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Abstract: Composite scaffolds of hydroxyapatite (HAp) nanoparticles and bioactive glass (BG) were
applied as an appropriate selection for bone tissue engineering. To this end, HAp/BG composite
was synthesized by a hydrothermal method using Design of Experiments (DOE) with a combined
mixture–process factor design for the first time. The input variables were hydrothermal temperature
at three levels (i.e., 100, 140, 180 ◦C) as a process factor and two mixture components in three ratios
(i.e., HAp 90, 70, 50; BG 50, 30, 10). The degree of crystallinity and crystal size in the composite
were the output variables. XRD showed that only a small fraction of BG was crystallized and that
a wollastonite phase was produced. The XRD results also revealed that incorporation of Si into
the HAp structure inhibited HAp crystal growth and restricted its crystallization. The FTIR results
also showed that the intensity of the hydroxyl peak decreased with the addition of silicon into the
HAp structure. DOE results showed that the weight ratio of the components strongly influenced the
crystal size and crystallinity. SEM and FTIR results identified the greatest bioactivity and apatite layer
formation in the Si-HAp sample with an HAp70/BG30 ratio after 14 days immersion in simulated
body fluid (SBF) solution, as compared to other ratios and HAp alone. Therefore, the combination of
HAp and BG was able to yield a HAp/BG composite with significant bioactivity.

Keywords: composite; bioglass; hydrothermal; combined design

1. Introduction

Tissue engineering uses a combination of engineering techniques, material science,
and biochemical and physiochemical knowledge to replace biological tissue. Materials
with calcium phosphate are ideal for implantation into bone because of their similarity in
chemical composition to bone tissue. In recent years, a wide range of calcium phosphate
ceramics have been used in the repair and reconstruction of bone. Among them, nano
hydroxyapatite (HAp) has received considerable attention since it is a main component
of the mineral part of extracellular matrix. The most important HAp features include
bioactivity and non-toxicity; the bioactivity of HAp enables it to directly bond with the body
cells [1,2]. Moreover, the presence of this material is also able to differentiate mesenchymal
stem cells from osteoblast cells or other bone cells [3].

Particle size plays a key role in the biological behavior of HAp. In this regard, nano
synthesis of HAp powders with a high specific surface has been the basis of research studies.
Nano-sized particles of HAp ceramics will perform their biomaterial functions better and
have higher strength [4,5] and compared to their similar micro-particles, they have much
better properties. In fact, using nano-sized HAp particles instead of micrometric particles
of HAp has been very common due to its high specific area, better biodegradability, and
higher bioactivity. Because of the structural similarity of these nanoparticles to real bone
samples, the probability of rejection of implantation in the body is significantly reduced [6,7].
Moreover, nanosized particles absorb more protein, which increases adhesion and cell
proliferation. The ability to move into cells of HAp nanoparticles can be used for therapeutic
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delivery of a wide range of proteins, antibodies, oligonucleotides, imaging agents, and
liposomes in various biological conditions and systems [8]. In addition, in a study by [9],
it was shown that at the same size of HAp nanoparticles, adhesion, proliferation, and
osteoblast differentiation on bone marrow mesenchymal cells of HAp with a high degree
of crystallinity were more than amorphous calcium phosphate. This research showed the
crystallinity grade of HAp could be an effective factor in its bioactivity [9].

Despite the high biocompatibility of HAp, its bioactivity can be increased using differ-
ent methods. For this reason, many attempts in recent years have been made to combine
HAp with more active bioceramics and biological glasses to obtain a new generation of
composite biomaterials with appropriate biological properties [10]. Composite scaffolds of
HAp nanoparticles and bioactive glass (BG) have been applied as an adequate selection for
bone tissue engineering applications [11]. Bioactive glass is one biological material capable
of chemical binding with hard and soft tissue, and bioactive glasses at a nano scale are
more biocompatible due to nano-size pores and increased surface area, which enhance
dissolution rate and accelerate biocompatibility mechanisms [12,13]. A significant feature
of silicate biomaterial is its ability to release silicon ions at a concentration that improves
the growth and differentiation of osteoblast cells [14].

Design of Experiments (DOE) is considered an important tool for improving the
functionality of a production process and is also widely used in the development of
new processes. One of the objectives of DOE is process optimization to achieve desired
conditions. In order to achieve this goal, surface response methods have been used to
design tests. Response surface methodology (RSM) is a modern and effective technique
for the development, improvement, and optimization of processes that can simultaneously
analyze multiple variables and optimize their response. This technique is effective in the
design, development, and formulation of new products and in improving the quality of
existing products [15].

