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A B S T R A C T   

Background: The differentiation between benign and malignant breast tumors extends beyond morphological 
structures to encompass functional alterations within the nodules. The combination of photoacoustic (PA) im-
aging and radiomics unveils functional insights and intricate details that are imperceptible to the naked eye. 
Purpose: This study aims to assess the efficacy of PA imaging in breast cancer radiomics, focusing on the impact of 
peritumoral region size on radiomic model accuracy. 
Materials and methods: From January 2022 to November 2023, data were collected from 358 patients with breast 
nodules, diagnosed via PA/US examination and classified as BI-RADS 3–5. The study used the largest lesion 
dimension in PA images to define the region of interest, expanded by 2 mm, 5 mm, and 8 mm, for extracting 
radiomic features. Techniques from statistics and machine learning were applied for feature selection, and lo-
gistic regression classifiers were used to build radiomic models. These models integrated both intratumoral and 
peritumoral data, with logistic regressions identifying key predictive features. 
Results: The developed nomogram, combining 5 mm peritumoral data with intratumoral and clinical features, 
showed superior diagnostic performance, achieving an AUC of 0.950 in the training cohort and 0.899 in vali-
dation. This model outperformed those based solely on clinical features or other radiomic methods, with the 
5 mm peritumoral region proving most effective in identifying malignant nodules. 
Conclusion: This research demonstrates the significant potential of PA imaging in breast cancer radiomics, 
especially the advantage of integrating 5 mm peritumoral with intratumoral features. This approach not only 
surpasses models based on clinical data but also underscores the importance of comprehensive radiomic analysis 
in accurately characterizing breast nodules.   

Summary 

This study reveals that combining 5 mm peritumoral and intra-
tumoral photoacoustic imaging features with clinical data markedly 
improves the accuracy of breast cancer diagnostics. 

1. Introduction 

Breast cancer (BC) remains the most frequently diagnosed cancer 
among women and constitutes a major cause of cancer-related mortality 
worldwide [1]. The critical role of early detection and intervention in 
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magnetic resonance imaging; BI-RADS, Breast Imaging-Reporting and Data System; ROC, receiver operating characteristic curve; CI, confidence interval; AUC, area 
under the curve; IQR, interquartile range. 
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improving survival rates and quality of life in BC patients is 
well-documented [2,3], particularly in asymptomatic women, where 
early diagnosis can significantly impact disease prognosis. 

While ultrasound (US), mammography, and magnetic resonance 
imaging (MRI) are the primary non-invasive breast imaging modalities, 
each presents limitation. Mammography, although effective in detecting 
calcifications, shows reduced sensitivity in dense breast tissue, notably 
in Asian women [4,5]. MRI, despite its superior sensitivity, is hampered 
by high false-positive rates and several contraindications, limiting its 
applicability [6,7]. US, on the other hand, is non-invasive, cost-effective, 
and accessible, proving beneficial in early cancer detection when com-
bined with mammography [8–10]. However, its limitations, including 
the lack of functional nodule information and morphological overlap, 
leading to increased false positives, necessitate enhanced precision in US 
assessments for BC [8,11]. 

Photoacoustic (PA) imaging, integrated with conventional US, offers 
a synergistic diagnostic approach to address these challenges. 
Combining laser and US technologies, photoacoustic/ultrasound (PA/ 
US) imaging provides detailed morphological and functional insights, 
including tumor vasculature imaging and quantification of oxyhemo-
globin and deoxyhemoglobin levels, enhancing diagnostic accuracy 
[12–15]. Despite these advancements, the differentiation of benign and 
malignant lesions in PA/US imaging often relies on subjective visual 
scoring methods. 

Radiomics refers to a variety of computerized approaches that aimed 
to extract quantitative features from medical images including 
morphological features, intensity, texture and functional information, 
which are incredible to be recognized or quantifies by human eye [16]. 
Traditionally, radiomics mainly focused on the primary tumor, negligent 
of the peritumoral regions. However, different tumors have different 
tendency of invasion, and the peritumoral regions serves as the first path 
of tumor invasion, reflecting the complementary role of peritumoral 
regions in diagnosing tumors [17]. Recent studies demonstrated that the 
MRI feature of 0–8 mm region of interest (ROI) of peritumoral region in 
BC is associated with preoperative targeted therapy efficiency of BC 
[18]. However, little is known about the PA/US imaging features in the 
peritumoral regions of BC and identifying the peritumoral PA/US im-
aging features is of great significance in the diagnosis of BC. 

