalized cone excitations. The relative RMSE of

estimation is 9.3% for linear regression and 1.2% for the AMA-based estimator. (d) The contrast normalized cone excitations projected

along the first two AMA receptive fields. The receptive fields were learned using AMA and the contrast normalized cone excitations.

For Condition 2, the response corresponding to individual image patches at each LRF level separates much better when the input is

the contrast normalized cone excitations than when the input is the raw cone excitations.
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contribution of cone excitations from background
object locations, with both positive and negative
contributions from background objects. The specific
geometry of the receptive fields, however, should not be
taken to be a strict prediction for receptive fields in the
human visual system, as the particular receptive field
geometry arises partly as a consequence of the fixed
scene geometry used in the training set. Indeed, aspects
of spatial structure of the training images can be seen in
the receptive fields. Also, the third receptive field for
Condition 3 places weight on the S cone excitations.
Although S cone signals do not contribute directly to
luminance, S cone responses are correlated with L and
M cone responses to natural spectra (Burton &
Moorhead, 1987; Benson, Manning, & Brainard, 2014).

Information from the S cones can therefore contribute
usefully to performance in the task. Finally, we note
that there is some run-to-run variation in the structure
of the optimal receptive fields that depends on the
random initialization of the numerical search used in
our implementation of AMA. (The cost landscape is
not convex so local minima are possible.) However,
such run-to-run receptive field variation leads only to
very small changes in estimation error (see error bars in
Figure 13). Furthermore, even if the order varies
somewhat, the same set of receptive fields tends to be
learned.

Our rendering software allows us to compare the
effect of background surface reflectances on target
object LRF with and without simulation of secondary

Figure 12. Condition 3 results: (a) Mean estimated LRF 6 1 SD for images in the test set obtained using the AMA-based estimator and

linear regression from the contrast normalized cone excitations. The relative RMSE is 23.9% for linear regression and 12.6% for AMA.

(b) Contrast normalized cone excitations for the training set projected onto the first two AMA receptive fields. (c) First three AMA

receptive fields learned using the contrast normalized cone excitations.

Figure 13. Change of relative RMSE with number of receptive fields (RFs) and size of training set: (a) Change of relative RMSE for

Condition 3 with the size of training set. The relative RMSE converges around 2,000 images. To make this plot, the 300 image test set

for Condition 3 was used in each case, while the training set size varied between 300 to 2,700 images. The number of receptive fields

used was varied between 1 and 6. (b) Same data as in Panel a, but plotted as a function of number of receptive fields. Performance

converges around three receptive fields (RFs). The error bars in each panel show 61 SEM, with the variation taken across multiple

runs with different random initializations for the numerical search used in our implementation of AMA.
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reflections of light from one object onto another. These
secondary reflections were included in the dataset from
which we report our primary results. When we turn off
this feature of the rendering, we find (data not shown)
that LRF estimation performance is essentially un-
changed. Estimates with and without secondary re-
flections are very similar. This result suggests that the
primary source of the estimation error in Condition 3 is
caused by direct effects of image-to-image variation in
the reflectance of the background objects on the AMA
responses.

Discussion

Summary

In this paper, we studied luminance constancy using
naturalistic images. We used a software pipeline, which
was developed for this work, to render datasets of
multispectral images from scene descriptions. Because
we rendered the images, we could label each image in
the dataset by the luminous reflectance factor (LRF) of
the target object. We used the labeled datasets to learn
estimators for the target object LRF. Across scenes, we
varied the LRF of the target object, the relative
reflectance spectrum of the target object, the spectral
power distributions of the light sources, and the
reflectance spectra of the background objects in the
scene. These spectral variations were based on statis-
tical models of natural surface reflectance spectra and
natural illumination spectra. We studied how the
performance of the learned estimators changed with
systematic manipulation of the spectral variation in the
datasets.

Figure 14 summarizes our main findings, by showing
the overall relative root mean squared estimation error
(relative RMSE) for each condition. In Condition 1,
where only the relative reflectance spectrum of the
target object varies, luminance constancy is an easy
computational problem, and performance is essentially
perfect for both the baseline linear regression and
AMA methods. In Condition 2, where the spectral
power distribution of the illumination also varies, the
problem of luminance constancy is more difficult.
Indeed, neither of our methods perform well when they
operate directly on the cone excitations. Performance
with both methods improves greatly when the cone
excitations are contrast normalized. Indeed, AMA
performance for Condition 2 is essentially perfect, as it
is in Condition 1. Linear regression does less well, in
part because it only has access to cone excitations at
image locations corresponding to the target object.
Condition 2, however, does not include scene-to-scene
variation in the background surface reflectances, as