Therefore, the objective of this study was to synthesize and characterize HAp/BG
composite nanopowder via the hydrothermal method by using a design experiment. The
effects of hydrothermal temperature and component ratio on crystal size and crystallinity
were investigated. To this end, the combined mixture process design of DOE was used
to synthesize an HAp/BG composite and total 11 experiments were designed in order
to find the appropriate proportions of the HAp and glass phases and the appropriate
hydrothermal temperature that will achieve high crystallinity and the best crystal size
of HAp/BG composite as responses, for the first time. A quadratic model for mixture
components (i.e., HAp and BG) and a linear model for process factors (i.e., temperature)
were developed to investigate the effect of experimental variables and their interaction
on HAp/BG crystallinity and crystal size. Finally, the bioactivity behavior of HAp and
HAp/BG powders was investigated with immersion in simulated body solution (SBF) for
14 days.

2. Materials and Methods
2.1. Synthesis of HAp

HAp was synthesized based on our previous paper [16] with a hydrothermal method
using two raw materials (Merck, Darmstad, Germany): Ca(NO3)2.4H2O as calcium precur-
sor and (NH4)2HPO4 as phosphate precursor (Equation (1)). In summary, 4.723 g (1 M) of
Ca(NO3)2.4H2O and 1.584 g (0.67M) of (NH4)2HPO4 were dissolved in 20 mL of deionized
water. White suspension of HAp was obtained by adding a solution of diammonium phos-
phate to a solution of calcium nitrate tetrahydrate under continuous stirring for 1 h. NH3
(Merck, Darmstadt, Germany) was used to adjust the pH of the solution to 10. Solutions
prepared with pH = 10 were hydrothermally treated at 130 ◦C for 10 h. The final solution
was filtered and washed with a mixture of ethanol and distilled water (volume ratio of 1:1)
and then dried in an oven for 10 h at 60 ◦C.
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10Ca(NO3)2·4H2O + 6(NH4)2HPO4 + 8NH4OH→ Ca10(PO4)6(OH)2 + 20NH4NO3 + 46H2O (1)

2.2. Synthesis of BG (77 s)

The glass samples were prepared by acid catalyzed sol-gel method assisted by hy-
drothermal process. Chemicals with weight composition 80 mol% SiO2: 14 mol% CaO:
6 mol% P2O5 was selected as in the previous study [17]. A brief description: hydrolysis
of tetramethyl orthosilicate (TMOS, Sigma-Aldrich, St. Louis, MO, USA) and phosphoric
acid (H3PO4, Sigma-Aldrich, St. Louis, MO, USA) was catalyzed with a solution of 0.1 mol
L-1 HNO3 (Sigma-Aldrich, St. Louis, MO, USA). Starting with the hydrolysis of TMOS
for 45 min, the other reagents were added sequentially at 60 min intervals, under constant
stirring. Before reaching the gel point, the sol components were placed in a stainless-steel
autoclave lined with a Teflon core and heated in an oven at 250 ◦C for 24 h. The producing
product was dried at 100 ◦C.

2.3. Synthesis of HAp/BG Nanocomposite Powder

HAp/BG powders were synthesized based on the method presented in our previous
paper [17]. Briefly, nanocomposite powder was mixed with various proportions of syn-
thesized HAp, and bioactive glass powder was mixed with (SiO2, CaO, P2O5) compound.
HAp/BG powder with various weight ratios was prepared based on the combined design,
in alkaline conditions (pH = 10) under stirring to make a suitable solution. Distilled water
was used as a liquid phase. The final solution was transferred to a 100 mL Teflon container
and was hydrothermally treated at different temperatures for 10 h. After hydrothermal
treatment, the obtained solution was filtered and then washed with distilled water. The
powder was dried in an oven at 100 ◦C for 10 h and then sintered at 700 ◦C (Figure 1).
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XRD analysis was carried out using an X-ray diffractometer (X’pert Pro, PANalytical
BV, Almelo, The Netherlands) with a CuKa radiation source (λ = 1.54056 Å) and operated
at 40 kV and 30 mA. The diffraction patterns at room temperature were recorded at 2θ
range 10–80◦, with a step size of 0.02◦ and time per scan 1 s.

The average crystallite sizes of obtained powders were calculated using the Debby
Scherrer equation (Equation (2)). The degree of crystallinity was also determined using
Equation (3).

D =
Kλ

β cos θ
(2)

where D is crystal size, β is the full width at half maximum of the peak (in radians) of the
(002) reflection, θ is the Bragg angle in degrees, K is the shape constant (equal to 0.9), and λ

is the X-ray wavelengths (λ = 1.5405 Ǻ ) [18,19].