In this study, we developed a nomogram model incorporating the 
clinic features, intratumoral and peritumoral radiomic features to pre-
dict the benign and malignant nature of BI RADS 3–5 breast nodules. 
Our results showed that the nomogram model has higher predicting 
efficiency of malignant breast nodules when comparing with the one 
using clinic features or radiomic features alone. Moreover, among the 
different peritumoral size, 5 mm-ROI of intratumoral and peritumoral 
region has the best predicting efficiency for the identification of ma-
lignant breast nodules, indicating that 5 mm-ROI of intratumoral and 
peritumoral PA imaging radiomics have potential diagnostic value in BI 
RADS 3–5 breast nodules. 

2. Materials and methods 

2.1. Statement of ethics 

This study was executed in strict adherence to the principles outlined 
in the Declaration of Helsinki (2013 revision) and received approval 
from the Medical Ethics Committee of our hospital (Approval No. SYL- 
202161–02). All participants provided written informed consent. 

2.2. Participants 

This study encompassed a consecutive cohort of 358 patients in BI- 
RADS 3–5 breast nodules who underwent PA/US examinations and 
subsequent surgical interventions for breast lesions at our institution 
from January 2022 to November 2023. The pathological validation for 
benign lesions was acquired via 14-gauge core needle biopsies, whereas 

the confirmation of malignant tumors was based on postoperative 
pathological findings. The exclusion criteria were meticulously defined 
as follows: 

(a) pregnant or lactating women; (b) individuals with compromised 
skin integrity in the assessment area (e.g., cuts, open wounds, ulcers); (c) 
patients with ongoing or active breast or axillary infections on the 
assessed side; (d) presence of subcutaneous congestion, hemorrhagic 
purpura, or nevus nigricans in the imaging area; (e) history of psychi-
atric disorders rendering the patient unable to comply with the testing 
protocol; (f) patients who had received neoadjuvant chemotherapy 
within three months prior to the examination; (g) cases with incomplete 
pathological records, a history of radiotherapy or chemotherapy, or 
suboptimal US image quality. Fig. 1 illustrates a flowchart delineating 
the patient inclusion process and Fig. 2 illustrates a Workflows for the 
necessary steps in radiomics model Construction. 

2.3. Multimodal PA/US imaging system and examination 

Multimodal PA/US examinations of all subjects were performed by a 
radiologist with 10 years of experience in breast US. The equipment used 
is the L9–3 linear array probe of Mindray Resona 7 (Mindray, China, 
refer to Appendix E1 for specific settings). A one-two bifurcated optical 
fiber bundle (Ceramoptec GmbH), which was mounted by a custom- 
made holder onto the both sides of the probe, was used to deliver the 
laser. The laser was emitted to tissues while the generated photoacoustic 
signals, which presented as the form of ultrasonic waves, were detected 
by the linear ultrasonic transducer. An OPO tunable laser (Spitlight 600- 
OPO, Innolas laser GmbH), which generated 680–980 nm laser pulses at 
10 Hz, were utilized. In this study, 750 nm and 830 nm wavelengths 
were selected for PA imaging, at which the deoxygenated hemoglobin 
and oxygenated hemoglobin could reach the peak absorption 
respectively. 

The imaging procedures were meticulously conducted under 
controlled environmental conditions with a temperature range of 
20–25℃ and humidity maintained between 50% and 70%. Prior to the 
examination, laser safety glasses were provided to both the operator and 
the patients to ensure compliance with safety protocols. Patients were 
positioned supinely for the examination, with adjustments made to 
other suitable positions as required by the scanning protocol. To facili-
tate comprehensive access to the breast and axillary regions, the affected 
arm was positioned in 180◦ abduction. The examination commenced 
with the identification of breast lesions via grayscale US. Following this, 
a US gel pad was placed on the skin overlying the lesion to optimize 

Fig. 1. : Flowchart of patient inclusion and exclusion criteria.  
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acoustic coupling. The probe, positioned on the gel pad, was meticu-
lously aligned to ensure that the largest cross-sectional view of the lesion 
was centralized on the display screen. Stability of the image was a key 
focus, with the probe held steadily (Appendix E2). once a stable and 
clear image was achieved, it was saved in the system for subsequent 

analysis. In the multimodal mode, the real-time imaging screen was 
divided into four segments. The top-left quadrant presented a standard 
US image, permitting the selection of grayscale ultrasound (GSUS), color 
Doppler US, or Power Doppler US. The bottom two quadrants displayed 
photoacoustic images superimposed on GSUS images at wavelengths of 

