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Photovoltaic power generation is greatly affected by weather factors. To improve the prediction accuracy of photovoltaic power
generation, complete ensemble empirical mode decomposition with an adaptive noise algorithm (CEEMDAN) is proposed to
preprocess the power sequence. (en, the full convolutional network (FCN) model optimized based on the sparrow search
algorithm (SSA) is used to predict the short-term photovoltaic power. SSA can more reasonably determine the parameters of FCN
and improve the prediction performance of FCN. (erefore, the FCN model optimized by the SSA algorithm is used to establish
predictionmodels for subsequences and predict each subsequence, respectively. Finally, the predicted value of each subsequence is
superimposed. Taking the actual data of a photovoltaic power station in Jiangsu province of China as an example, by comparing
some different common prediction models, it is proved that the proposed method is reasonable and feasible.

1. Introduction

With the increase in power demand, the use of fossil energy
has a bad impact on the environment, resulting in huge
global climate change. (erefore, a large number of people
develop renewable energy. (erefore, accurate short-term
photovoltaic power prediction can effectively alleviate the
pressure of photovoltaic grid connection on the power
system. (erefore, it is urgent to put forward an accurate
prediction model, which is of great significance to ensure the
stable operation of the power grid and the rational allocation
of resources [1, 2].

Solar radiation and various meteorological factors make
the prediction of photovoltaic power generation difficult.
(erefore, to solve this problem, various prediction methods
have been proposed. At present, they can be roughly divided
into four categories: physical model, statistical model, ma-
chine learning model, and hybrid model:

(1) A mathematical equation [3] is used to describe the
physical state of the photovoltaic power generation
system, which is classified as a physical model. When
the weather is stable, the prediction accuracy of such
models meets the demand, but when the weather
changes violently, it cannot be predicted accurately
[4, 5].

(2) Common statistical models include an autore-
gressive moving average (ARMA) and its improve-
ment [6–8]. Exponential smoothing and regression
are two major categories in statistical models [9–13].

(3) A machine learning model is developed based on a
statistical model, but its prediction ability is stronger
[14]. At present, the recurrent neural network (RNN)
[15], limit learning machine (ELM) [16], support
vector machine (SVM) [17], and other related
models are commonly used in photovoltaic power
generation prediction.
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(ere are certain limitations in the separate prediction of
the above three models. (erefore, by combining different
prediction technologies, a hybrid model with higher pre-
diction accuracy is designed. For example, the support
vector machine (SVM) prediction of particle swarm opti-
mization (PSO) based on wavelet transform (WT) [18]
generates a mixture of the countermeasure network (GAN)
and the convolutional neural network (CNN) [19].

At present, people usually analyze the relationship be-
tween the historical law of photovoltaic power data and
external influencing factors, and thus, we establish a pre-
diction model to predict the short-term photovoltaic power.
However, at present, hybrid model prediction technology
based on modal decomposition is a hot spot, and it cannot
improve the prediction effect of photovoltaic power gen-
eration. For example, empirical mode decomposition
(EMD) [20] decomposes the photovoltaic power sequence to
reduce the nonstationary features of the photovoltaic power
sequence so that the model can effectively extract subse-
quence features. EMD overcomes the defect that wavelet
decomposition (WT) [21] requires human experience to
select the basis function and decomposition levels in ad-
vance, but there is mode aliasing in the decomposition
process. Ensemble empirical mode decomposition (EEMD)
[22], complete ensemble empirical mode decomposition
(CEEMD) [23], and CEEMDAN are improved methods of
EMD, which eliminate mode aliasing in different ways.
CEEMDAN shows good performance and is widely used in
many fields [24–26]. In recent years, the application of deep
learning in photovoltaic power prediction has achieved very
remarkable results. A convolutional neural network (CNN)
can learn the key features of local areas in the data sequence.
(erefore, some researchers use CNN [27] as a feature
extraction module to predict photovoltaic power generation
in combination with LSTM. Some people also combinedWT
with a deep convolutional neural network (DCNN) and
proposed a WT DCNN hybrid method for photovoltaic
power generation prediction [28]. FCN is more flexible than
CNN in processing time series data [29, 30]. Time series data
can be input with any sequence length, and more sequence
data features can be retained after FCN. For the hyper-
parametric optimization of neural networks, there are many
optimization algorithms, but there is no experiment to prove
that a certain algorithm is optimal. A genetic algorithm (GA)
is a global optimization algorithm often used in the pre-
diction model. (e principle is to screen the population
currently studied through the biological action mechanism
and gradually select individuals with the highest fitness [31].
(e principle of particle swarm optimization (PSO) is to use
examples in the population to realize optimization by
learning to continuously adjust the position and speed [32].
(e sparrow search algorithm (SSA) is inspired by the
sparrow’s three behaviors of predation, tracking, and re-
connaissance. According to the newly proposed prediction
model, the sparrow search algorithm has good parameter
optimization ability [33].