Crystallinity(%) =
∑ Ac

∑ Ac + ∑ AA
× 100 (3)

where ΣAC + ΣAA gives the sum of the area under all the HAp and HAp/BG crystalline
and amorphous peaks, and ΣAC yields the sum of the areas under the crystalline peaks
present in the scan range between 10 to 80◦ [20].

The IR analysis was recorded using Fourier Transform Infrared Spectroscopy (FTIR,
Perkin Elmer, Waltham, MA, USA) in the frequency range 400–4000 cm−1 at room tempera-
ture. The SEM/EDX analysis was obtained using a Scanning Electron Microscope (Hitachi
S3400 N, Tokyo, Japan) equipped with EDX (Quantax 200, Bruker, Bremen, Germany)
to study and investigate the apatite layer on the HAp and HAp/BG nanopowder after
immersion into SBF solution.

2.4. Investigation of Sample Bioactivity in SBF Solution

Simulated body fluid (SBF) solution was used for evaluating the bioactivity of samples
and was prepared based on the Kokubo guidelines [21,22]. To perform the bioactivity tests,
100 mL glass bottles with caps were utilized, and 1 mL SBF solution was used per 1 mg of
sample. Samples were immersed in the SBF solution and incubated under static condition
at 37 ◦C for 14 days. After this time, they were washed with distilled water and dried at an
ambient temperature.

2.5. Design of Experiments
Combined Mixture–Process Design of DOE

Mixed design is another optimization method that is considered a group of RSMs in
which the product of interest comprises several components. When a product is formed
by mixing two or more components, this is called “mixing” and the elements forming the
mixture are called “components”. In this group of designs, a response is a function of the
proportions of various components in the mixture. One of the functions of designing mixed
tests is to find the best proportion of each component in the mixture as well as the best
amount of each variable in the process in order to optimize a single response or multiple
responses simultaneously.

When a set of process factors and components of a mixture are simultaneously effective
on the response of the process, combination design or combined mixture–process factors
are used. In general, there are two strategies for designing combinational tests:

1. Determining the proper formulation for mixed components with mixed design.
2. Optimization of effective process parameters.

When these two strategies are merged, this design system is called a combination
design system. For example, if three components (X1, X2, and X3) of a process have three
levels (0, 1/2, and 1) and two process factors have two levels (1, −1), the following figure is
a combination agent for this simple design (Figure 2). In general, in mixture design with
q components, a mixture region of regular geometry has dimensionality q−1. Therefore,
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the mixture region of a q = 2 component mixture corresponds to a line, a q = 3 component
mixture to a triangular region, and a q = 4 component mixture to a tetrahedral region [23,24].
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nents; (b) factorial design for two process variables; (c) combination of mixture components with
process variables.

In Figure 1, the vertices of the triangle indicate a pure component of the mixture, and
the mid-points or binary points indicate binary mixtures.

The mathematical model for a mixture has the following three components
(Equation (4)):

Y(X) = β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 (4)

For a factorial model that considers the interactions, the equation is as shown in
Equation (5):

Y(Z) = a0 + a1z1 + a2z2 + a12z1z2 (5)

The equation of a combination model is as shown in Equation (6):

Y(X, Z) = Y(X)× Y(Z) (6)

As shown above, there are six terms for the mixed model and two terms for the
factorial model, so there are 24 terms in total for this mixed design. In other words, there
are 24 tests required to control the parameters that control the overall process. In order to
design this model, Design Expert software (version 11, 2018, Stat-Ease Inc, Minneapolis,
MN, USA) and combination design were used [25].

The combined mixture–process factor DOE was conducted via Design Expert 11 software.
In the synthesis of HAp/BG composite, there are two mixture components, (i.e., HAp
and BG) with three different ratios (Table 1) and 1 numeric factor (i.e., temperature) with
three levels (Table 2). Notably, the process factor level and ratios were selected based on
the literature review [26–34]. The effects of parameters such as hydrothermal temperature
and the effects of the two mixture components were investigated by combined design via
D-optimal method. The design summary is shown in Table 3.
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Table 1. Mixture components and their ratios in combined design.

Component Name Low High

A BG * 10 50
B HAp 50 90

* Bioglass.

Table 2. Numeric factor and its levels in combined design.

Factor Name Level 1 Level 2

C Temperature 100 180

Table 3. Combined design and component values.