Fig. 2. : Workflows for the necessary steps in the current study. Manual segmentation of tumors is performed on ultrasound images, followed by automatic outward 
expansion of the tumor perimeter by 2 mm, 5 mm, and 8 mm, respectively. Imaging histological features are extracted from ultrasound images of different regions of 
interest (ROI) within and around the tumor to quantify characteristics such as tumor shape. For feature selection, ICC, Spearman correlation coefficient, and LASSO 
are used to select the extracted features. The performance of the predictive model is evaluated by the area under the receiver operating characteristic (ROC) curve. To 
provide more understandable measurement results, we developed a personalized nomogram evaluation tool that assesses the fit of the nomogram via calibration 
curves and analyzes the clinical utility of the nomogram through decision curves. 

Fig. 3. : Photoacoustic/ultrasound (PA/US) image of benign lesion or malignant lesion. Note: A: PA/US image of benign lesion (BI-RADS 3, Fibroadenoma); B: PA/ 
US image of benign lesion (BI-RADS 4 A, Intraductal papilloma); C: PA/US image of malignant lesion (BI-RADS 4B, Invasive non-special type carcinoma); D: PA/US 
image of malignant lesion (BI-RADS 4 C, Invasive non-special type carcinoma); E: PA/US image of malignant lesion (BI-RADS 5, Invasive non-special type carci-
noma). In the multimodal mode, the real-time imaging screen was divided into four segments. The top-left quadrant presented a standard US image, permitting the 
selection of grayscale ultrasound (GSUS), color Doppler US, or Power Doppler US. The bottom two quadrants displayed photoacoustic images superimposed on GSUS 
images at wavelengths of 750 nm (Wave 1) and 830 nm (Wave 2), respectively. The top-right quadrant showcased oxygen saturation (So2) mapping in pseudocolor, 
representing oxygenation derived from the combined signals of the two photoacoustic images at 750 nm and 830 nm. 

Z. Huang et al.                                                                                                                                                                                                                                  



Photoacoustics 38 (2024) 100606

4

750 nm and 830 nm, respectively. The top-right quadrant showcased 
oxygen saturation (So2) mapping in pseudocolor, representing oxygen-
ation derived from the combined signals of the two photoacoustic im-
ages at 750 nm and 830 nm (Fig. 3). 

2.4. Region-of-interest segmentation and radiation feature extraction 

For the analysis, a singular image per tumor was employed. All PA 
images in the study were archived in the Digital Imaging and Commu-
nications in Medicine (DICOM) format. The ROI for feature extraction 
was manually delineated on the largest cross-sectional area of the PA 
image using ITK-SNAP software (version 3.8.0; [http://www.itksnap. 
org]). This task was undertaken by two seasoned breast radiologists, 
each boasting over a decade of expertise in breast US, who were un-
aware of the final pathological outcomes. Intraclass correlation co-
efficients (ICC) were calculated using 60 randomly selected PA images to 
assess the reliability and reproducibility of the features (Appendix E3). 
Radiomic features demonstrating an ICC greater than 0.75, indicative of 
excellent stability, were selected for feature extraction [19]. Standard-
ization of feature lines was accomplished via z-score normalization, and 
feature correlations were assessed using the Spearman correlation co-
efficient. In instances where the correlation coefficient exceeded 0.9, 
only one of the correlated features was retained. Additionally, a 
Mann-Whitney test was performed on the features and any feature with 
a P value greater than 0.05 was eliminated. In this study, the con-
struction of radiomic features was facilitated using the least absolute 
shrinkage and selection operator (LASSO) regression model, applied to 
the training dataset. The LASSO methodology effectively diminishes 
regression coefficients towards zero, consequently assigning zero co-
efficients to numerous non-essential features, contingent on the 
weighting parameter λ. The optimal λ was determined through a 10-fold 
cross-validation process, employing a minimum criterion approach. This 
method identified the λ value that resulted in the minimal 
cross-validation error. Subsequently, the parameters of the retained 
features with non-zero coefficients were incorporated into the regression 
model fitting. The Pyradiomics platform (https://pyradiomics.readthe 
docs.io/en/latest/index.html) was utilized for automated extraction of 
these radiomic features from each image[20]. 

