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a b s t r a c t 

Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain in- 

jury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional 

outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including pa- 

tient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, 

optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact 

of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management. 
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Cerebral autoregulation (CA) dysfunction occurs after an

cute brain injury (ABI), and impaired CA is a strong predic-

or of clinical outcome. [ 1–4 ] The clinical benefits of therapeu-

ic hypothermia (TH) after cardiac arrest have been confirmed,

nd TH has been widely accepted as the gold standard treat-

ent for surviving coma patients after a cardiac arrest. [ 5 , 6 ] 

raumatic brain injury (TBI), ischemic stroke (IS), intracere-

ral hemorrhage (ICH), and subarachnoid hemorrhage (SAH)

re more heterogeneous than hypoxic brain injury in terms

f pathology, severity, and clinical course. What diseases ben-

fit from TH remains unclear. This paper reviews our cur-

ent understanding of CA changes during TH and may pro-

ide the basis and direction for CA-oriented target temperature

anagement (TTM). 

hanges in CA after an ABI 

CA is a protective mechanism that maintains cerebral blood

ow (CBF) at a relatively constant level despite fluctuations

n cerebral perfusion pressure (CPP) or arterial blood pressure

ABP). This physiologic self-regulation protects the brain from

schemic and congestive injuries by optimizing CBF. One of the

rst reports to document CA was in 1928, when Forbes and

olff[ 7 ] described pial arterial contraction in response to in-

reased blood pressure. It was not until 1959, when Lassen 

[ 8 ] 

ublished the first blood pressure-CBF plot, that the concept

f static CA (sCA) was formally introduced. Aaslid et al. [ 9 ] 
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dentified dynamic CA (dCA) using transcranial Doppler ul-

rasonography (TCD) in 1989. The regulatory mechanisms be-

ind CA are not fully understood. CBF is thought to be reg-

lated by myogenic, neurogenic, endothelial, and metabolic

rocesses. [ 10 , 11 ] The plateau and upper and lower limits of au-

oregulation are affected by many factors such as age, [ 12 , 13 ] 

ex, [ 14 , 15 ] metabolic rate, [ 16 , 17 ] diseases, vasoactive drugs, [ 18 , 19 ] 

ympathetic tone, [ 20 , 21 ] hemoglobin and oxygen content, [ 22 , 23 ] 

nesthesia, and carbon dioxide. [ 24 ] 

Brain parenchymal injury immediately after an ABI is only

he initial insult. Subsequent secondary, non-mechanical in-

uries may play a more important role in long-term progno-

is. After the initial injury, the regulation of CBF, brain vol-

me/pressure, and metabolism changes significantly. [ 25 ] Cere-

rovascular oxidative stress impairs the key mechanisms that

egulate CA, such as endothelial function and neurovascular

oupling. [ 26 ] Spread depolarization, i.e., depolarization waves

ropagating through gray matter, is also involved in microvas-

ular dysfunction and secondary neuronal injury after an ABI.

ubsequently, cerebral microcirculatory vasoconstriction, dias-

olic dysfunction, impaired CA, and posttraumatic hyperper-

usion and congestion occur, leading to elevated intracranial

ressure (ICP) and vasoparalysis. [ 27 ] These changes in blood

ow may lead to increased anaerobic glycolysis, membrane per-

eability, and ultimately aggravated parenchymal edema, re-

ulting in pathologic changes similar to those that occur dur-

ng ischemia. [ 27 ] Post-traumatic ischemia can occur at multiple
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ime points from the hyperacute to the late injury stage, poten-

ially resulting from direct vascular rupture, hypotension, and

etabolic decoupling. [ 27 , 28 ] The brain has a poor tolerance to

nergy depletion, leading to the depletion of stored adenosine

riphosphate (ATP), excessive excitotoxic glutamate release, and

alcium overload in mitochondria, resulting in further neuronal

amage. [ 27–29 ] 

It has also been increasingly recognized that, in addition to

erfusion and impaired metabolism, CA dysfunction represents

 potential pathological defect that can lead to a secondary in-

ury and worse functional outcomes in the setting of several

cute neurologic diseases. [ 30–32 ] CA impairment has been re-

orted following acute nerve injuries, where CBF fluctuations

n response to arterial pressure result in cerebral ischemia, in-

arction, or hemorrhage. [ 11 ] Impaired CA has been identified

s a strong predictor of the clinical outcome of such nerve

njuries. [ 1–4 ] 

In 2000, Lang and Chesnut [ 33 ] made the first attempt to con-

ider CA-oriented CPP as part of neurointensive care (NIC) man-

gement. Their prior works [ 34 ] reported that the pressure reac-

ivity index (PRx) varies with CPP in a U-shaped pattern, and

hat the optimal CPP (CPP opt ) with the lowest PRx would best

ptimize CA. Maintaining a CPP close to CPP opt has been associ-

ted with optimal brain tissue oxygenation , [ 1 ] improved brain

nergy metabolism, [ 35 ] and favorable clinical outcomes. [ 36–38 ] 

revious studies on patients with an acute ischemic stroke (AIS)

ollowing a mechanical thrombectomy have found that mean ar-

erial pressure (MAP) deviation from an optimal level (MAP opt )

orrelated with an increased risk of reperfusion hemorrhage and

 poor prognosis better than a fixed MAP threshold. [ 39 ] 