occurs in natural viewing. The results for Condition 3
show performance when we add such variation.
Performance here represents the overall level of
luminance constancy that our methods achieve for the
most realistic condition that we tested. In this case,
AMA-based estimates of target object LRF are, on
average, within 13% (relative RMSE) of the true value.
Introducing variation in the surface reflectance spectra
of the background objects makes the luminance
constancy problem substantially more difficult. Varia-
tion in the reflectance spectra of the background
objects surfaces reduces how reliably light reflected
from those objects can be used as a cue to estimate the
spectral power distribution of the illuminant.

Images of virtual versus real scenes

As noted in the introduction, supervised learning
requires large labeled datasets. Labeled datasets of
natural images have been useful for developing
normative models of the estimation of defocus blur,
binocular disparity, retinal image motion, and 3D
surface orientation (Burge & Geisler, 2011, 2012, 2014,
2015; Burge, Fowlkes, & Banks, 2010; Girshick, Landy,
& Simoncelli, 2011; Sebastian, Burge, & Geisler, 2015;
Burge, McCann, & Geisler, 2016; Goncalves &
Welchman, 2017; Kim & Burge, 2018).

Large datasets of natural or posed scenes with
ground truth information about illuminant and object
surface reflectance are difficult to obtain, as indepen-
dent measurement of illuminant and surface properties
at each image location is painstaking. That noted, there
are databases for evaluation of color constancy
algorithms that provide information about illumination
and/or surface reflectance (e.g., Barnard, Martin, Funt,
& Coath, 2002; Ciurea & Funt, 2003; Cheng, Prasad, &

Figure 14. Summary of luminance constancy performance:

Relative RMSE estimation error for each method and condition.

The dotted line represents the relative RMSE for a naive

method that estimates the LRF of each image as the mean LRF

over the images in the set (LRF ¼ 0.4).
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Brown, 2014; Nascimento et al., 2016; see http://
colorconstancy.com). Often the illumination is esti-
mated through placement of a reflectance standard at a
few image locations to allow estimation of the
illumination impinging at those locations. These
illumination estimates are then interpolated/extrapo-
lated across the image. However, the quality of this
approximation cannot typically be evaluated.

Here we used labeled images rendered from de-
scriptions of virtual scenes. A similar approach has
been used previously to study the perception of
lightness and specularity (Toscani, Valsecchi, & Ge-
genfurtner, 2013; Wiebel, Toscani, & Gegenfurtner,
2015; Toscani, Valsecchi, & Gegenfurtner, 2017). Our
work adds to this approach by introducing color
variation. There are many advantages to using ren-
dered images (Butler, Wulff, Stanley, & Black, 2012).
One advantage is that they allow us to work with large
number of labeled images where object reflectance is
precisely known at each pixel. A second advantage is
that we can control the variation in distinct scene
factors that might affect the difficulty of the estimation
problem. This flexibility allows the impact of scene
factors to be studied individually or in combination.
Here, we exploited this flexibility to quantify how
variation in the relative reflectance spectrum of the
target object, the spectrum of the illumination, and the
reflectance spectrum of the background objects limit
LRF estimation. We also exploited our use of rendered
images to explore how the presence or absence of
secondary reflections from background objects affected
estimation of target object LRF. This type of question
cannot be addressed using real images. The basic
approach we use here can be extended to include
parametric control over the amount of variation of
different factors. For example, we could systematically
vary the variances of the distribution over the weights
that control the relative spectrum of the illumination.

There are also disadvantages associated with using
rendered images. Virtual rendered scenes are not
guaranteed to capture all of the task relevant variation
that occurs in real scenes. Even casual inspection of our
images reveals that they are rendered, and not real.
However, computer graphics is getting better and we
expect that the gap between virtual and natural image
databases will steadily close. Indeed, carefully con-
structed graphics images are now quite difficult to
differentiate from real images.

To increase the representativeness of our rendered
images, we used datasets of natural surface reflectance
spectra and natural daylight illumination spectra.
Although we believe these datasets provide reasonable
approximations of the statistical variation in reflectance
and illumination spectra, they can be extended and
improved. For example, there are additional datasets of
measured surface reflectances that could be incorpo-

rated into future analyses. Some of these datasets
focused on the reflectance of objects (e.g., fruit) that are
thought to be important for the evolution of primate
color vision (e.g., Sumner &Mollon, 2000; Regan et al.,
2001; Barnard et al., 2002; Ennis, Schiller, Toscani, &
Gegenfurtner, 2018). Another issue, not addressed by
these datasets, is relative frequency of different surface
reflectances in natural viewing. Attewell and Baddeley
(2007) performed a systematic survey, and reported the
distribution of an LRF-like quantity in natural scenes.
Generalizing these measurements to better characterize
the distribution of full reflectance functions remains an
interesting goal.