(erefore, this paper proposes a short-term power
prediction model (SSA-CEEMDAN-FCN model) for

photovoltaic power plants. (e advantages of this model are
as follows:

(1) (e photovoltaic power generation sequence is
preprocessed by CEEMDAN. (is improved data
preprocessing method can well reduce the com-
plexity of subsequence and improve the prediction
performance of the model.

(2) Considering the differences between subsequences,
the key super parameters of the FCN model are
optimized by SSA to obtain FCN with high pre-
diction accuracy. (e combination of SSA-FCN
makes the FCN model play a better prediction
performance.

(3) (rough the combination of CEEMDAN and SSA-
FCN, a model with high prediction accuracy for the
short-term power of the photovoltaic power station
is obtained, which plays an important role in im-
proving the utilization rate of photovoltaic power
generation.

2. Methodology

2.1. Complete Ensemble Empirical Mode Decomposition with
the Adaptive Noise Algorithm. Based on EMD, CEEMDAN
overcomes the phenomenon of mode aliasing by adaptively
adding Gaussian white noise and effectively decomposes
nonstationary sequences. (e specific steps of using
CEEMDAN to decompose photovoltaic power sequence are
as follows.

Let Y be the historical photovoltaic power sequence,
Ej(∗ ) be the j-th order modal component operator gen-
erated by EMD, ωn(t) be the Gaussian white noise sequence
added for the n-th time, IMF be the k-th order eigenmode
decomposition sequence obtained by CEEMDAN, and δk−1
be the adaptive coefficient for solving IMFk.

(1) We add adaptive Gaussian white noise δ0ωn(t) to the
original sequence Y and n� 1, 2,. . ., where N is the
number of additions, i.e.,

Yn � Y + δ0ωn(t). (1)

EMD decomposition is carried out for Y, respec-
tively, so that imf1

n is the first-order modal com-
ponent sequence of Yn obtained by EMD. (en, the
first-order eigenmode component sequence IMF1
and the first residual component sequence r1 of
CEEMDAN decomposition are, respectively, as
follows:

IMF1 � N
− 1

􏽘

N

n�1
imf

1
n, n � 1, 2, ..., N,

r1 � Y − IMF1.

(2)

(2) We add adaptive Gaussian white noise δ1E1(ωn(t))

and n� 1, 2,. . ., N to the residual sequence r1, that is,

r1n � r1 + δ1E1 ω1(t)( 􏼁. (3)
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EMD decomposition of r1n, respectively, then the
second-order eigenmode component sequence IMF2
of CEEMDAN decomposition is as follows:

IMF2 � N
− 1

􏽘

N

n�1
E1 r1 + δ1E1 ωn(t)( 􏼁( 􏼁. (4)

(3) For k� 2, 3, . . ., K, repeat step (2) to obtain the k+ 1-
order eigenmode component sequence and the k-th
residual component sequence, namely,

IMF2 � N
− 1

􏽘

N

n�1
E1 r1 + δ1E1 ωn(t)( 􏼁( 􏼁,

rk � rk−1 + IMFk.