2.5. Establishment performance and validation of the radiodiomic model 

A LASSO regression model was employed to construct a predictive 
model for distinguishing between benign and malignant breast lesions 
within the training cohort. The model’s diagnostic efficacy was assessed 
using indices such as accuracy, sensitivity, and specificity, all derived 
from the confusion matrix and their respective derivations. Additionally, 
univariate logistic regression analysis was conducted to identify inde-
pendent predictors of benign and malignant breast nodules. This anal-
ysis encompassed variables such as age, menopausal status, radiomics 
characteristics, the diameter of the lesion as reported by US. Subse-
quently, a radiomics nomogram integrating these radiomics character-
istics and independent prognostic factors was developed. The diagnostic 
utility of this radiomics nomogram was then validated in a separate 
cohort, with its performance evaluated through the construction of a 
Receiver Operating Characteristic (ROC) curve. To assess the calibration 
efficacy of the nomogram, a calibration curve was plotted, and the 
Hosmer-Lemeshow test was utilized to evaluate its calibration accuracy. 
Furthermore, a Decision Curve Analysis (DCA) was performed to 
determine the clinical utility of the predictive model (Fig. 2). 

2.6. Statistical analysis 

Statistical analysis was performed using R 4.2.2(Copyright (C) 2022 
The R Foundation for Statistical Computing). A two-sided p-value 
threshold of less than 0.05 was established as the criterion for statistical 
significance. During the univariate analysis, the clinical characteristics 

of patients across different groups were compared. For continuous var-
iables, the Mann–Whitney U test was employed, while categorical var-
iables were analyzed using either the χ2 test or Fisher’s exact test, 
contingent upon the appropriateness to the data set. Additionally, for 
comparisons involving more than two groups, Analysis of Variance 
(ANOVA) and the Kruskal–Wallis H test was utilized. 

3. Results 

3.1. Patient clinical outcomes 

A total of 358 cases of BI-RADS 3–5 breast nodule patients were 
divided into two groups, with 286 patients in the training set and 72 
patients in the testing set. The pathological results showed 156 benign 
nodules and 130 malignant nodules in the training set, 39 benign nod-
ules and 33 malignant nodules in the testing set. The clinical features of 
these patients were summarized in Table 1 and Table S1 concerning the 
age, height, weight, diameter, location, which showed no significant 
difference among these characteristics between the training set and 
testing set (P>0.05). Univariate analysis showed that weight, the 
maximum of the nodule, the minimum of the nodule, age and 
menstruation stage were significantly associated with the malignancy of 
breast nodules (P<0.001). Multivariate analysis revealed significant 
correlation between the maximum of the nodule, the minimum of the 
nodule and age (P<0.001) (Table 2), which were selected for further 
model construction. In the development of our clinical model, we 
incorporated age and tumor diameter as primary variables. This model 
demonstrated robust discriminating ability with an Area Under the 
Curve (AUC) of 0.863 (95% Confidence Interval [CI]: 0.819–0.907) in 
the training dataset. Notably, this high level of discrimination was 
consistent in the test dataset, where the model achieved an AUC of 0.794 
(95% CI: 0.710–0.878) (Figure S1). 

3.2. Intratumoral and peritumoral feature selection and ultrasound 
radiomic model construction 

Within the tumor and at peritumoral regions of 2 mm, 5 mm, and 
8 mm ROI, we extracted a total of 214 radiomic features (The specific 
feature distribution and weights are detailed in Figure S2-S5). These 
included 107 intratumoral features and 107 peritumoral features. From 
the filtered set of 107 intratumoral and 107 peritumoral features, 35 
optimal intratumoral features were selected using LASSO regression for 
inclusion in the intratumoral PA imaging radiomics model (Fig. 4A). 
Additionally, 37 optimal features combining intratumoral and 2 mm 
peritumoral (Fig. 4B), 33 combining intratumoral and 5 mm peritu-
moral (Fig. 4C), and 32 combining intratumoral and 8 mm peritumoral 
features (Fig. 4D) were incorporated to establish distinct combined 
intratumoral-peritumoral PA imaging radiomics models. The results 
showed that the intratumoral PA imaging radiomic model had an AUC of 
0.842 (95% CI: 0.794–0.891) in the training set and 0.745 (95% CI: 
0.648–0.841) in the testing set (Fig. 4E). While in the intratumor com-
bined the 2 mm-ROI of peritumor PA imaging radiomics model and 
clinical model, the features had an AUC of 0.885 (95% CI: 0.845–0.925) 
in the training set (Fig. 4F) and an AUC of 0.826 (95% CI: 0.743–0.910) 
in the testing set (Fig. 4G). In the intratumor combined the 5 mm-ROI of 
peritumor PA imaging radiomics model and clinical model, the results 
showed an AUC of 0.924 (95% CI: 0.892–0.957) in the training set 
(Fig. 4H) and an AUC of 0.873 (95% CI: 0.801–0.945) in the testing set 
(Fig. 4I). In the intratumor combined the 8 mm-ROI of peritumor PA 
imaging radiomics model and clinical model, the features showed an 
AUC of 0.903 (95% CI: 0.866–0.939) in the training set (Fig. 4J) and an 
AUC of 0.845 (95% CI: 0.823–0.945) in the testing set (Fig. 4K). The 
above results showed that incorporating peritumoral into radiomic 
analysis had better predicting performance than using intratumoral 
alone. Moreover, comparing the results of different peritumoral size 
revealed that peritumoral regions with 5 mm ROI has the best prediction 
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performance. Detailed radiomics performance is shown in Table 3. 