CA-guided therapy, which aims to minimize injury from hy-

operfusion and hyperperfusion by targeting the optimal CA

r the “optimal ” blood pressure, is therefore a feasible thera-

eutic strategy for patients with an ABI. CA is not an “all-or-

othing ” phenomenon but dynamic changes among and within

atients, providing a strong theoretical basis for individualized

reatment. [ 40 ] 

ffects of Disordered Thermoregulation on CA after an ABI 

Dysthermoregulation after a brain injury is thought to be

ultifaceted and interrelated, with an unclear etiology and

athophysiologic mechanism. [ 41 ] There are evidences that tem-

erature instability after head injury is caused by a direct hy-

othalamic injury, abnormal CBF, vascular changes that limit

eat dissipation, metabolic disorders, and a neurogenic inflam-

atory response. [ 28 , 42 ] 

A body core temperature > 38°C has a striking effect on

rain metabolism and CBF. It can increase cerebral oxygen

etabolism rate and the global and regional CBF. [ 28 , 43 ] The cen-

ral nervous system is very sensitive to both absolute tempera-

ure and the duration of hyperthermia. Hyperthermia-induced

econdary brain damage includes direct cytotoxic injury and in-

irect inhibition of neuronal function. [ 43–47 ] 

Up to 70% of ABI patients treated in NIC develop hyper-

hermia within the first 2 weeks of admission. Hyperthermia

as been associated with a longer stay in NIC and poor neu-

ological functional outcome. [ 43 , 44 , 48 , 49 ] Fever occurs in up to

2% of SAH patients and is associated with an increased risk

f death. [ 50 , 51 ] For every 1°C increase in body temperature, the
28 
ortality rate increases by eight times. [ 51 ] There is a temporal

elationship between fever and vasospasm after SAH, suggesting

hat fever may play an important role in the development of dif-

use cerebral ischemia. [ 51 ] Elevated body temperatures within

he first 24 h are quite common in IS patients and may be due

o metabolic dissociation and the release of inflammatory cy-

okines following the ischemic brain injury, and are associated

ith a worse prognosis. A meta-analysis including 19 preclini-

al studies on IS [ 52 ] reported that hyperthermia increased infarct

ize by 43.4% (95% confidence interval [CI]: 29.80–56.90) and

orsened neurobehavioral outcomes by 48.5% (95% CI: 17.20–

9.80). Moreover, cerebral infarction size increased with higher

emperatures. [ 52 ] 

Cremer et al. [ 53 ] noted that sCA is impaired when the body

emperature exceeds 40°C. Unfortunately, the effects of body

emperature on CA in the first few days of a coma remain un-

lear. The Collaborative European NeuroTrauma Effectiveness

esearch in Traumatic Brain Injury (CENTER-TBI) study [ 54 ] con-

ucted at 21 medical centers in the European Union continu-

usly measured the ABP-ICP of 165 TBI patients for 72 h after

dmission. The PRx was calculated using ICM + software (Cam-

ridge Enterprises, Cambridge, UK), and the relationship be-

ween extracranial factors and CA was assessed. It was found

hat body temperature at admission ( P = 0.042) and white blood

ell percentage ( P = 0.013) were statistically correlated with CA

mpairment. Lactate, hemoglobin, oxygen partial pressure, pH,

oagulation indicators, C-reactive protein, and other indicators

elated to extracranial injury did not have a close relationship

ith CA. 

The neurological intensive care unit (NICU) of Johns Hop-

ins Hospital, United States, began the multimodal monitoring

f 85 patients with acute coma (Glasgow Coma Scale [GCS] ≤ 8

oints) [ 55 ] within 12–48 h after coma onset for 3 days. The re-

ults of monitoring suggested that the cerebral oxygenation re-

ctivity index increased (deteriorated) with increasing temper-

tures and decreased (improved) with decreasing temperatures,

nd that oxygenation reactivity index had a positive linear rela-

ionship with body temperature ( 𝛽 = 0.04 ± 0.10; P = 0.290). This

elationship was significant in the multivariate analysis of the no

hange group ( P = 0.006) and the increasing group ( P < 0.001).

A impairment occurred at temperatures > 38.6°C and improved

 36.6°C. This study found that elevated body temperature was

ndependently associated with CA deterioration in the setting of

n acute coma and that even relatively small changes in body

emperature may affect CA. [ 55 ] 

echanisms of Hypothermia on CA 

TH is defined as an intentionally induced, controlled hy-

othermia from a normal temperature of 37–38°C. TH is clas-

ified by the degree of cooling, including mild (32–35°C), mod-

rate (28–32°C), deep (20–28°C), and profound ( ≤ 20°C). Early

orks used deep hypothermia as the target body temperature.

owever, mild to moderate hypothermia has become a more

ttractive option due to the numerous complications and diffi-

ulties related to deep hypothermia. [ 56 ] 

Although the neuroprotective mechanisms of hypothermia in

he setting of different diseases vary and are not yet fully un-

erstood, its neuroprotective effects are generally attributed to
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ecreased metabolic rate, reduced free radical generation and

nflammation, and inhibition of excitotoxicity and apoptosis. [ 57 ] 

etabolism 

Hypothermia can reduce metabolic rate, decreasing the

xygen consumption of brain tissues by 6–7% for every

°C decrease in body temperature (from 37°C to 27°C). [ 58 ] 

etabolic changes associated with hypothermia include pre-

erving glucose, [ 59 ] inhibiting lactic acid accumulation due

o anaerobic metabolism, [ 60 ] and increasing plasma levels of

lycerol, [ 61 ] free fatty acids, and ketoacids. [ 62 ] These metabolic

hanges help to preserve the pH and ATP of the tissues and cells

nd promote homeostasis, [ 63 ] thereby limiting or preventing the

evelopment of ischemia when CBF is impaired or completely

bsent. [ 64 ] 

xidative stress 

Oxidative stress may play a central role in the inflammatory

esponse during a brain injury. Reactive oxygen species (ROS),

eactive nitrogen species (RNS), and other free radicals and ni-

ric oxide (NO) production have been associated with neuronal

amage. [ 65 ] Increased ROS can trigger an increased immune re-

ponse, leading to the activation of pro-inflammatory transcrip-

ion factors and endogenous immune molecules and the destruc-

ion of adjacent viable tissue surrounding the injured area. [ 66 ] 

