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Abstract
Differentiation of oligodendroglial precursor cells (OPCs), a crucial prerequisite for central

nervous system (CNS) remyelination in diseases such as Multiple Sclerosis (MS), is modu-

lated by a multitude of extrinsic and intrinsic factors. In a previous study we revealed that

the chemokine CXCL12 stimulates rodent OPC differentiation via activation of its receptor

CXCR7. We could now demonstrate that CXCR7 is also expressed on NogoA- and Nkx2.2-

positive oligodendroglial cells in human MS brains and that stimulation of cultured primary

fetal human OPCs with CXCL12 promotes their differentiation as measured by surface

marker expression and morphologic complexity. Pharmacological inhibition of CXCR7

effectively blocks these CXCL12-dependent effects. Our findings therefore suggest that a

specific activation of CXCR7 could provide a means to promote oligodendroglial differentia-

tion facilitating endogenous remyelination activities.

Introduction
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central
nervous system (CNS), leading to gradual degeneration and loss of myelin sheaths and oligo-
dendrocytes. As a consequence, axonal function is impaired and axons are severely damaged
[1]. Although repair activities are limited within the adult CNS, remyelination can be observed
as a result of resident oligodendroglial precursor cell (OPC) activation particularly in early dis-
ease stages. These cells can be recruited into MS lesions where they differentiate into functional
myelinating cells [2]. However, due to a blockade of oligodendroglial differentiation remyelina-
tion efficiency remains overall poor [3–6]. Neutralization of inhibitory cues or activation of
stimulatory pathways could therefore be a viable strategy to enhance CNS remyelination. Che-
mokines are highly conserved among mammalian species and regulate a plethora of different
physiological processes, such as, for instance the modulation of cell-cell interactions, immune
cell chemotaxis and developmental processes in a variety of tissues including the brain [7, 8].
Chemokines bind mainly to G-protein coupled receptors and exert strong effects in neuroin-
flammatory diseases [9, 10]. In the past the impact of chemokines on the survival and behavior
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of OPCs has been under closer investigation [11, 12]. Particularly CXCL12 (stromal derived
growth factor 1; SDF-1) has been described as a relevant factor for the behavior of oligoden-
droglial precursors [13] and the regulation of blood-brain-barrier integrity in neuroinflamma-
tion [14]. In a previous study we have identified the CXCL12 receptor CXCR7 as a potent
mediator of OPC differentiation in the inflamed rodent brain [15]. We could now translate our
results to the human paradigm confirming that signaling through CXCR7 leads to increased
human oligodendroglial precursor cell differentiation suggesting that specific activation of this
receptor could be a novel therapeutic approach to promote endogenous remyelination
activities.

Material and Methods

Isolation, culture and immunocytochemistry of fetal hOPCs
Human fetal CNS tissue obtained from 15 to 18 gestational week embryos was provided by the
Human Fetal Tissue Repository (Albert Einstein College of Medicine, Bronx, NY). This devel-
opmental stage precedes CNS myelination. Human fetal OPCs (hOPCs) as A2B5 expressing
cells were isolated immuno-magnetically as previously described [16]. The purified cells were
plated on poly-L-lysine-coated plastic coverslips (Nunc, Rochester, NY). The cultures were
grown in Dulbecco’s modified essential medium (DMEM)-F12 supplemented with N1 (Sigma,
Oakville, ON), 0.01% bovine serum albumin (BSA), 1% penicillin-streptomycin, B27 supple-
ment (Invitrogen, Burlington, ON), thyroid hormone (T3, 2 ng/ml, Sigma, Oakville, ON),
platelet-derived growth factor AA (PDGF-AA, 10 ng/ml, Sigma, Oakville, ON) and basic fibro-
blast growth factor (FGF2, 10 ng/ml, Sigma, Oakville, ON). All tissue samples were obtained
under protocols approved by the McGill University institutional review boards. Fetal material
was obtained from the Albert Einstein School of Medicine fetal repository program with writ-
ten consents obtained at that site. All experiments were conducted in accordance with the Hel-
sinki Declaration. Additional studies were performed using human fetal OPCs and respective
media purchased from 3H Biomedical (Uppsala, Sweden) and cultured according to the manu-
facturer’s protocol.