3.3. Combined model construction 

In this study, we developed a comprehensive predictive model by 
integrating radiomics features derived from intratumoral and peritu-
moral 5 mm PA imaging with clinical risk factors. This model culmi-
nated in the creation of a nomogram, illustrated in Fig. 5 A, aimed at 
differentiating benign from malignant breast nodules within the BI- 
RADS 3–5 category. The model’s performance was evaluated in terms 
of its AUC values. In the training set, the model achieved an AUC of 
0.950 (95% CI: 0.925–0.975) (Fig. 4H), while in the test set, the AUC 
was 0.899 (95% CI: 0.841–0.956) (Fig. 4I). Additionally, the calibration 
curves for the combined intratumoral and 5 mm peritumoral PA imag-
ing features with clinical parameters, demonstrate good calibration in 
both the training and test sets (Fig. 5B and C). The DCA showed that the 
nomogram incorporating the clinic features, intratumoral and 5 mm 
peritumoral PA imaging radiomic features had significant benefit for 
intervention in BI-RADS 3–5 breast nodules (Fig. 5D and E). The results 
of this study underscore the exceptional diagnostic capability of this 
nomogram, which integrates radiomic features based on photoacoustic 
imaging within the intratumoral and peritumoral 5 mm areas with 
clinical risk factors. This model demonstrates a high level of accuracy in 
differentiating between benign and malignant breast nodules, suggest-
ing its utility in substantially reducing the need for unnecessary breast 
nodule biopsies. 

4. Discussion 

Prior studies have highlighted the potential of PA imaging in accu-
rately diagnosing BC [12,14,15,21]. However, current diagnostic ap-
proaches predominantly rely on subjective image visualization scoring, 
with a notable absence of quantitative, non-invasive methodologies. 
Furthermore, there is a lack of comprehensive analysis regarding the 
imaging characteristics of breast nodules as depicted by photoacoustic 

imaging. Addressing these gaps, our study leveraged photoacoustic 
imaging, an innovative technology based on laser-generated US, for the 
non-invasive evaluation of breast nodules in participants. We aimed to 
elucidate the correlation between diverse regional radiomic signatures, 
as identified through photoacoustic imaging, and the benign or malig-
nant nature of breast nodules. Crucially, this research culminated in the 
development and validation of a radiomics nomogram. This nomogram, 
integrating intratumoral radiomics features within a 5 mm peritumoral 
area, the diameter of the largest lesion section as reported by US, and 
patient age, proved effective in non-invasively predicting the benign or 
malignant status of BC patients’ pre-surgery. In the context of 
non-invasively predicting the benign or malignant status of BC patients 
prior to surgery, the developed nomogram demonstrated significant 
diagnostic differentiation, evidenced by an Area Under the Curve (AUC) 
of 0.950 in the training cohort and 0.899 in the validation cohort. 
Notably, this model outperformed both the pure clinical feature model 
and the radiomics models of the intratumoral area combined with per-
itumoral 2 mm and 8 mm areas. 