Run Component 1
A: BG

Component 2
B: HAp

Factor
C: Temp

1 10 90 140
2 50 50 100
3 50 50 180
4 30 70 140
5 50 50 100
6 50 50 140
7 50 50 100
8 10 90 100
9 30 70 100
10 30 70 180
11 10 90 180

3. Results and Discussion
3.1. XRD Analysis

Figure 3 shows the XRD peaks of pure HAp powder. This combination of diffraction
peaks at 2Ө = 25.90 (002), 2Ө = 31.725 (211), 2Ө = 32.18 (112), and 2Ө = 32.86 (300)
corresponds to the hexagonal structure of pure HAp (Yadav et al., 2020). Figure 3 also shows
the XRD patterns for the synthesized HAp/BG at different ratios and at three different
temperatures (100 ◦C, 140 ◦C, and 180 ◦C) after sintering at 700 ◦C. The results show that
two phases were formed, namely HAp and wollastonite (i.e., calcium silicate, CaSiO3)
structures. The combination of SiO2- P2O5-CaO (from BG) and the sintering process
resulted in the formation of wollastonite. Ref [35] reported that the wollastonite phase is
formed at high temperatures due to the combination of SiO2 and CaO particles in BG. It
can be seen that after sintering HAp/BG composite powder at 700 ◦C, only a fraction of
the glass phase crystallized to wollastonite with the remaining amorphous (i.e., the peaks
related to wollastonite are weak). This is also in accordance with the findings by [28], who
found that the wollastonite phase was formed by sintering HAp/BG at above 700 ◦C [28].

From Figure 3, XRD analysis revealed that HAp in the composite powder did not
decompose during sintering at 700 ◦C since carbonate impurities such as alpha-tricalcium
phosphate (α-TCP) and β-tricalcium phosphate are not present. Therefore, a suitable
temperature for sintering HAp/BG powder was 700 ◦C. It is also clear from Figure 3
that pure HAp shows higher peak intensity (corresponding to HAp peaks) than the
HAp/BG composite.

It was observed that by increasing the hydrothermal temperature from 100 to 180 ◦C,
the intensity of the peaks in the XRD patterns increased and that at higher temperatures,
more crystallization took place.

Table 4 shows the crystallinity and crystal size of HAp/BG composite powder at
three different hydrothermal process temperatures (100, 140, 180 ◦C). Table 4 shows that
for the samples produced at 180 ◦C, lower HAp content resulted in lower crystallinity and
smaller crystal sizes. Similar behavior was found for the other temperatures, suggesting
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that the HAp/BG ratio is an important factor in HAp crystallinity and crystal size. The
authors of [36] investigated the effects of incorporating silicon on the degree of crystallinity
and crystal size of HAp in HAp/BG composite and found that both responses decreased as
a result of the silicon phase in the BG inhibiting HAp crystal growth by limiting atomic
arrangement [36]. Research on the incorporation of silicon into the formulation also showed
decreased crystallinity and crystal size of HAp in the HAp/BG composite [37].
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Table 4. Crystallinity and crystal size of HAp/BG composites at hydrothermal process temperature
100 ◦C.

Samples

Component 1 Component 2 Process Factor Responses

A: BG B: HAp Temperature Crystallinity Crystal Size

wt % wt % ◦C % nm

1 10 90 180 ◦C 77.15 37.5

2 30 70 180 ◦C 75.84 33.12

3 50 50 180 ◦C 67.98 31.58

4 10 90 140 ◦C 75.91 36.02

5 30 70 140 ◦C 72.02 30.87

6 50 50 140 ◦C 63.11 28.50

7 10 90 100 ◦C 73.46 34.58

8 30 70 100 ◦C 70.14 28.87

9 50 50 100 ◦C 58.31 27.2

Table 4 shows that for a fixed HAp/BG ratio in the composite, HAp crystal size
increased with greater hydrothermal process temperature (i.e., from 100 to 180 ◦C). Authors
of [38] studied the effects of hydrothermal process temperature on HAp crystal size. Their
findings indicate that a higher hydrothermal process temperature promotes crystal growth
because it provides higher activity levels for smaller apatite crystals that are bound and
grow along the C-axis.
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Table 4 also shows that, for a fixed HAp/BG ratio, the degree of crystallinity and the
intensity of peaks in the HAp phase increased with hydrothermal process temperature. In
a study by [39], increased hydrothermal process temperature was found to increase the
degree of crystallinity in HAp [39].