(5)

(4) Until the number of extreme points of the residual
component sequence does not exceed 2, the final
residual component sequence R is as follows:

R � Y − 􏽘

K

k�1
IMFk. (6)

(e historical photovoltaic power sequence Y is
decomposed into K eigenmode component se-
quences IMFk and a residual component sequence R
by CEEMDAN, with a total of K+ 1 subsequences.

2.2. Full Convolutional Neural Network. A convolutional
neural network is widely used, but it can only solve the
problem of fixed input size. To solve this problem, a full
convolutional network is proposed. FCN has no full con-
nection layer, which eliminates its restrictions on the shape
of input data and the end-to-end training process of input
and output. (e processing of time series generally uses a
one-dimensional CNN model. (erefore, this paper uses a
one-dimensional FCN model to predict the power of a
photovoltaic power station.

(1) For the input data, the convolution kernel moves
from left to right and from top to bottom, multiplies
and sums each site covered by the convolution kernel
with the convolution kernel, and finally obtains the
output of this layer. (e convolution process is
shown in Figure 1(a). (e convolution layer can
extract the features of input data. In a full con-
volutional neural network, with the deepening of
layers and the increase of the receptive field, it can
extract the deep features of input data.

(2) (e pooling layer of FCN is also known as the lower
sampling layer. Using the pooling layer to remove
redundant features in FCN can increase the receptive
field, further reduce parameters, and prevent the
network from overfitting. Figure 1(b) shows these
three methods.

(3) Upper layer sampling is the convolution inverse
process of the full convolutional network, which is
used to enlarge the pooled characteristic map. FCN
upper layer sampling uses the double line

interpolation method. As shown in Figure 1(c), the
values of function F in G11 � (x1, y1), G12 � (x1, y2),
G21 � (x2, y1), and G22 � (x2, y2) are known, and the
double line interpolation is used to obtain the value
of at point K� (x, y). (erefore, the sampling process
is completed by using four adjacent points in FCN.

F x, y1( 􏼁 �
x2 − x

x2 − x1
F G11( 􏼁 +

x − x1

x2 − x1
F G21( 􏼁,

F x, y1( 􏼁 �
x2 − x

x2 − x1
F G12( 􏼁 +

x − x1

x2 − x1
F G22( 􏼁,

F(x, y) �
y2 − y

y2 − y1
F x, y1( 􏼁 +

y − y1

y2 − y1
F x, y2( 􏼁.

(7)

(4) (e traditional FCN network will make the pre-
diction very rough after data processing in the
convolution layer and pooling layer. (e use of jump
structure is to improve the accuracy of prediction.

2.3. Sparrow Search Algorithm. SSA divides sparrows into
discoverers and accessors. (e identities of discoverers and
accessors in sparrows can be exchanged, but the overall
proportion remains unchanged. (e discoverer is respon-
sible for searching for areas rich in food resources in the
overall situation. (e participants will monitor the discov-
erer and search for food or rob the discoverer’s food in the
area close to the discoverer. When the sparrow population
finds danger, sparrows in the marginal area will quickly
move closer to the safe area, and sparrows in the central area
will move randomly. (e steps of SSA are as follows:

(a) We initialize the sparrow population and define its
relevant parameters, calculate and sort the fitness of
all sparrows, find the sparrow with the best global
fitness, and record its fitness value and its global
optimal location.

(b) Iterate to update the location of the finder, entrant,
and danger sensing sparrow. If the current global
optimal fitness value is higher than the previous
generation’s optimal value, the update operation will
be carried out. If not, the update will not be carried
out and the iteration will continue.

(c) (e fitness function converges or meets the condi-
tions to obtain the global optimal value and the
optimal fitness value.