PA imaging has evolved from preclinical investigations on phantoms 
and animal models to clinical applications [14,22–24]. Optoacoustic 
device that generates temporally interleaved, coregistered, real-time 
images of grayscale US with fused color-coded optoacoustic features of 
benign and malignant breast nodules. The device’s capability to fuse 
these distinct imaging modalities provides a comprehensive and detailed 
representation of the nodules, thereby facilitating more accurate and 
efficient diagnostic evaluations. Despite these advancements, the diag-
nostic process remains largely subjective, relying on the interpreting 
physician’s expertise. This subjectivity underscores the inherent limi-
tations of human visual assessment in detecting complex biological in-
formation present in medical images. To address this, radiomics emerges 
as a pivotal tool, enabling the extraction of objective, quantitative fea-
tures from medical images through high-throughput computing [25,26]. 
This approach quantifies aspects such as tumor heterogeneity, offering 
valuable insights for tumor characterization and aiding in diagnostic 
and therapeutic decision-making [27]. In related studies, the efficacy of 
radiomics models in breast nodule diagnosis has been demonstrated. 
Hong et al.[28] achieved an AUC of 0.89 in diagnosing BI-RADS cate-
gory 4–5 breast nodules. Romeo et al.[29] combined radiomics with 
machine learning to attain an AUC of 0.82, while Zhang et al.[30] 
developed an intratumoral radiomics model for Breast Imaging 
Reporting and Data System categories 3–5 nodules, yielding an AUC of 
0.79 in their test set. In this study, employing LASSO regression, we 
identified and incorporated 36 intratumoral radiomics features into a 
photoacoustic radiomics model. This model demonstrated AUC values of 
0.800 (95% CI: 0.739–0.855) and 0.780 (95% CI: 0.6854–0.875) in the 
training and test sets, respectively. While these values are slightly lower 
than those reported in the studies by Hong et al. [28], Romeo et al. [29] 
and Zhong et al. [30], they affirm the potential of integrating radiomics 
in PA imaging for breast nodule diagnosis. 

Table 1 
Clinical characteristics of patients with breast nodules in training and testing sets (n=358).  

Clinical feature Training set Testing set  

ALL Benign Malignant P value ALL Benign Malignant P value 

Year 44.33±11.57 39.35±9.86 50.29±10.64  <0.001 44.29±11.62 39.77±10.83 49.64±10.28  <0.001 
Height 159.49±5.55 159.72±6.25 159.22±4.58  0.63 159.85±5.16 160.19±5.54 159.45±4.72  0.39 
Weight 58.15±7.76 56.48±6.73 60.16±8.45  <0.001 57.18±7.94 57.60±6.94 56.68±9.07  0.48 
Max 19.69±12.14 16.65±9.09 23.34±14.21  <0.001 20.52±14.05 14.95±6.71 27.09±17.39  <0.001 
Min 10.89±5.55 9.26±5.22 12.85±5.32  <0.001 10.97±6.02 8.35±4.83 14.08±5.86  <0.001 
Menstruation     <0.001     0.01 
No 198(69.23) 133(85.26) 65(50.00)   49(68.06) 32(82.05) 17(51.52)   
Yes 88(30.77) 23(14.74) 65(50.00)   23(31.94) 7(17.95) 16(48.48)   
Location     0.97     1.00 
Right 151(52.80) 83(53.21) 68(52.31)   36(50.00) 19(48.72) 17(51.52)   
Left 135(47.20) 73(46.79) 62(47.69)   36(50.00) 20(51.28) 16(48.48)   

Note: Max = Maximum diameter; Min = Minimum diameter. 

Table 2 
Univariable and Multivariable analyses of the clinical charateristics and clini-
copathologic features in patients in the training set (n=286).   

Univariable Analysis Multivariable Analysis 

Variable Log (OR) p_value Log (OR) p_value 

Year  1.02  <0.001 1.019 <0.001 
Height  0.996  0.348 … … 
Weight  1.011  0.001 1 0.925 
Max  1.012  <0.001 1.009 0.003 
Min  1.032  <0.001 1.018 0.001 
Menstruation  1.488  <0.001 0.918 0.29 
Location  1.002  0.976 … … 

Note: OR=odds ratio, Max = maximum diameter; Min = minimum diameter. 
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Prior studies focused on the predictive role of intratumoral radiomic 
features, neglect of peritumoral regions[31–33]. However, as the 
development of biomedicine, researchers found that peritumoral tissues 
were also closely associated with tumor progression and prognosis, 
which raised a frenzied expansion of studying into peritumoral radio-
mics[34,35]. These studies mainly concerned on the MRI radiomic 
features of peritumoral regions and they found that peritumoral MRI 
radiomics have significant predictive value for the recurrence, chemo-
therapy response and survival time of BC patients[36]. However, there 
has been a limited investigation into the impact of radiomic features 

from US imaging of different peritumoral regions in the diagnosis and 
prognosis of BC. More significantly, to the best of our knowledge, the 
application of PA imaging as an emerging technique has not yet been 
explored for its potential in discerning radiomic features of the tumor 
and its adjacent areas in the diagnosis of breast lesions. In this study, we 
incorporated both intratumoral and peritumoral PA imaging radiomics 
to discriminate benign and malignant breast nodules, and we found the 
combined model had an AUC of 0.873 (95% CI: 0.801–0.945) in the 
testing set, much higher than using the intratumoral US radiomics alone, 
which was 0.745 (95% CI: 0.648–0.841). This may be attributed to the 