To assess the effects of CXCL12 stimulation on hOPCs (myelin marker expression, mor-
phological maturation) fetal hOPCs were cultured for up to 12 days in defined media supple-
mented with recombinant human CXCL12 (100ng/ml in PBS buffer supplemented with 0.1%
bovine serum albumin; R&D Systems, Minneapolis, MN) and growth factors (10ng/ml BDNF,
Calbiochem, San Diego, CA and 10ng/ml IGF, MJS BioLynx, Brackville, ON) or growth factors
alone. Medium was changed on days 3, 6 and 9. CCX771 (ChemoCentryx, Mountain View,
CA) was reconstituted in DMSO according to the manufacturer’s instructions and used at a
concentration of 10 nM in a 30 min pre-treatment step on hOPC cultures prior to the addition
of CXCL12 at the above-described concentration. Immunocytofluorescent staining was per-
formed using the following primary antibodies: hybridoma anti-O4 IgM antibody (1:50; Mon-
treal Neurological Institute, McGill University, Montreal, Quebec, Canada and [17]),
hybridoma anti-GalC IgG3 antibody (1:50; Montreal Neurological Institute, McGill University,
Montreal, Quebec, Canada and [18]) and mouse anti-2‘,3‘-cyclic nucleotide 3‘-phosphodiester-
ase antibody (CNPase; 1:1000; Sternberger Monoclonals, Lutherville, MD). For visualization
IgM-FITC or TxR (1:100; Jackson ImmunoResearch, Westgrove, PA), IgG3-FITC or TxR
(1:100; Biosource, Camarillo, CA) and IgG1 Alexa Fluor 488 (1/500; Molecular Probes, Leiden,
the Netherlands) were used. Data are presented as mean +/- standard error of the mean (SEM)
and significance was assessed by either two-sided Student’s t-test (unpaired comparison for
means) or one-way ANOVA (GraphPad Prism). Experimental groups were considered signifi-
cantly different at �p<0.05, ��p<0.01, ���p<0.001; ns, not significant.
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Immunohistochemistry
We retrospectively investigated 12 brain biopsy tissue samples from 12 MS patients (9 women,
3 men; age 21 to 74 years, mean age 44 +/- 16 years) and six control cases (3 women, 3 men;
age 25 to 72, mean age 56 +/- 8 years; see Table 1). All lesions fulfilled the generally accepted
criteria for the diagnosis of MS. The tissue samples showed the characteristics of active lesions
with loss of myelin, infiltration by numerous phagocytes and fewer lymphocytes as well as glio-
sis. We classified the de- and remyelinating activity as described earlier [19]. Actively demye-
linating lesion areas (AD; n = 7) were located at the plaque border, these areas were partially
demyelinated and infiltrated by numerous macrophages containing myelin degradation prod-
ucts, such as myelin basic protein (MBP) or CNPase within their cytoplasm. Demyelinated
lesion areas (DM) were infiltrated by macrophages and T cells, but macrophages did not con-
tain myelin degradation products (biopsies; n = 2). In remyelinating areas (RM; biopsies;
n = 3), thin, irregularly formed myelin sheaths were seen. Periplaque white matter (PPWM;
biopsies; n = 7) showed no signs of demyelination. Additionally, tissue samples from six con-
trol patients without CNS pathology besides mild microglia activation and reactive gliosis were
analyzed. Tissue specimens were fixed in 4% paraformaldehyde and embedded in paraffin. Tis-
sue samples were cut in 4 μm thick sections and stained with hematoxylin/eosin (Merck,
Darmstadt, Germany). Immunohistochemical staining was performed using a biotin-streptavi-
din peroxidase protocol (Dako, Glostrup, Denmark). After deparaffinization intrinsic peroxi-
dase activity was blocked by incubation with 5% H2O2 in PBS for 20 min. Non-specific
antibody binding was inhibited with 10% FCS in PBS for 25 min. Sections were pre-treated in a
steamer with citrate (pH 6.0) prior to incubation with the primary antibody. 3,3'-diaminoben-
zidine (DAB) was used as a chromogen and sections were counterstained using hematoxylin.
As primary antibodies we used rabbit anti-CMKOR1 (1:200; Proteintech, Chicago, USA), rab-
bit anti-CXCR7 (1:100; Millipore), rabbit anti-Nogo-A (1:750; Chemicon International,

Table 1. Human brain tissues used for immunohistochemical analysis.