Compared with other traditional optimization algo-
rithms, it is easier to obtain the global optimal solution to the
optimization problem. (erefore, SSA is used to optimize
FCN, specifically as shown in Figure 2.

2.4. Structure Diagram of the SSA-CEEMDAN-FCN Model.
According to the previous basic theory, the overall frame-
work flowchart based on the SSA-CEEMDAN-FCN com-
bination model proposed in this study is shown in Figure 3.
First, the power prediction sequence of the photovoltaic
power station is preprocessed by CEEMDAN, and then, the

Computational Intelligence and Neuroscience 3



decomposed subsequences are predicted by the SSA-opti-
mized FCN model. Finally, the predicted values of subse-
quences are superimposed to obtain the final prediction
results.

3. Actual Case Analysis and Verification

3.1. Data Description. Because this study belongs to the
ultrashort-term prediction of photovoltaic power

generation, from the measured data of photovoltaic power
stations in a region of Jiangsu from 2019 to 2029, the data
with a time length of 100 days are randomly selected for
simulation experiments. Each experiment only needs to take
10 days for training and prediction, and the sampling period
is 15min. Two groups of continuous data with a length of 10
days are selected. (e first 8 days of data are used as the
training set of the model, the ninth day is used as the
verification set, and the last 10 days of data are used as the
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test. (e total installed capacity is 100MW, and the time is
from 06: 00 to 18: 00 every day. (e 100-day photovoltaic
power sequence and CEEMDAN decomposition sequence
are shown in Figures 4 and 5, respectively, where the x-axis
of Figure 5 represents the frequency of each subsequence.

It can be seen from Figures 4 and 5 that the subsequence
of the CEEMDAN-decomposed sequence has more gentle
characteristics. Dataset1 and dataset2 are decomposed into 5
and 6 subsequences, respectively, and then, there is a re-
sidual sequence, respectively. CEEMDAN can well reduce
the complexity of the sequence.

3.2. Model Prediction and the Evaluation Index. (is study
uses two classical prediction and evaluation indexes, the
mean absolute error (map) and the root mean square error
(RMSE). (e smaller the value of these two indicators, the
better the performance of themodel.(eir expressions are as
follows:

MAE �
1
n

􏽘

n

i�1
Yi − 􏽢Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RMSE �

����
1
n

􏽘

n

i�1

􏽳

Yi − 􏽢Yi􏼐 􏼑
2

, (8)

where n is the predicted total number, Yi is the actual
photovoltaic power value in step i, and Yi is the predicted
value in step i.

3.3. Comparison of Prediction Results between Different
Models. To reflect the superior prediction performance of
the SSA-CEEMDAN-FCN model proposed in this study, a
single model and their combined models will be used for
prediction comparison. At present, the commonly used time
series models with high prediction accuracy include
ARIMA, LSTM, and ELM. (e first 80% of the dataset is

Power sequence of photovoltaic power station CEEMDAN

IMF1 IMF2 IMF3 … IMF4 … IMFn-2 IMFn-1 IMFn

FCN1 FCN2 FCN3 … FCN4 … FCNn-2 FCNn-1 FCNn

Power prediction results of photovoltaic power station

Figure 3: SSA-CEEMDAN-FCN prediction flowchart.
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used as the training set, 80∼90% as the verification set, and
the last 10% as the test set.

3.3.1. Prediction of the SingleModel in the Dataset. In dataset
1, the four single models ARIMA, LSTM, GRU, and FCN are
compared for prediction. Table 1 shows that compared with
the other three single models, FCN has the highest pre-
diction accuracy, and the prediction accuracy of the other
three models is almost the same, but the prediction error is
large.

3.3.2. Comparison of Combined Models with the Decompo-
sition Algorithm. Because the single model is a part of the
combined model, it reflects the core prediction part of the
combined model to a certain extent. For example, the
prediction performance of the FCN model is the highest
among several single models, but after the decomposition
algorithm is added, the prediction accuracy of different
models is improved by different percentages. (erefore, it is
also necessary to verify whether the prediction performance
of these combined models is improved and whether the
prediction accuracy of the SSA-CEEMDAN-FCN model is
the highest.