3.2. FTIR Analysis

Figure 4 shows the FTIR results of HAp and HAp/BG composite nanopowder under
different conditions based on DOE. Figure 4 shows the FTIR spectra of pure HAp obtained
at pH 10 and 130 ◦C. The characteristic peaks are at 536, 602 cm−1 and the peaks in
the region 950–1100 cm−1 are related to a phosphate group. The peaks around 633 and
3568 cm−1 are related to an OH- group in the HAp structure. In the HAp/BG composite
after sintering, a small amount of BG phase was crystallized and a wollastonite phase
was formed. In addition, during the sintering of HAp/BG composite at 700 ◦C, HAp
decomposed and BG entered its structure. Therefore, from the FTIR spectra in Figure 4, the
wavenumbers in the range 798 cm−1 to 461 cm−1 are attributed to Si-O bonds of glass in
the HAp structure and wollastonite phase which, by increasing the BG ratio, increase the
intensity of the Si-O band [40]. As seen in Figure 4, the peaks of the PO4

−2 group in pure
HAp (950–1100 cm−1) are more intense than the PO4

−2 peaks in the HAp/BG composite,
which indicate the incorporation of silicon into the HAp structure [41].
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on DOE.

The FTIR results also showed that the intensity of the hydroxyl peak decreased with
the addition of silicon into the HAp structure. In another study by [34], the substitu-
tion of silicate groups for phosphate groups removes OH− groups in order to maintain
balance [34,37,42]. According to this process, the chemical formula of Si-HA can be deter-
mined as Equation (7) [43].

10Ca+2 + (6− x)PO−3
4 + xSiO−4

4 + (2− x)OH− → Ca10(PO4)6−x(SiO4)x(OH)(2−x) with 0 ≤ x ≤ 2 (7)

From Figure 4, increasing hydrothermal temperature at a constant HAp/BG ratio
increases the intensity of functional groups and the degree of crystallinity. In studies by [38],
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it was also found that increasing hydrothermal temperature causes an increased degree
of crystallinity.

3.3. SEM and EDX Analsis

Figure 5 shows SEM images of HAp/BG nanocomposite powders with different
weight ratios at 180 ◦C. It is clear from these images that the morphology of all samples is
a tightly packed compact of fine particles, especially notable for HAp70/BG30. It is also
seen that, except for HAp50/BG50, all samples were aggregated due to a smaller particle
size which tends to agglomerate. It is worth noting that HAp70/BG30 has a smooth and
homogeneous structure, which is an important factor in improving mechanical strength [36].
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Figure 5 also shows the results of elemental analysis by EDX spectroscopy of the
HAp/BG composite nanopowders at 180 ◦C. This analysis indicates the presence of all the
constituent elements (i.e., Ca, P, O, and Si) of HAp/BG composite powder. Since the applied
glass contains (P2O5) and (SiO2), the calculation of the Ca/P ratio of HAp is as in Table 5.
Therefore, due to the presence of calcium in the glass phase, the calcium to phosphate
ratio has increased. Similar results have been found by [44,45]. However, because of the
substitution of the silanol group with the phosphate group, the amount of the phosphate
group in the HAp structure was lower, leading to an increased Ca/P ratio in HAp/BG. In
this study, the Ca/P ratios for HAp50/BG50, HAp70/BG30, and HAp90/BG10 were 1.87,
1.71, and 1.69, respectively. Similar results have been found by [46]. Additionally, from the
EDX results shown in Table 5 and Figure 5, C atoms (i.e., Carbon) were not detected in any
of the three HAp/BG composite nanopowders, which means that there was no carbonate
impurity. Hence, the Si-HA produced is almost pure and the results from EDX and XRD
are in perfect accord.

Table 5. EDX results of HAp/BG nanocomposites processed at 180 ◦C.

- Component 1 Component 2 Responses

Samples A: BG B: HAp Ca/P

wt % wt % %

1 10 90 1.69

2 30 70 1.71

3 50 50 1.87

3.4. Comparison of DOE and Experimental Results

In this study, a combined mixture–process design was used to optimize one process
factor (i.e., hydrothermal reaction temperature at three levels) and two mixture components
(i.e., HAp and BG in three different ratios) with respect to the response variables degree of
crystallinity and crystal size of HAp/BG composites. Table 6 reports the values for these
variables as predicted by DOE versus the actual experimental data.

Table 6. DOE predictions vs. values determined by experiment.