Diagnosis of biopsy Sampling location Age/Sex

1 Brain tissue with reactive changes right frontal 72/m

2 Brain tissue with reactive changes right paraventricular 66/f

3 Brain tissue with reactive changes right parieto-occipital 25/f

4 Brain tissue with reactive changes unknown 51/m

5 Brain tissue with reactive changes right parietal 72/m

6 Brain tissue with reactive changes unknown 47/f

7 Inflammatory demyelinating lesion consitent with MS right frontal 44/f

8 Inflammatory demyelinating lesion consitent with MS left frontal 74/f

9 Inflammatory demyelinating lesion consitent with MS supraventricular 50/f

10 Inflammatory demyelinating lesion consitent with MS subcortical 41/f

11 Inflammatory demyelinating lesion consitent with MS right occipital 26/f

12 Inflammatory demyelinating lesion consitent with MS left temporal 21/f

13 Inflammatory demyelinating lesion consitent with MS left parieto-occipital 63/f

14 Inflammatory demyelinating lesion consitent with MS cerebellar 25/f

15 Inflammatory demyelinating lesion consitent with MS leukocortical 34/f

16 Inflammatory demyelinating lesion consitent with MS cerebellar 48/m

17 Inflammatory demyelinating lesion consitent with MS semioval center 45/m

18 Inflammatory demyelinating lesion consitent with MS left parieto-occipital 61/f

doi:10.1371/journal.pone.0146503.t001
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Temecula, CA), mouse anti-Nkx2.2 (1:100; Developmental Studies Hybridoma Bank, Univer-
sity of Iowa, Iowa) and mouse anti-Nogo-A (1:15.000; 11c7, a generous gift fromM.E. Schwab,
Brain Research Institute, University of Zürich and Department of Biology, Swiss Federal Insti-
tute of Technology Zürich, Switzerland). General tissue characterization (data not shown) was
carried out using Luxol-fast blue (Sigma), mouse anti-KiM1P (1:5000; H.-J. Radzun, Depart-
ment of Pathology, University of Göttingen, Germany), mouse anti-CD3 (1:25; Dako,
Glostrup, Denmark), rabbit anti-Olig2 (1:300; IBL, Spring Lake Park, Minnesota), rabbit anti-
GFAP (1:2000; Dako, Glostrup, Denmark), rabbit anti-MBP (1:1000; Boehringer Mannheim,
Mannheim, Germany) and mouse anti-GFAP (1:50; Dako, Glostrup, Denmark). Double
immunofluorescent staining was performed using rabbit anti-CXCR7 (see above), and mouse
anti-NogoA (see above) or mouse anti-Nkx2.2 antibodies followed by Cy3 (1:200; Jackson
ImmunoResearch Laboratories, West Grove, PA) or Alexa488 (1:200, Jackson ImmunoRe-
search Laboratories, West Grove, PA) conjugated antibodies and counterstained with 4´,6-dia-
midino-2-phenylindole (DAPI; 1:5000, Invitrogen, Burlington, ON). Numbers of
CXCR7-positive cells were determined in at least 10 standardized microscopic fields of
10.000 μm2 each defined by an ocular morphometric grid as indicated in the text and figures as
the mean number of cells/μm2 ± SEM. For statistical analysis, a Bonferroni-corrected one-way
ANOVA tests was performed. The test was classified as significant if the p-value was<0.05
(GraphPad PRISM). All images were taken on an Olympus fluorescent microscope. None of
the study authors was involved in decision-making with respect to biopsy. The study was
approved by the Ethics Committee of the University of Münster.