Future directions

In the work presented here, we studied computa-
tional luminance constancy in virtual scenes with
naturalistic spectral variation in light sources and in
surface reflectance functions, with only matte surfaces
in the scenes. It is natural to start with spectral
variation, because this variation is at the heart of what
makes luminance constancy a rich computational
problem. In natural scenes, however, there are other
sources of variation that add additional richness. These
include variation in non-spectral properties of lighting
and objects in the scene. Examples include lighting
geometry, object texture, object material (e.g., specu-
larity), and object shape. The methods we developed
here may be generalized to study the effects of variation
in these factors. That is, one could incorporate these
factors into the generation of the scenes and again learn
estimators from the corresponding labeled images. A
challenge for this approach will be to thoughtfully
control the increase in problem complexity, both to
keep compute time feasible and to ensure that it is
possible to extract meaningful insight from the results.
Extending the work to include variation of material
may provide insights not only about luminance
constancy but also for computations that relate to
material perception (see Fleming, 2017). Extending the
work to include variation in object shape and lighting
geometry may clarify the role of object boundaries
versus object interiors for providing information that
supports perception of object color and lightness (see
Land &McCann, 1971; Rudd, 2016). We also note that
there is a literature on how increasing stimulus
complexity along the various lines listed above affects
human color and lightness perception (e.g., Beck, 1964;
Yang & Maloney, 2001; Yang & Shevell, 2002; Boyaci,
Maloney, & Hersh, 2003; Todd, Norman, & Mingolla,
2004; Snyder, Doerschner, & Maloney, 2005; Xiao &
Brainard, 2008; Kingdom, 2011; Xiao, Hurst, Mac-
Intyre, & Brainard, 2012; Anderson, 2017; Toscani et
al., 2017), and the computational problem of color and
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lightness constancy (e.g., D’Zmura & Lennie, 1986;
Lee, 1986; Funt & Drew, 1988; Tominaga & Wandell,
1989; Barron & Malik, 2012; Barron, 2015; Finlayson,
2018).

We studied the information available for LRF
estimation using a 18 318 image patch. As noted above,
this choice of size was motivated in part to use a spatial
scale roughly commensurate with the scale of infor-
mation integration in early visual cortex. Our general
methods could be extended to study larger regions, and
doing so would quantify the value of spatially remote
information for luminance constancy.

Luminance constancy is a special case of the more
general problem of color constancy. The approach we
developed here could also be generalized to the
estimation of additional surface reflectance descriptors,
such as object hue or chroma. A further advance would
be to develop methods for learning receptive fields that
are optimal for multivariate estimation problems. With
such methods one could directly estimate three-
dimensional color descriptors.

Linking to human performance

An important motivation for studying the compu-
tational problem of luminance constancy is to gain
insight about human vision. The approach we devel-
oped can be used to make predictions of how humans
would perform in a psychophysical task that probes the
visual representation of object LRF. For example, one
could study discrimination thresholds for target LRF
using the stimuli that were generated with the methods
used here. More specifically, we could ask how LRF
discrimination thresholds are impacted by spectral
variation in the illuminant, the background objects,
and in the target object itself. Comparing human
thresholds with the precision of AMA-based estimates
would then allow inferences about how well human
observers make use of the information available in the
images for performing LRF discrimination. We think
experiments and analyses along these lines represent an
important future direction.

Keywords: color constancy, luminance constancy,
supervised learning
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Footnotes

1 In the literature, the term lightness constancy is
generally used to denote color constancy for the special
case when stimuli are restricted to be achromatic. This
condition does not apply to our work—we consider full
spectral variation in the stimuli. We chose the term
luminance constancy to denote the generalization from
achromatic stimuli. At the same time we acknowledge
that we are not studying the full problem of color
constancy. Rather, we are studying the estimation of a
luminance-based summary of surface spectral reflec-
tance.

2 LRF is related to albedo, but the concept of albedo
does not incorporate the human luminosity function.
The terminology surrounding LRF and the related
concept light reflectance value (LRV) varies somewhat
in the literature. Here we follow the definition of LRF
given by the American Society for Testing and
Materials (2017).
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