- Component 1 Component 2 Factor 3 Response 1 Response 2

Run A:BG B: HAp C: Temp
Crystal Size (nm) Crystallinity (%)

Actual Predicted Actual Predicted

1 10 90 140.00 36.02 36.03 75.91 75.57

2 50 50 100.00 27.2 26.82 58.31 58.73

3 50 50 180.00 31.58 31.30 67.98 67.88

4 30 70 140.00 30.8759 30.96 72.02 72.67

5 50 50 100.00 25.9854 26.82 59.24 58.73

6 50 50 140.00 28.501 29.06 63.11 63.31

7 50 50 100.00 27.5647 26.82 58.75 58.73

8 10 90 100.00 34.58 34.57 73.64 73.81

9 30 70 100.00 28.8754 28.84 70.14 69.82

10 30 70 180.00 33.1183 33.08 75.84 75.52

11 10 90 180.00 37.5 37.49 77.15 77.32
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3.5. Analysis of Variance for HAp Crystal Size in HAp/BG Composite Nanopowder

The first step in analysis of variance (ANOVA) is to select an appropriate model for the
system that will accurately predict the experimental results. A quadratic model and a linear
model were used for mixture order and process order, respectively. Results of ANOVA
for model evaluation and meaningfulness are indicated in Table 7 in terms of p-value, R2,
R2 adjusted, R2 predicted, and adequate precision. The p-value of the surface indicates
the significance of the produced model and values less than 0.05 (p ≤ 0.05) are considered
highly significant. From Table 7, the p-value of 0.0122 for the HAp/BG ratio indicates that
this is an important factor in crystal size. The binary interactions between the process
factor temperature (C) and the mixture components A (BG) and B (HAp) are also seen
to significantly affect HAp/BG composite crystal size with p-values of 0.018 and 0.0011,
respectively. The ternary interaction with p-value 0.6112 does not significantly influence
crystal size.

Table 7. ANOVA for crystal size for quadratic and linear models.

Source Sum of Squares df Mean Square F-Value p-Value

Model 145.40 5 29.08 80.94 < 0.0001 significant
Linear Mixture 113.30 1 113.30 315.36 < 0.0001 -

AB 5.28 1 5.28 14.70 0.00122 -
AC 4.26 1 4.26 11.87 0.00183 -
BC 16.03 1 16.03 44.62 0.0011 -

ABC 0.1055 1 0.1055 0.2936 0.6112 -
Residual 1.80 5 0.3593 - - -

Lack of Fit 0.429 3 0.143 0.209 0.8833 not significant
Pure Error 1.37 2 0.6837 - - -
Cor Total 147.19 10 - - - -

R2 = 0.9878, predicted R2 = 0.9601, adjusted R2 = 0.9756, adequate precision = 24.1030.

The correlation-coefficient values of a model should be close to 1. Adequate precision,
which is the signal/noise ratio, compares the amplitude of predicted values at designed
points with a predicted mean error. Values above 4 indicate sufficient model accuracy.
From the table, R2 = 0.9878, R2 adjusted = 0.9756, R2 predicted = 0.9601, and adequate
precision = 24.103. As is clear, correlation coefficient values (i.e., 0.987) are close to 1 and
the value of adequate precision (i.e., 24.103) indicates sufficient model validity.

The equation in terms of real components and actual factors for crystal size in HAp/BG
nanocomposites is given in Equation (8).

Crystal size = 37.729× BG + 36.527×HAp− 63.601× BG×HAp
+0.00337× BG× Temp + 0.0231×HAp× Temp
+0.170× BG×HAp× Temp

(8)

After removing interactions with p-values of 0.05, the final equation for crystal size in
HAp/BG nanocomposites is shown in Equation (9).

Crystal size = 27.143× BG + 34.974×HAp− 40.074× BG×HAp
+0.00806× BG× Temp + 0.0343×HAp× Temp

(9)

Figure 6 shows the effect of HAp/BG ratio on the HAp crystal size in the HAp/BG
composites. From Table 6 and Figure 6, increasing the BG ratio from 10 to 50 at a constant
temperature decreases crystal size. These results are in good agreement with the XRD
results shown earlier where it was noted that the existence of the silicon phase in BG
inhibits the growth of HAp crystal in the HAp/BG composite. By increasing Si content, the
HAp surface was covered by an amorphous phase (i.e., BG). Consequently, the thickness
of the amorphous phase increased and Si acted as a barrier to the growth of HAp particle
size [27].
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Figure 6. Effect of HAp/BG composite mixture components on HAp crystal size.

By studying the interaction of the two mixture components and the process tem-
perature on the response of the model, 2D contour and 3D response level diagrams
were plotted (Figure 7). These diagrams show that increasing component A (BG) from
10% to 50% decreases the crystal size of nanocomposites and suggest that HAp/BG ratio is
a primary factor influencing composite crystal size. The same results have been found in a
study conducted by [37], which reported that silicon in the BG phase inhibited the HAp
crystal growth in HAp/BG composite.
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Furthermore, Figure 7a,b also support the finding that, for a fixed HAp/BG ratio, an
increase of hydrothermal temperature (from 100 ◦C to 180 ◦C) increases the crystal size, as
observed in the previous analyses.