Fig. 4. : The AUC curves of the radiomic models in intratumoral and peritumoral regions. A. Radiomic features selected by LASSO in the intratumoral region. B-D. 
Radiomic features selected by LASSO in the intratumoral and 2 mm peritumoral region (B), intratumoral and 5 mm peritumoral region (C), intratumoral and 8 mm 
peritumoral region (D). E. AUC curves of image only radiomic models in the training and testing set. F and G. AUC curves of the clinic model, radiomic model and 
nomogram model in the training set (F) and testing set (G) of intratumoral and 2 mm peritumoral region. H and I. AUC curves of the clinic model, radiomic model 
and nomogram model in the training set (H) and testing set (I) of intratumoral and 5 mm peritumoral region. J and K. AUC curves of the clinic model, radiomic model 
and nomogram model in the training set (J) and testing set (K) of intratumoral and 8 mm peritumoral region. 

Table 3 
Diagnostic performance of radiomics model.  

Model Set AUC 95% CI Sensitivity Specificity Accuracy 

Intra-radiomics Training  0.842 0.794–0.891  0.809  0.632  0.728 
Testing  0.745 0.648–0.841  0.712  0.531  0.630 

Intra+2 mm 
peri-radiomics+clinical 

Training  0.885 0.845–0.925  0.816  0.790  0.804 
Testing  0.826 0.743–0.910  0.797  0.776  0.787 

Intra+5 mm 
peri-radiomics+clinical 

Training  0.924 0.892–0.957  0.853  0.825  0.844 
Testing  0.873 0.801–0.945  0.824  0.816  0.815 

Intra+8 mm 
peri-radiomics+clinical 

Training  0.903 0.866–0.939  0.846  0.791  0.816 
Testing  0.845 0.823–0.945  0.746  0.816  0.778 

Note: AUC, area under the curve; CI: confidence interval; intra, intratumoral features; peri, peritumoral features. 
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Fig. 5. The construction of nomogram model. A. A nomogram was developed incorporating the clinical features, intratumoral and peritumoral radiomic features. B 
and C. The calibration curves of the clinical model, radiomic model and nomogram model in the training (B) and testing sets (C). D and E. The decision curves of 
clinical model, radiomic model and nomogram model in the training (D) and testing sets (E). 
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fact that some BI-RADS 3–5 category nodules are challenging to identify 
solely based on intratumoral radiomic features, but can be discerned 
through peritumoral radiomic characteristics. Therefore, peritumoral 
radiomic features could potentially provide valuable assistance in cases 
where intratumoral radiomic features alone fall short of enabling ac-
curate differentiation. 

In this study, we explored the optimal peritumoral size by dividing 
the peritumoral region into 2 mm, 5 mm and 8 mm ROI. The results 
showed that 5 mm ROI has the highest AUC among these three cate-
gories, with an AUC of 0.826 (95% CI: 0.743–0.910) in the testing set of 
2 mm ROI, 0.873 (95% CI: 0.801–0.945) of 5 mm ROI and 0.845 (95% 
CI: 0.823–0.945) of 8 mm ROI. To better define the predictive value of 
US radiomics in the benign and malignant features of breast nodules, we 
developed a nomogram model with the clinic features, intratumoral and 
5 mm ROI peritumoral radiomics. The model showed an AUC was 0.899 
(95% CI: 0.841–0.956) in the testing set. Our study revealed that peri-
tumoral regions were crucial for benign and malignant breast nodule 
differentiation and 5 mm ROI of peritumoral region was the most 
optimal size. This finding is consistent with previous studies[30]. This 
may be for several reasons: Firstly, the 8 mm peritumoral region might 
be too expansive, including more normal breast tissue relative to a 5 mm 
margin, which does not contribute beneficially to radiomic analysis. 
Conversely, a 2 mm margin may fail to encompass sufficient breast tis-
sue affected by invasion, offering less comprehensive information for 
radiomic analysis. Additionally, this might also be related to the field of 
view and sensitivity of the imaging probe. Previous research has shown 
that ultrasound images obtained by probes with different frequencies 
will affect the diagnostic performance of artificial intelligence models 
[37]. Radiomic analysis is reliant on the image features extracted, and 
the frequency of the probe could potentially influence outcomes. In 
summary, our findings not only validate the utility of peritumoral 
characteristics in radiomics but also indicate that the choice of peritu-
moral region size significantly influences the predictive outcomes of 
radiomic analyses. We propose that instead of employing arbitrary or 
indeterminate sizes of peritumoral regions—a common practice in most 
current radiomics studies—systematic comparisons to identify the 
optimal peritumoral thickness could substantially enhance predictive 
models and optimize their performance. 