OS thus participates in a vicious cycle of immune response ac-

ivation and direct cytotoxicity. Hypothermia significantly in-

ibits superoxide and lipid peroxidation to reduce the genera-

ion of free radicals [ 67 ] and inhibits NO production in the inter-

al jugular after cerebral ischemia-reperfusion. [ 68 ] 

nflammation 

Following an ABI, complement activation stimulates neu-

rophil pathways. This increases the levels of pro-inflammatory

ytokines such as Interleukin (IL)-1 𝛽, IL-6, IL-18, and tumor

ecrosis factor (TNF), aggravating neuronal injury. [ 69 , 70 ] Hy-

othermia has been shown to decrease the production of pro-

nflammatory cytokines and increase the production of anti-

nflammatory cytokines, thereby inhibiting the inflammatory

esponse. [ 71 ] However, hypothermia also inhibits the anti-

nflammatory cytokines IL-10 and TGF- 𝛽, [ 72 ] suggesting that hy-

othermia does not always lead to pure anti-inflammatory re-

ults. 

xcitotoxicity 

Brain damage due to excessive neuronal depolarization

eads to intracellular Ca 2 + overload and sustained glutamate

roduction. [ 73 , 74 ] The ultimate effect of these events is the

apid activation of extra-synaptic N -methyl-D-aspartate recep-

ors (NMDARs), promoting intracellular apoptotic/necrotic sig-

aling cascades and subsequent neuronal death. [ 75 ] Hypother-

ia can reduce the extent of neuronal damage by reducing the

xcessive extracellular release of glutamate and the production

f hydroxyl radicals. [ 76 ] Hypothermia also prevents the surge in

xtracellular glutamate during post-traumatic ischemia. [ 77 ] 
29 
poptosis 

Hypothermia plays a role by inhibiting neuronal apoptosis.

ild hypothermia can interfere with internal apoptosis and ex-

genous apoptosis via the mediation caspase family members

nd Fas/FasL, respectively. Mild hypothermia can increase Bcl-

, reduce the release of cytochrome C, inhibit the expression

f BAX, and down-regulate the expression of caspase family

embers. [ 78–80 ] Mild hypothermia can also affect Fas by inhibit-

ng the expression of matrix metalloproteinases (MMPs), [ 81 ] re-

ulting in reduced Fas and caspase-8 production 

[ 82 ] and de-

reased neuronal apoptosis. 

In addition to the above mechanisms, hypothermia also plays

 vital role in blood-brain barrier (BBB) protection. Disruption

f the BBB after ABI promotes results in edema formation and

emorrhage secondary injuries due to structural and functional

mpairment of the basement membrane tight junction proteins,

ransport proteins, endothelial cells, astrocytes, and neurons.

mall changes in body temperature can affect the function of the

BB. [ 83–85 ] High temperatures increase albumin efflux, activate

strocytes, and increase the levels of markers of cerebral edema,

uggesting that elevated body temperatures predispose to BBB

eakage. [ 86 ] Mild and moderate hypothermia protect against

BB disruption 

[ 87 ] and reduce edema formation by attenuating

he loss of vascular basement proteins. [ 88 , 89 ] Starting TH imme-

iately after the onset of ischemia can alleviate BBB dysfunction

n adult rodents. [ 90 ] Hypothermia in the setting of BBB dysfunc-

ion inhibits neuroinflammation by reducing chemokine expres-

ion, microglia conversion to an anti-inflammatory phenotype,

nd multiple markers of brain injury. [ 90 ] The effects of oxygen-

lucose deprivation in vitro on brain endothelial cells, astro-

ytes, and neurons also depend on temperature. [ 91 ] Hypother-

ia can prevent the separation of pericytes from the basement

embrane after an IS, which would result in dysfunction of the

onolayer of brain endothelial cells. [ 92 ] Hypothermia can also

nhibit the loss of basement membrane components such as type

V collagen and proteoglycans. [ 81 , 89 , 93 ] 

As mentioned above, oxidative stress after a brain injury im-

airs vascular endothelial function, neurovascular coupling, [ 26 ] 

nd other key mechanisms that regulate CA, resulting in CA

amage. Cerebral microcirculatory vasoconstriction, diastolic

ysfunction, impaired CA, and posttraumatic hyperperfusion

nd congestion occur as a result of CA dysregulation, lead-

ng to further neuronal damage. [ 27–29 ] Other CBF derange-

ents are also improved and/or impacted by hypothermia,

ut their role in mediating hypothermic protection is much

ore complex. For instance, delayed hyperemia after a TBI

xacerbates vasogenic tissue edema and promotes intracranial

ypertension (ICP > 20 mmHg) in brain regions where CA is

ysregulated. [ 94 ] The protective impact of hypothermia may in-

olve a decreased cerebral metabolic rate and a resultant de-

rease in CBF due to metabolic/flow coupling. [ 95 ] Hypothermia

an also reduce cytotoxic edema formation by down-regulating

rain aquaprin-4 (AQP4) water channels in a model of cerebral

schemia/reperfusion injury, which also contributes to reduced

CP and improved CBF. [ 96 ] 