3.6. Analysis of Variance for HAp Crystallinity in HAp/BG Composite Nanopowder

Table 8 presents important measures of model adequacy (i.e., R2, adjusted R2, predicted
R2, and adequate precision). A quadratic model and a linear model were used for the mixture
order and process order for the crystallinity response, respectively, because of p-value 0.05.
From Table 8, the three binary interactions between A (BG) and B (HAp), B (HAp) d C
(temperature as process factor), and A and C have p-values ≤0.05 and are therefore effective
interactions. However, the ternary interaction between ABC with p-value 0.4934 does not
significantly influence HAp/BG composite crystallinity. From Table 8, R2 = 0.9976, predicted
R2 = 0.97, adjusted R2 = 0.9952, and adequate precision = 49.5698, which indicate that the
model is sufficiently valid.

Table 8. ANOVA table of crystallinity for quadratic and linear model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 537.60 5 107.52 417.08 < 0.0001 significant
Linear Mixture 411.45 1 411.45 1596.07 < 0.0001 -

AB 21.77 1 21.77 84.44 0.0003 -
AC 6.16 1 6.16 23.90 0.0045 -
BC 66.94 1 66.94 259.67 0.0001 -

ABC 0.1406 1 0.1406 0.5452 0.4934 -
Residual 1.29 5 0.2578 -

Lack of Fit 0.856 3 0.2854 1.32 0.4587 not significant
Pure Error 0.4329 2 0.2164 - - -
Cor Total 538.89 10 - - - -

R2 = 0.99, predicted R2 = 0.9775, adjusted R2 = 0.9952, adequate precision = 49.5698.

The equation for crystallinity HAp/BG nanocomposite in terms of real components
and actual factors is shown in Equation (10).

Crystallinity = −29.068× BG + 69.543×HAp + 108.247× BG×HAp
+0.291× BG× Temp + 0.0361×HAp× Temp
−0.196× BG×HAp× Temp

(10)

The final equation after removing interactions with p-value 0.05 for crystallinity of
HAp/BG nanocomposite in terms of real components and actual factors is shown in
Equation (11).

Crystallinity = −16.848× BG + 71.335×HAp + 81.089× BG×HAp
+0.2019× BG× Temp + 0.023×HAp× Temp

(11)

Combining the results from Table 6 and Figure 8, we also found that an increase in
BG from 10% to 50% in the HAp/BG ratio at a fixed hydrothermal temperature decreased
the degree of crystallinity. Similar results have been found by the authors of [36,37], who
reported that an increase in the BG phase in the HAp/BG structure leads to a decrease in the
degree of crystallinity of HAp/BG nanopowders. These studies reported that, compared to
pure HAp powder and HAp/BG powder, the silicon group in the BG phase obstructs the
crystallization of the HAp phase by limiting atomic arrangement [36,37].
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Figure 9a,b show the relationships between the degree of crystallinity, hydrothermal
process temperature, and the HAp/BG ratio. As indicated in Figure 8, the degree of
crystallinity decreased with higher HAp/BG ratios, suggesting that BG content is an
effective factor in the crystallinity of the composites. A study by [36] found that BG content
in HAp/BG composites influences crystallinity whereby silicon groups from BG act as a
barrier to crystallinity by limiting atomic arrangement [36].
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Furthermore, Figure 9 also indicates that increasing hydrothermal temperature from
100 to 180 ◦C at a constant HAp/BG ratio increases the degrees of crystallinity and that at
180◦C, a high degree of crystallinity for HAp in HAp/BG composite was obtained.

As indicated in Figure 10, the values predicted by software and the actual response
values for crystal size and crystallinity are very closely correlated [47]. The correlation
coefficients of R2 = 0.9878 for crystal size and R2 = 0.99 for crystallinity confirm a good
model fit.
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Figure 11 indicates the optimal region. Under optimal conditions (HAp 0.726/BG 0.274,
temperature 180 ◦C), nanocomposites with the highest degree of crystallinity (79.08%) and
the smallest size (33.49 nm) were obtained.
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From the Design of Experiments with combined mixture–process design and the SEM,
EDX, and XRD results, the optimum temperature and HAp/BG ratio for the synthesis of
HAp/BG composites with small size, maximum degree of crystallinity, and a Ca/P ratio
close to 1.67 are 180 ◦C and HAp70/BG30, respectively.