Results

CXCR7 is expressed in mature NogoA positive oligodendrocytes and
Nkx2.2 positive OPCs in remyelinating MS lesions
Immunohistochemistry of human MS tissue revealed that CXCR7-expressing cells are present
in control brains and different areas of the MS brain (Fig 1A–1F). While in the periplaque
white matter (PPWM) an average of 750 CXCR7-expressing cells per mm2 could be detected
this number was significantly decreased to approximately 200 cells/mm2 in actively demyelin-
ating lesion areas (active) at the plaque border. As these areas were infiltrated by numerous
macrophages containing myelin degradation products this drop in numbers probably reflects
ongoing oligodendroglial cells death—a common observation in MS pathology. The number of
CXCR7-expressing cells was also lower in demyelinated (DM) areas featuring macrophages
and T cells not containing myelin degradation products (approx. 500 cells/mm2) and remyeli-
nating (RM) areas characterized by newly formed thin and irregular myelin sheaths (approx.
400 cells/mm2). In order to clarify the identity of the CXCR7-expressing cells in the above-
described regions of the MS brain we then performed stainings of NogoA, a reliable marker for
mature oligodendrocytes [20], of the same regions in parallel sections (Fig 1G). This revealed
that the distribution of NogoA largely mirrored that of CXCR7 with an overall correlation coef-
ficient of 0,783. Double immunofluorescent labeling of CXCR7 in combination with Nogo-A
(see arrows in Fig 1H–1H'') and Nkx2.2, a transcription factor strongly expressed in the
nucleus of OPCs (see arrow in Fig 1I–1I''; [5]) then confirmed that both mature and precursor
cells in remyelinating MS lesions express CXCR7. Of note—and as expected since expression
of CXCR7 has been described in several CNS cell types such as astrocytes [21, 22]—not all of
the detected CXCR7-expressing cells belonged to the oligodendroglial lineage (see arrowhead
in Fig 1H–1H'').
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Fig 1. CXCR7 detection in MS tissue. (A-F) CXCR7 staining revealed receptor expression on cells in
control brains (B) and different regions of the MS brain including demyelinated (E; DM) and remyelinating (F;
RM) lesions as well as active white matter lesions (D). Most CXCR7-positive cells in the MS brain were
detected in the periplaque white matter (C; PPWM) while their number was significantly decreased in actively
demyelinating lesion areas (D; active) at the plaque border probably reflecting ongoing oligodendroglial cell
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CXCL12 stimulation promotes the expression of oligodendroglial
differentiation markers
For a functional analysis of CXCL12-dependent effects on human OPCs, we exposed A2B5
antibody selected fetal human precursor cells to this chemokine. As oligodendroglial matura-
tion is reflected by the induction of specific lineage markers, we determined whether expression
kinetics was altered upon CXCL12 stimulation (Fig 2). To this end, fetal progenitors from the
Human Fetal Tissue Repository were stimulated with 100ng/ml recombinant CXCL12 for 7
days, fixed, and subjected to immunofluorescent staining with antibodies directed against O4
and GalC. The assessment of OPC differentiation based on double positivity for O4 and GalC
is widely used in the literature as a maturation read-out [23, 24] and revealed here that after 7
days of CXCL12 stimulation, the percentage of O4 cells that expressed GalC was increased
more than 2-fold, compared to controls (Fig 2A–2C'). In parallel to our previous study investi-
gating the effects of CXCL12 on rodent OPCs [15] most CXCL12-stimulated hOPCs featured
more complex morphologies (arrows) as compared to cells in control cultures (arrowheads).
Of note, with regard to potential effects of CXCL12 on hOPC proliferation and survival, DAPI
counts of cells at different time points revealed no significant difference in cell numbers
between stimulated or non-stimulated cells (data not shown). To determine whether the
observed CXCL12-dependent differentiation effects were mediated through CXCR7 and in
order to reproduce and corroborate the previous results in hOPCs from a different source, we
then conducted specific blocking experiments with commercially available hOPCs. Using the
expression of CNPase as a readout, we applied the specific CXCR7 antagonist CCX771. When
applied alone (dashed white bar), CCX771 did not affect the degree of CNPase positive hOPCs
(Fig 2D), whereas CXCL12 application (grey bar) boosted CNPase expression 3-fold similar to
our previous observations using GalC-positivity of hOPCs from the Human Fetal Tissue
Repository. Of note, this induction was completely abolished in CXCL12-stimulated OPCs that
had been pre-treated with CCX771 (dashed grey bar), suggesting a crucial role for CXCR7 in
the transmission of oligodendrocyte differentiation signals. In order to rule out potential
DMSO-associated effects we also stimulated hOPCs with DMSO alone (white bar). In addition,
CXCL12 stimulation was also carried out in the presence of DMSO to provide an appropriate
control for CCX771 inhibition. Furthermore, double immunostaining confirmed that O4 posi-
tive hOPCs expressed CXCR7 (Fig 2E and 2E’).

CXCL12 stimulation leads to enhanced morphological maturation of
CXCR7-positive human OPCs
As oligodendrocyte lineage marker staining of control versus CXCL12-stimulated hOPCs sug-
gested that cell shape and size are also influenced by this chemokine, we determined quantita-
tively whether hOPC morphological maturation is promoted as well (Fig 3). For visualization
of single cells, we stained hOPCs from the Human Fetal Tissue Repository with the previously
used anti-O4 antibody. Differentiation of cultured hOPCs is not a synchronized process and
heterogeneous cell populations are generally observed featuring various degrees of morphologi-
cal maturation with increasing numbers of processes and branches. In order to classify cell

death (one-way ANOVA, **p < 0,05). (G) NogoA staining of control and MS brains demonstrated a similar
distribution as CXCR7 (A) with a correlation coefficient of 0,783 between stainings. Double immunostaining
then confirmed that mature NogoA positive oligodendrocytes (H-H''; see arrows) and Nkx2.2 positive
oligodendroglial precursor cells (I-I''; arrows) express CXCR7. Not all CXCR7-positive cells were of
oligodendroglial origin which is in line with studies describing this receptor in other CNS cell types (see
arrowhead in H-H''). Scale bars: 25μm (F), 25μm (H-H''), 10μm (I-I'').