Goswami et al. [ 97 ] reported that hypothermic (20°C) piglets

etained a static rate of autoregulation that was similar to that

f normothermic piglets (0.65 vs. 0.72, P = 0.40). The lower lim-

ts of autoregulation in hypothermic piglets was slightly lower
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han that of normothermic piglets (35 mmHg vs. 39 mmHg,

 = 0.60). Another preclinical study [ 98 ] reported that the lower

imits of autoregulation of hypothermia piglets was significantly

ecreased after cardiac arrest compared with a normothermic

roup, and CA was retained and stable in the setting of deep hy-

othermia. TH provides some form of protection to CA in ani-

al experimental ABI models. [ 99 ] Bisschops et al. [ 100 ] performed

4 h of TH (32–34°C) immediately after admission on patients in

 continuous coma after successful out-of-hospital resuscitation

f a cardiac arrest. It was found that the average flow rate of

he middle cerebral artery (MCA) changed by 3.60 ± 2.90% for

very 1 mmHg change in PaCO 2 during TH while cerebrovas-

ular reactivity to CO 2 was preserved, suggesting that CA was

etained during TH. 

hanges of CA During Hypothermia 

ypoxic-ischemic encephalopathy (HIE) 

A systematic review and meta-analysis of 11 randomized con-

rolled trials (RCTs) of TH initiated within 6 h after birth involv-

ng a total of 1505 neonates with moderate to severe HIE re-

orted consistently beneficial effects of hypothermia. [ 101 ] Mild

ypothermia was associated with a reduced risk of death or

ajor neurodevelopmental impairment by 18 months of age

relative risk[RR] = 0.75, 95% CI: 0.68–0.83). Importantly, cool-

ng reduced mortality (RR = 0.75, 95% CI: 0.64–0.88; 11 stud-

es, 1468 infants) and reduced the incidence of neurodevelop-

ental disorders in survivors (RR = 0.77, 95% CI: 0.63–0.94; 8

tudies, 917 infants). Available evidence suggests that mild hy-

othermia can improve the middle childhood prognosis of pa-

ients with birth HIE. [ 84 , 102 ] The Total Body Hypothermia for

eonatal Encephalopathy (TOBY) trail found that children in

he hypothermia group had a higher survival rate without neu-

ological abnormalities than those in the control group (45% vs.

8%; RR = 1.60, 95% CI: 1.15–2.22) and were more likely to have

n Intelligence Quotient score of ≥ 85 (52% vs. 39%; RR = 1.31,

 = 0.04). The risk of cerebral palsy (21% vs. 36%, P = 0.03) and

oderate to severe disability (22% vs. 37%, P = 0.03) was also re-

uced at 18 months of age. [ 102 ] To date, hypothermia to 33.5°C

or 72 h is the only established treatment for reducing reperfu-

ion injury after birth asphyxia. [ 103 ] 

Hochwald et al. [ 104 ] reported on the effects of TH on cerebral

irculation in 16 neonates with HIE. They found that superior

ena cava flow was maintained despite a significant decrease

n left ventricular cardiac output (LVCO) during TH, indicating

hat LVCO was preferentially redistributed to the brain. Further-

ore, the CBF of neonates with brain injuries was significantly

igher than those without brain injuries, a finding indicative

f CA deficiency and excessive reperfusion after ischemia in

eonates with severe brain injuries. Yoon et al. [ 105 ] examined

he hemodynamics of 32 neonates with HIE and found that sig-

ificant hemodynamic changes occurred during TH. The upper

ody blood flow (UBBF)/LVCO ratio was significantly higher

n neonates with HIE than in healthy neonates. Neonates with

 UBBF/LVCO ratio > 55% had a significantly increased risk of

ypoxic-ischemic lesions on brain magnetic resonance imaging

MRI) (odd ratio[OR] = 13.0; 95% CI: 2.40–70.20). These obser-

ations indicate that LVCO has a clear preferential redistribu-

ion to the brain during a TH, with relatively reduced perfusion
30 
o other systemic organs such as the kidneys. The brain MRIs

f neonates with HIE showed more pronounced cerebral prefer-

ntial redistribution of LVCO, indicating that the degree of CA

amage in neonates with brain injuries is more severe. 

Smith et al. [ 106 ] lowered the body temperature to 18°C, 24°C,

nd 30°C in a total of 72 infants who received a cardiopul-

onary bypass (CPB). The hemoglobin volume reactivity of in-

ants at 30°C and 18°C was 0.0 ( − 0.020 to 0.004) and 0.59

0.40–0.70), respectively. Lower level body temperature was

ositively correlated with hemoglobin volume reactivity, sug-

esting that TH may improve CA. However, the independent

ffect of body temperature on CA could not be determined in

his study due to the inclusion of only two variables for analy-

is, i.e., body temperature and blood pressure. Burton et al. [ 107 ] 

easured MAP opt during hypothermia, rewarming, and 6 h af-

er rewarming in 19 neonates with HIE. At 2-year follow-up,

eonates with ischemic brain injuries had a higher MAP opt value,

 longer period of blood pressure below MAP opt , and greater de-

iation in blood pressure below MAP opt during rewarming than

hose without impairments. Greater blood pressure deviation

bove MAP opt during rewarming was associated with less dis-

bility and higher cognitive scores. Gilmore et al. [ 108 ] performed

H within 6 h of birth on HIE neonates, using diffusion tensor

maging MRI to suggest that faster cooling and strict adherence

o 33–34°C might reduce cytotoxic edema, improve blood pres-

ure regulation to within or close to MAP opt , and decrease nerve

amage. 