This study has several limitations. The first limitation was the single- 
center retrospective study with small sample, which may lead to bias. 
Larger dataset from multi-center needs to be added to improve the 
diagnostic accuracy of our model. The second limitation was that we did 
not incorporate two-dimensional ultrasonographic features in this 
model, which include shape, boundary, edges, internal echoes, posterior 
echoes and blood flow. These features were crucial for the differenti-
ating of benign and malignant breast nodules. In the future, we will add 
these characteristics into our predictive model. Finally, in our study, the 
peritumoral radiomic features was only applied for the predicting of 
benign and malignant nodules. Whereas, the lymph node metastatic 
status, molecular subtypes, chemotherapy response and recurrence rate 
were also important prognostic factors of BC. Future work would vali-
date the optimal peritumoral size dependent on different specific 
applications. 

5. Conclusion 

This study represents the first exploration into the utility of intra-
tumoral and peritumoral features based on photoacoustic imaging in 
cancer radiomics analysis. Our findings corroborate that peritumoral 
features encompass critical information about the tumor itself, war-
ranting their inclusion in future radiomics research. Furthermore, this 
work pioneers a systematic investigation of the impact of peritumoral 
region size in photoacoustic imaging-based cancer radiomics. Given that 
the selection of peritumoral size significantly influences the predictive 
accuracy of radiomics models, our study underscores the need to opti-
mize peritumoral features in future radiomics investigations, thereby 

enhancing the overall predictive performance. 

Ethics approval and consent to participate 

This study was approved by the Institutional Review Board of the 
Shenzhen People’s Hospital, specifically the Medical Ethics Committee 
of Shenzhen People ’s Hospital. and all participants provided written 
informed consent. All methods were carried out in accordance with 
relevant guidelines and regulations. 

Financial support 

No. 

CRediT authorship contribution statement 

Jing Zheng: Resources, Data curation. Hongtian Tian: Project 
administration. Guoqiu Li: Methodology. Luyao Zhou: Writing – re-
view & editing, Validation, Supervision. Fajin Dong: Writing – review & 
editing, Validation, Supervision. Zhibin Huang: Writing – original 
draft, Investigation, Data curation. Shuzhen Tang: Data curation. Jin-
feng Xu: Writing – review & editing, Visualization, Validation. Yao 
Kong: Data curation. Hui Luo: Data curation. Zhijie Chen: Data cura-
tion, Methodology. Sijie Mo: Data curation. Youping Wang: Method-
ology. Huaiyu Wu: Investigation, Data curation, Conceptualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper 

Data Availability 

Data will be made available on request. 

Acknowledgments 

This work was supported by the National Key R&D Program of China 
(2023YFC2411700, 2023YFC2411705), Clinical Scientist Training Pro-
gram of Shenzhen People’s Hospital (SYWGSCGZH202202). 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.pacs.2024.100606. 

References 

[1] A.N. Giaquinto, H. Sung, K.D. Miller, J.L. Kramer, L.A. Newman, A. Minihan, 
A. Jemal, R.L. Siegel, Breast cancer statistics, 2022, CA Cancer J. Clin. 72 (6) 
(2022) 524–541. 

[2] P. Boyle, Global summit on mammographic screening, Ann. Oncol. 14 (8) (2003) 
1159–1160. 

[3] Force* UPST, Screening for breast cancer: recommendations and rationale, Ann. 
Intern. Med. 137 (5_Part_1) (2002) 344–346. 

[4] R.W. Pinsky, M.A. Helvie, Mammographic breast density: effect on imaging and 
breast cancer risk, J. Natl. Compr. Cancer Netw. 8 (10) (2010) 1157–1165. 

[5] K. Johnson, K. Lång, D.M. Ikeda, A. Åkesson, I. Andersson, S. Zackrisson, Interval 
breast cancer rates and tumor characteristics in the prospective population-based 
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