doi:10.1371/journal.pone.0146503.g001
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Fig 2. CXCL12-mediated promotion of differentiation marker expression in cultured human
oligodendroglial precursor cells. (A) The percentage of O4 positive cells expressing GalC was significantly
increased after 7 days of CXCL12 stimulation as compared to control cells. (B-C') Representative
immunostainings of GalC/O4 positive OPCs stimulated with CXCL12 and control cells. Note that in
CXCL12-stimulated cultures complex cell morphologies (arrows) were more common than in control cultures
(arrowheads indicating cells with fewer cellular processes). (D) Determination of the percentage of CNPase
positive hOPCs under CXCL12 stimulation after 7 days. This demonstrated that the CXCL12-dependent
promotion of myelin induction (white vs. gray bars) was completely abolished in the presence of CCX771
(dashed gray bar). CCX771 alone did not affect myelin expression (compare white to dashed white bar).
(E-E') Double immunostaining revealed that O4 positive precursor cell express CXCR7. Data are shown as
mean values +/- SEM derived from 3 independent experiments. (t-test, ***p <0,001 and ANOVA,
**p < 0,01). Scale bars: 70 μm (B-C'), 30 μm (E-E') μm.

doi:10.1371/journal.pone.0146503.g002
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Fig 3. CXCL12 promotesmorphological maturation of cultured human oligodendroglial precursor cells. Five different morphologies were
distinguished ranging from a very low number of processes in precursor cells to multiple process-bearing cells (low, medium, high) to mature cells with a very
high degree of arborization or flattened appearance (membrane sheet). (A,B) Analysis of hOPCmorphology distribution revealed a CXCL12-dependent shift
towards more mature cells (white bars: buffer treated cells; gray bars: CXCL12-stimulated cells) after 7 and 12 days in culture. Data are shown as mean
values +/- SEM derived from 3 independent experiments (ANOVA, **p < 0,01). Representative O4-expressing hOPCs stimulated with either buffer or
CXCL12 at 7d (A',A'') and 12d (B',B''). Scale bars: 50μm.

doi:10.1371/journal.pone.0146503.g003
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morphology we therefore used a well-established grading system that was already introduced
in several previous studies [25–27] which distinguishes between five different morphologies
ranging from a very low number of processes in precursor cells to multiple process-bearing
cells and mature cells with a very high degree of arborization or membrane sheet appearance
(see below graphs in Fig 3). We initiated oligodendroglial differentiation and applied recombi-
nant CXCL12 or buffer as control condition, and fixed cells after 7 (Fig 3A–3A'') and 12 days
(Fig 3B–3B''), respectively. This clearly demonstrated that application of CXCL12 resulted in a
significant shift towards more complex hOPC morphologies as compared to control (buffer
stimulated) cells. At 7 days, the majority of control cells featured low and medium morpholo-
gies, whereas the majority of cells stimulated with 100ng/ml CXCL12 were already at a highly
differentiated stage. At 12 days CXCL12 stimulation resulted in an additional shift, with the
majority of cells now displaying membrane sheet structures (see Fig 3B'').