Wang et al. [ 109 ] verified that TH can promote the recovery

nd maintenance of CBF after the return of spontaneous circula-

ion (ROSC) after cardiac arrest. Twelve Wistar rats resuscitated

fter 7 min of asphyxial cardiac arrest were randomly divided

nto hypothermia (7H, n = 6, 33–34°C) and normothermia groups

7N, n = 6, 37.0 ± 0.5°C). Compared with the 7N group, TH con-

inuously promoted CBF recovery to near baseline in the 7H

roup. CBF in the first 5–30 min after ROSC was 90.50 ± 3.40%

n 7H and 76.70 ± 3.50% in 7N ( P < 0.01). The information

uantity and neurologic deficit scores of the 7H ROSC group

ere significantly improved. This study therefore concluded

hat early TH facilitates the restoration of CBF back to base-

ine levels after cardiac arrest, thereby restoring brain electrical

ctivity and improving neurological outcome. [ 109 ] Another re-

ult from the same research group demonstrated that, compared

ith normothermia, immediate hypothermia following ROSC

an prolong the duration of hyperemia and delay the onset of hy-

operfusion phase with a lower relative CBF, better neurologic

eficit scores, and higher quantitative electroencephalogram-

nformation quantity. [ 110 ] 

Crippa et al. [ 111 ] performed TH on 50 patients with out-of-

ospital cardiac arrest, with a core body temperature of 33.7°C

33.2–34°C) for 24 (23–28) h followed by rewarming and nor-

othermia (NT) (36.9 [36.6–37.4]°C). The mean velocity in-

ex (Mx) during TH was lower than normothermia (0.33 [0.11–

.58] vs. 0.58 [0.30–0.83]; P = 0.03). During normothermia, Mx

as higher in patients with a poor neurologic prognosis than

thers (0.63 [0.43–0.83] vs. 0.31 [ − 0.01 to 0.67]; P = 0.03). In

 multivariate analysis, high Mx (CA deterioration), initial non-

hockable rhythm, and a highly malignant electroencephalog-

aphy pattern (HMp) were associated with in-hospital mortality

uring NT. High Mx during normothermia and HMp was associ-

ted with a poor neurologic outcome. It was suggested that CA
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eterioration was independently associated with poor progno-

is, and that TTM survivors had improved CA. [ 111 ] 

BI 

Clifton et al. [ 112 ] in their preclinical study were the first to re-

ort that mild TH improved the motor function recovery of TBI

ats. Subsequent preclinical studies using similar or different TBI

odels demonstrated that an early posttraumatic hypothermic

trategy (within 5 min) can reduce contusion volume and pro-

ect vulnerable neurons. [ 113 , 114 ] TH also mitigated the severity

f diffuse axonal and BBB injuries. [ 115 , 116 ] Recent studies have

hown that TH can also improve chronic behavioral outcomes,

ncluding sensorimotor and cognitive function. [ 117 ] 

Although preclinical studies have concluded that hypother-

ia is an effective treatment for TBI, there appears to be a dis-

onnect between clinical and experimental data. Clinical trial

ata are not very convincing. Marion et al. [ 118 ] published a ran-

omized study in 1997 in which 84 patients with severe TBI

ere treated with hypothermia (33°C for 24 h). Patients with a

CS score of 5–7 at admission had significantly better neurolog-

cal recovery at 3 months and 6 months. Jiang et al. [ 119 ] in their

andomized study of 215 TBI patients reported that prolonged

H (5 days) was effective at improving neurological progno-

is. However, higher quality clinical trials suggest a neutral or

ven negative effect of TH on long-term neurologic outcome,

s exemplified by data from the Eurotherm3235 trail and Polar

CT. [ 120–124 ] 

Although clinical evidence does not support the routine use

f prophylactic TH in ABI, the hazards of hyperthermia support

he role of TTM in the treatment of aggressive fevers. TTM re-

ains an option for treatment-resistant refractory ICP and cere-

ral edema. 

Animal studies have shown that blood vessels remain respon-

ive to various stimuli during hypothermia and that hypother-

ia provides some form of protection to CA in TBI rats. [ 99 ] Os-

orov et al. [ 125 ] measured CA function during TH in 14 severe

BI patients (Glasgow outcome scale [GOS] < 9). The patients

ad an average body temperature of 38.2 °C (37–39.8 °C), an

CP of 27 mmHg (16–45 mmHg), and a PRx of 0.25 ( − 0.15 to

.70) before TH. During the induction of TH, the patients’ ICP,

ody temperature, and PRx decreased simultaneously. PRx did

ot change significantly during the hypothermia maintenance

hase. This result suggests that TH improves CA. The CENTER-

BI substudy [ 126 ] enrolled 249 TBI patients who underwent con-

inuous multimodal monitoring during the initial 7 days fol-

owing trauma. Mild TH (core body temperature: > 35°C), mild

yperventilation (PaCO 2 : 35–40 mmHg), ICP-guided deep se-

ation, and CPP-guided vasoactive drug application decreased

improved) the daily average PRx and % time with PRx > 0, sug-

esting that mild TH has a certain potential therapeutic effect

n CA dysfunction. 