It can be concluded that the prediction curve of the SSA-
CEEMDAN-FCNmodel is the closest to the real observation
value, and the prediction index of the SSA-CEEMDAN-FCN
model is the smallest in both groups of data, indicating that
its prediction accuracy is the highest. At the same time, we
can conclude that after adding the CEEMDAN decompo-
sition algorithm, the prediction accuracy of the combined
model will be improved compared with that of the single
model. (erefore, it also proves the superiority of the
combined model. (erefore, the method proposed in this
paper can better predict the changing trend of short-term
photovoltaic power on the whole, and the prediction error is
small. For example, in dataset 2, the prediction indexes
RMSE and Mae of SSA-CEEMDAN-FCN are 2.32 and 1.47,
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Figure 5: Photovoltaic power decomposition sequence.

Table 1: Single model prediction performance versus results.

Dataset Evaluating indicator
(MW) FCN ARIMA LSTM ELM

1 MAE 6.57 9.34 9.21 8.24
RMSE 7.20 9.21 8.76 8.61

2 MAE 5.47 9.87 8.87 8.17
RMSE 6.32 10.01 9.76 9.55
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Table 2: Results of combined model prediction performance.

Dataset Evaluating indicator
(MW)

SSA-CEEMDAN-
FCN

CEEMDAN-
FCN

CEEMDAN-
ARIMA

CEEMDAN-
LSTM

CEEMDAN-
ELM

1 MAE 2.57 3.47 5.34 5.21 4.24
RMSE 3.20 4.10 5.21 4.76 4.61

2 MAE 1.47 3.27 5.87 4.87 4.17
RMSE 2.32 4.22 6.01 5.76 5.55
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Figure 6: Comparison of prediction results of combined models of datasets 1 and 2.
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respectively, which are far less than those of the other three
combined models. (e details are shown in Table 2 and
Figure 6.

3.3.3. FCN Model Prediction Performance under Different
Optimization Algorithms. If only one parameter optimiza-
tion method is used in the experiment, it will have the
disadvantage of insufficient persuasion. (erefore, here, we
use several other common classical optimization algorithms
to optimize the model and compare their prediction results
to prove the rationality of using the SSA method in this
paper. (e three comparison methods are the genetic op-
timization algorithm (GA), black hole optimization algo-
rithm (BHA), and gray wolf optimization algorithm (GWO).
(eir comparison results in the two groups of data are
shown in Table 3.

(erefore, from Table 3, we can see that the FCN model
optimized by the FCN algorithm has the highest prediction
accuracy, so the SSA optimization algorithm is used in the
FCN network in the combined model proposed in this
paper, which is very reasonable.

4. Conclusion

(1) (e photovoltaic power sequence is decomposed
into subsequences with different frequencies by
CEEMDAN, which can reduce the complexity of
photovoltaic power and is conducive to power
characteristic analysis, modeling, and prediction.

(2) (e FCN model optimized based on the sparrow
search algorithm has better prediction performance,
because the performance of SSA-CEEMDAN-FCN is
better than that of the CEEMDAN-FCN model.

(3) (e SSA-CEEMDAN-FCN model is a combination
model with excellent performance. At present, the
prediction accuracy of LSTM and ELM models and
their combined models with high prediction accu-
racy is lower than that of the SSA-CEEMDAN-FCN
model. (erefore, the SSA-CEEMDAN-FCN model
combined with the FCN model further improves the
prediction accuracy of photovoltaic power.

(e decomposition subsequence of photovoltaic power
has different characteristic changes, and the prediction
method of its higher performance needs to be further
studied.(erefore, the photovoltaic power prediction will be
further studied from these two aspects in the future.
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