Discussion
Inefficient CNS remyelination observed in neuroinflammatory demyelinating diseases such as
MS is tightly linked to the limited ability of resident OPCs to differentiate properly—a prereq-
uisite for subsequent remyelination [5, 28]. While previous studies have demonstrated CXCR7
expression in human adult neurons [29], brain tumors [30] and human brain microvascular
endothelial cells (HBMECs, [31]), we here demonstrate that CXCR7 is expressed on oligoden-
droglial cells in MS brain lesions and that its activation by CXCL12 leads to an acceleration of
human glial maturation in culture as demonstrated by expression of oligodendrocyte lineage
markers and enhanced morphological maturation. Regarding the relevance of CXCL12 in vivo
several groups have already demonstrated that in the MS brain CXCL12 is expressed by reac-
tive astrocytes particularly near the lesion edge [32] and that the proinflammatory cytokine
interleukin-1β and myelin debris in the form of MBP can induce astrocytic CXCL12 [33]. With
respect to the underlying mechanisms of CXCR7 signaling our previous studies have demon-
strated that CXCR7 activation on oligodendroglial cells by CXCL12 leads to ERK1/2 phosphor-
ylation [15] which is in line with several other studies indicating that factors involved in
oligodendroglial differentiation and myelination exert their effects through the ERK1/2 signal-
ing cascade [34–36]. Nevertheless, the mechanisms that promote oligodendrocyte differentia-
tion upon ERK phosphorylation are still largely elusive even though a recent study revealed
that both ERK1 and -2 promote MBP gene expression in oligodendroglial cells via phosphory-
lation of the transcription factor Sp1 [37]. On the other hand, other groups have clearly shown
that G protein-coupled receptor kinase 2 (Grk2) is essential for CXCR7 signaling in CNS cells
[21]. In how far Grks also play a role in oligodendroglial CXCR7 signaling is currently unclear
and needs to be further elucidated in future studies on human tissue.

Of note, related studies have linked CXCL12-mediated OPCmaturation to signaling through
its second well-described receptor CXCR4. However, the experiments in these studies were per-
formed in the non-inflammatory toxic cuprizone animal model [38] which makes a potential
translation toMS with its strong inflammatory component difficult. In contrast the data presented
here were generated in the human paradigm and demonstrate for the first time that CXCR7 is
present on OPCs and oligodendrocytes in the MS brain. In addition, Williams and colleagues
used the controversial substance AMD3100, a compound initially developed as a specific CXCR4
inhibitor. Pharmacological studies have, however, demonstrated that this molecule cannot be
used as a reliable and specific blocking reagent as it was shown to act as a weak partial CXCR4
agonist leading, for instance, to an intracellular calcium levels increase similar to CXCL12 [39].

Nonetheless, CXCR4 might still play a role in CXCR7-mediated OPCmaturation as several
studies demonstrated receptor heterodimerization [40, 41] being relevant for CXCL12-mediated
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signal transmission. Of note, the goal of this study was not to demonstrate an exclusive responsi-
bility of CXCR7 for OPCmaturation but rather aimed at proving that CXCR7 is critically
involved in this process thus providing evidence that this receptor could by a target for thera-
peutic repair. Yet, the exact downstream signaling of such heterodimers is still controversially
discussed since some studies indicated, for instance, that coexpression enhances Ca2+ mobiliza-
tion or chemotaxis [41, 42] while others demonstrated compromised CXCR4 signaling [40]. We
and others support the idea that CXCR7 signals independently from CXCR4 and the results of
our specific blocking experiments presented here have clearly demonstrated that CXCR7 is
highly relevant for human OPC differentiation. This is of even greater interest since recently
two small-molecules, VUF11207 and VUF11403, were identified as highly potent and selective
ligands for CXCR7 that induce recruitment of β-arrestin [43]. These new compounds might
represent promising lead substances for the development of specific CXCR7-based remyelina-
tion strategies with the benefit of avoiding CXCR4-mediated effects. However, a prerequisite for
such therapies is a sufficient presence of CXCR7 on target cells and as we found that CXCR7
positivity undergoes an overall decrease in MS tissue in comparison to controls this is a critical
aspect with potential therapeutic implications. In general, it is conceivable that the overall
decrease of CXCR7-positive cells may partly reflect oligodendroglial cell death. However,
CXCR7 positivity increases again in remyelinating lesions possibly based on migration of
recruited OPCs. During this phase of lesion repair a window of opportunity might open up
allowing for specific CXCR7-based OPC stimulation. However, lesion repair is overall insuffi-
cient which is thought to be partly due to the expression of chemorepellent molecules in MS
lesions such as, for instance, Semaphorin 3A. Thereby, instead of entering MS lesions OPCs
could be arrested in the periplaque white matter where, accordingly, we found significantly
more CXCR7-positive cells in comparison to lesions themselves. This suggests that while
CXCR7 activation could be an overall beneficial cue for remyelination in MS the key prerequi-
site for such an effect is successful entry of OPCs into MS lesions. We therefore conclude that
besides and beyond a potential exogenous CXCR7 receptor upregulation to facilitate repair
future combinatorial therapies are required that stimulate both OPCmigration and differentia-
tion to ultimately induce lesion repair.
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