S 

Strokes are the leading cause of death and disability world-

ide, with IS accounting for 70% of all strokes. [ 127 ] The tenet

Time is Brain ” underlies the current therapeutic approach to

IS, emphasizing that neural tissue is rapidly and irreversibly

ost as stroke progresses. Interventional reperfusion therapy
31 
hould therefore be initiated urgently. This time-ischemia re-

ationship is mediated by the presence of collaterals that slow

he progression of the infarct and prolongate the therapeutic

indow. [ 128 ] The main objective of AIS is to salvage the vi-

ble penumbra by restoring perfusion to the ischemic brain.

owever, morbidity and mortality from AIS remain high due

o the narrow therapeutic window for recanalization. [ 129 , 130 ] 

urthermore, not every patient who has a successful recanal-

zation has a good clinical outcome, which is termed a futile

ecanalization. [ 131 ] It is therefore important to explore alterna-

ive and adjuvant therapies. [ 132 , 133 ] 

Supportive hemodynamic therapies aimed at optimizing

schemia-area perfusion can protect the brain and may even

rolong the therapeutic window for reperfusion therapies. How-

ver, our knowledge of how to implement these therapies in the

etting of the complex pathophysiology of cerebral ischemia is

ncomplete. MAP opt management is highly dependent on CA in-

egrity to protect the brain from ischemia or hyperperfusion.

tudying the CA characteristics of IS is therefore important to

uiding therapies tailored toward improving cerebral hemody-

amics. 

dCA has different characteristics during the acute ( < 48 h),

ubacute (48 h to 7 days), and chronic ( > 7 days) phases of IS. 

cute phase ( < 48 h) 

Petersen et al. [ 40 ] applied transfer function analysis (TFA)

o patients within 48 h of a large vessel stroke and found that

he affected hemisphere (AH) had significantly lower phase shift

han the unaffected hemisphere (UH). The autoregulation index

as reduced in AH patients with a mild IS at 36 h 

[ 134 ] and mild-

o-moderate IS at 48 h regardless of sub-type. [ 135 ] In a study

y Saeed et al., [ 136 ] the autoregulation index decreased within

8 h of a mixed-etiological stroke compared with healthy con-

rols, but there were no differences between hemispheres. dCA

ay also affect the incidence of brain injuries after recalcitrant

vents such as a hemorrhagic transformation and/or reperfusion

njury. [ 39 , 137 ] 

ubacute phase (48 h to 7 days) 

In contrast with the acute phase, the majority of studies that

valuated dCA during the subacute phase reported impaired CA

ven during the early (48–96 h) subacute phase of mild to mod-

rate AIS. [ 134 , 138–141 ] During the late subacute phase (5–7 days),

CA has been shown to be not only impaired 

[ 32 , 134 , 142–145 ] in the

H but the UH as well. [ 32 , 142 , 143 ] 

hronic phase ( > 7 days) 

Novak et al. [ 146 ] reported that the dCA of the AH was still

ow in patients 2 months after mild MCA infarctions. Salinet

t al. [ 147 ] observed that dCA was complete during the early sub-

cute phase (72 h) and decreased during the late subacute phase

14 days), but recovered 30 days and 3 months post-stroke.

imilarly, Kwan et al. [ 148 ] followed 10 patients with MCA in-

arcts > 3 months, noting increased phase shift > 3 time points

 < 7 days, 6 weeks, and 3 months), which represents improved

CA between the subacute and chronic phases. dCA changes sus-

ained during the chronic phase ( > 6 months) may be associated

ith functional deficits and brain atrophy. [ 149 ] 

In summation, CA may be an attractive therapeutic target

hat can benefit patients with IS by improving collateral vascu-

ar responses, maintaining blood flow to peri-ischemic regions,
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nd avoiding reperfusion lesions. [ 131 , 150 ] CA may be important

o plan short- and long-term treatment strategies for IS. An on-

oing multicenter project entitled “Identifying New Targets For

anagement and Therapy in Acute Stroke ” (INFOMATAS) [ 151 ] 

as launched in 2016 to prove this inference and to improve

ur better understanding of dCA in IS. 

TH is a novel treatment method for AIS that has been heav-

ly studied and shown to be one of the most effective adjunc-

ive therapies in preclinical models. [ 152–156 ] Mild or moderate

H initiated within a few hours of an ischemic attack has been

hown to have a neuroprotective effect. [ 157 , 158 ] Mild TH initi-

ted during or after a short delay following an acute IS reduces

he infarct size and reduces functional impairment. [ 152 , 159 ] Fur-

hermore, recanalization of occluded vessels within a specific

ime window after ischemia (recanalization therapy) increases

he possibility of a favorable outcome. [ 157 ] TH was very effec-

ive after recanalization. [ 160 , 161 ] In a transient middle cerebral

cclusion model, hypothermia demonstrated sustained neuro-

rotection. However, its performance in the setting of perma-

ent middle cerebral occlusion was contradictory. The role of

H combined with recanalization in the clinical environment is

herefore very important. [ 55 ] 

AH 

Using diffusion-weighted imaging (DWI) and magnetic res-

nance spectroscopy (MRS), Schubert et al. [ 162 ] evaluated the

europrotective effects of hypothermia on acute changes after

xperimental SAH. It was found that hypothermia improved

arly cytotoxic edema, lactate accumulation, and metabolic

tress response in SAH rats. 