3.7. In Vitro Behavior of Samples in Simulated Body Fluid (SBF)

To investigate the bioactivity of HAp/BG composite nanopowder, samples were
immersed in SBF solution at 37 ◦C and pH 7.4 for 14 days. Figure 12 shows that an apatite
layer precipitated on the HAp/BG composite nanopowder. It is noticeable that adding
BG up to 30% into the HAp structure promoted the formation of the apatite layer on the
composite nanopowder surface (Figure 12b). SEM micrographs show complete coverage of
the HAp70/BG30 composite surface by apatite after 14 days of immersion into SBF solution.
This significant increase of bioactivity in this HAp/BG composite can also be attributed
to the smaller HAp particle size used in the composite, which increases bioactivity [48].
Initially, Si was not present in the SBF solution and was only released after immersion of
HAp/BG samples into it. Hence, the Si released in the SBF solution can only be due to
the dissolution of Si available in bioactive glass, making its concentration in SBF a good
criterion for studying the degradation behavior of HAp composite with BG. This suggested
that the bioactivity of HAp would be improved by the entry of BG into the HAp structure
(i.e., the formation of silicate HAp by sintering the HAp composite at 700 ◦C).
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To confirm the formation of an apatite layer on the surface of HAp and HAp/BG
nanopowders after immersion in SBF solution for 14 days, we used the FTIR results
(Figure 13). From the FTIR spectra (Figure 13), after immersion of samples in SBF solution,
different P-O bonds in 600–700 and 900–1100 cm−1 wavenumber are sharper than when
the sample is not located in SBF solution, as is shown in Figure 13. This indicated that the
increased percentage of apatite phase was due to the formation of an apatite layer after
immersion of samples in SBF solution. As described before, during sintering HAp/BG
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samples at 700 ◦C, part of BG has crystallized and formed the wollastonite phase. Therefore,
in the FTIR result, wavenumbers in the range of 798 and 461 cm−1 are attributed to Si-O
bonds in the glass and wollastonite phase. A similar result was obtained by previous
workers [28,49].
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Previous studies have shown that both composite dissolution in the SBF solution
(i.e., the increase of ion concentration in the SBF solution) and apatite layer deposition
(i.e., the reduction of ion concentration in the SBF solution) occur more quickly than in pure
HAp and BG. The high solubility of the BG/HAp composite in the SBF solution which
causes rapid supersaturation results in the rapid deposition of the apatite layer from the
SBF solution [50].

In another study, [37] synthesized silicon-substituted HAp using a hydrothermal
method. According to the bioactivity results of that study, the bioactivity of Si-HAp is
greater than HAp alone due to lower crystallinity and higher solubility of Si-HAp in SBF
solution, which increases supersaturation and leads to high nucleation density [37].

In another study conducted by [28], HAp/BG composite powder with different weight
ratios was synthesized and the bioactivity of these composites was evaluated in the SBF
solution. Based on the results of SEM imaging and on the apatite layer formed in the SBF
solution, it was reported that the HAp70/BG30 composite exhibited higher bioactivity than
BG alone. Some of the BG crystallized to form wollastonite phase after composite sintering
at 1000 ◦C and the bioactivity and dissolution rate increased in the presence of silicon.
There is considerable evidence that silicon is important for bone formation in bioactive
ceramic glasses containing silicate because silanol groups in ceramic glass and BG act as a
catalyst for HAp phase budding in forming the apatite surface layer [28,49].

4. Conclusions

In this study, HAp/BG composite nanopowder was synthesized via hydrothermal
method to evaluate the effect of hydrothermal temperature and component ratio on crystal
size and crystallinity. A combined mixture–process design in DOE was used to design
a total of 11 experiments. Contour and 3D mixture–process plots demonstrated that
the most significant variable influencing crystallinity and crystal size was component
ratio. Moreover, the degree of crystallinity of HAp and the size of crystals increased with
hydrothermal temperature from 100 to 180 ◦C. However, the effect of this parameter on
the degree of crystallinity was weaker than the component ratio. From the DOE with the
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combined mixture–process design and from the SEM, EDX, FTIR, and XRD results, the
optimum temperature and the best HAp/BG ratio for the synthesis of HAp/BG composite
nanopowder with small size, maximum crystallinity, and a Ca/P ratio close to 1.71 (which
is close to its stoichiometry value) were 180 ◦C and HAp70/BG30, respectively. From this
study, the addition of BG and the formation of HAp/BG composite nanopowder can be
a significant method to improve the bioactivity of hydroxyapatite in SBF solution and it
looks very promising for the production of HAp/BG glass composites.
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