Badjatia et al. [ 163 ] reported on the effects of TTM on the

unctional outcomes (GOS at discharge, MRS at 3 months and

2 months) on 40 SAH patients. TTM was activated with a target

emperature of 37°C when core body temperature was ≥ 38.3°C

or 2 h. Patients who received TTM had a better functional out-

ome than those who received “standard care. ”[ 163 ] Another

tudy found that mild TH for 2 h after a SAH could improve

eurologic deficits. Prolongation of TH therapy by 3 h led to

ecreased ICP and reduced water during the initial 7 days after

ntervention. [ 164 ] 

Ianosi et al. [ 165 ] studied the effects of body temperature

n CA in poor-grade aneurysmal SAH patients by using intra-

enous non-steroidal anti-inflammatory drugs and non-opioid

nalgesics to achieve a normal body temperature or relieve pain.

atients were divided into two groups: febrile episodes (T max 

 38.3°C within 1 h before infusion) and non-febrile episodes

T max < 38.3°C). After drug administration, PRx decreased signif-

cantly from baseline 0.17 (IQR: 0–0.34) to 0.07 (IQR: − 0.01 to

.22; P < 0.001). It was suggested that CA impairment improved

ignificantly after antipyretic therapy (45% vs. 30%, P < 0.001),

lthough the cold temperatures may worsen complications re-

ated to elevated ABP. In a large multicenter randomized study,

ild intraoperative hypothermia during intracranial aneurysm

urgery failed to improve the neurologic outcomes of favorable

rade (WFNS grade 1–3) SAH patients. [ 166 ] A clinical study con-

ucted by Seule et al. [ 167 ] evaluated the feasibility and safety of

ild TH for high-grade aneurysmal SAH patients with intracra-

ial hypertension and/or cerebral vasospasm. Continuous sys-
32 
emic TH may be the last option for young SAH patients with

efractory intracranial hypertension or cerebral vasospasm. 

CH 

Spontaneous ICH accounts for 10–30% of all stroke cases,

ith a mortality rate as high as 30–50%. [ 168 ] Primary ICH is

aused by the rupture of intracerebral vessels caused by chronic

esions created by arterial hypertension or cerebral amyloid an-

iopathy, whereas secondary ICH is associated with underlying

auses such as arteriovenous malformations, aneurysms, sinus

hrombosis, and brain tumors. Primary ICH is discussed in this

ection. 

Because patients with a primary ICH often have chronic ar-

erial hypertension, they may have an abnormal CA before the

troke with a right-shifted plateau. [ 169 ] Previous studies on CA

fter a primary ICH have been limited. The results of TCD-based

A studies are somewhat ambiguous, as some works suggest that

A is disordered after ICH 

[ 170 , 171 ] while others find it intact. [ 172 ] 

n two other studies based on PRx and hence patients with large

CHs, the CA status was commonly impaired and associated with

 worse clinical outcome. [ 173 , 174 ] Diedler et al. [ 175 ] found in a

mall ICH case series that higher (worse) PRx was slightly associ-

ted with brain hypoxia and impaired energy metabolism. Three

tudies using TFA as an indicator of CA in ICH patients suggested

hat compared with controls, ICH patients had a slightly higher

ain (standardized mean difference [SMD] = 0.68, 95% CI: − 0.05

o 1.40, P = 0.07) in the AH and a significantly higher gain in the

H (SMD = 0.98, 95% CI: 0.21–1.74, P = 0.01). Phase was sig-

ificantly reduced in ICH patients, suggesting that CA of both

erebral hemispheres may be impaired. These inconsistent re-

earch findings may be the result of various factors, such as the

election of research subjects, sample size, timepoint selection,

nd CA monitoring methods. 

The evolution of CA after ICH may be a dynamic

rocess. [ 176 ] Compared with healthy controls, the phase shift

f TFA was significantly lower during the early stage (1–

 days) of ICH, with further deterioration 7–13 days after

emorrhage. [ 171 , 177 , 178 ] CA rebounded 30 days after ICH, but

id not recover completely. [ 171 ] Perihematomal edema, the size

f the hematoma, and GCS score may contribute to dCA impair-

ent 10–20 days after an ICH. [ 179 , 180 ] 

A recent meta-analysis of preclinical studies evaluating TH in

he setting of cerebral hemorrhage [ 181 ] concluded that hypother-

ia can reduce edema, protect the BBB, and improve behavioral

utcomes. However, the optimism regarding the role of TTM in

he early treatment of brain injuries has been weakened due to

he failure of continuous clinical trials to improve clinical prog-

osis. Hypothermia can affect the procoagulant and fibrinolytic

ystems, predisposing to acute bleeding. Early cooling can in-

rease bleeding, and the protective effects of hypothermia may

nly be observed if cooling is delayed for 12 h. [ 182 , 183 ] Koll-

ar et al. [ 184 ] reported that 12 patients with large ICHs were

reated with TH (35°C) within 3–12 h of symptoms onset for

0 days. The edema volume in the TH group remained stable for

 14 days, while it increased significantly in the control group

subjects from the local ICH database). A recent systematic re-

iew and meta-analysis [ 185 ] revealed that hypothermia can re-

uce the incidence of delayed cerebral ischemia, but had no

ffect on mortality or outcomes. The clinical effects of TH on
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emorrhagic strokes remain unclear. This may be due to the fac-

ors such as fever, vasospasm, surgical techniques, and the need

or decompressive craniotomy, which can influence the patient’s

rognosis. Clinical trials of target temperature management af-

er ICH (TTM-ICH) [ 186 ] and cooling in intracerebral hemorrhage

CINCH), [ 187 ] which seek to explore the safety and efficacy of

ypothermia in patients with ICH, are ongoing. 

ffects of Rewarming Strategies on CA 

Reoxygenation increases oxidative stress after asphyxic

njuries. [ 188 ] Although hypothermia can attenuate this reaction,

xidative stress may be restored during rewarming. Changes in

roinflammatory cytokine levels during the rewarming may af-

ect vascular reactivity [ 189 ] disrupting CA. Animal studies have

hown that rapid rewarming may reverse the inhibitory effects

f hypothermia on potentially injurious processes such as oxida-

ive stress and excitotoxin release, [ 190 , 191 ] while slow rewarm-

ng may improve neurologic outcomes. In neonatal piglets ex-

osed to severe hypoxic-ischemic, rewarming at 0.5°C/h follow-

ng 18 h of hypothermia resulted in reduced caspase-3 activa-

ion in the cerebral cortex and white matter tracts compared

ith rewarming at 4°C/h. [ 192 , 193 ] Moreover, in adult gerbils sub-

ected to transient forebrain ischemia, rapid rewarming after

 h of hypothermia was associated with transient uncoupling of

BF and metabolism and lost neuroprotection in the hippocam-

al CA1 region, whereas slow or gradual rewarming prevented

hese processes. [ 194 ] Consistent with preclinical studies, clinical

rials have shown that rapid rewarming can affect brain recov-

ry and cerebrovascular reactivity by decoupling of brain cir-

ulation and metabolism. [ 195 ] This was prevented by slow or

tepwise rewarming. [ 195 ] 

Larson et al. [ 196 ] established a model of hypoxic asphyxial

ardiac arrest in newborn piglets that was followed by 2 h of

ormal temperature and 20 h of TH. The lower limits of au-

oregulation was not affected by the arrest ( P = 0.60), tempera-

ure ( P = 0.08), or the interaction between the arrest and temper-

ture ( P = 0.73). In the hypothermia group, the slope of cortical

aser Doppler flow (LDF) relative to CPP during induced hyper-

ension was not significantly different from that of the initial

lood pressure, regardless of rewarming ( P = 0.10). This suggests

hat rewarming does not change lower limits of autoregulation,

or does it affect the autoregulation of hypertension after an

sphyxia cardiac arrest. 

However, the results of clinical studies have been inconsis-

ent. Joshi et al. [ 197 ] monitored the Mx values of 127 patients

ndergoing cardiac surgery before hypothermic CPB (baseline),

uring the cooling and rewarming phases of CPB, and after

PB. Mx was greater (deteriorated) during the cooling process

left: 0.29 ± 0.18; right: 0.28 ± 0.18) than at baseline (left:

.17 ± 0.21; right: 0.17 ± 0.20; P ≤ 0.0001), suggesting that

A is impaired during CPB. The Mx in rewarming phase was

ignificantly higher (worsen) than before CPB or during the

ooling phase (left: 0.40 ± 0.19; right: 0.39 ± 0.19) indicat-

ng that rewarming further aggravates CA. Oshorov et al. [ 125 ] 

bserved that the PRx of severe TBI (GOS < 9) patients began

o rise to 0.2 ( − 0.2 to 0.32) during the rewarming phase after

H and lasted until the post-rewarming stage, although the ICP

ecreased slightly (15 mmHg vs. 18 mmHg) compared with the

ypothermia maintenance stage. It is therefore thought that the
33 
ewarming phase after TH is the most dangerous period for CA

ysfunction. 

Lavinio et al. [ 198 ] performed moderate TH (34.2°C) in 24 TBI

atients with refractory intracranial hypertension, during which

he PRx did not change significantly from baseline ( − 0.01 ± 0.21

s. 0.001 ± 0.20) or during slow rewarming to 37°C. However,

he PRx was significantly increased (0.32 ± 0.24, P < 0.0001)

n 17 patients (70.1%) whose rewarming temperature exceeded

he 37°C threshold while although ICPs did not significantly

hange, indicating severe CA damage. These results suggest that

A is independently correlated with brain temperature after re-

arming ( R = 0.53; P < 0.05). 

Similarly, Howlett et al. [ 199 ] found that compared with

eonates with no or mild brain injuries, neonates with mod-

rate/severe brain injuries had a longer duration and a greater

agnitude of with MAP below MAP opt during the hypothermia

o rewarming process. The effects of rewarming strategies, such

s rewarming timing, speed, and endpoint, on CA should not be

gnored. Unfortunately, no relevant RCTs have been performed.

onclusions 

In summary, CA dysfunction is a potential pathologic defect

hat may lead to secondary injury and worse functional out-

omes in the setting of various acute neurological diseases. [ 30 , 31 ] 

ompared with hypoxic brain injuries after cardiac arrest, TBI,

S, ICH, and SAH have more heterogeneous pathologies, sever-

ties and clinical courses. What diseases benefit from TH re-

ains to be determined, and clinical trial findings are contro-

ersial. Patient selection, timing, cooling depth, duration, and

ewarming strategy may affect results. Determining how brain

njury patients benefit from TH needs to be addressed. The safety

nd feasibility of a CPP opt -oriented treatment target has recently

een explored in a multicenter prospective RCT (CPP opt Guided

herapy, COGiTATE), [ 200 , 201 ] the results of which may provide

 therapeutic basis and direction for CA-oriented TTM. 
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