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Abstract 

Objective:  In Para-cycling competitions, cyclists with amputation of one-leg and no prosthesis, i.e., Division Cycle, 
Sport Class C2, perform pedaling movement on bicycle by unilateral leg. The purpose of this study was to describe 
neuromuscular activation of lower extremity muscles in two cyclists with single leg amputation and one cyclist 
with two legs during pedaling. We compared averaged rectified values (ARV) of surface electromyography for lower 
extremity muscles during crank cycle for two single leg cyclists with one cyclist with two legs at 65%, 80%, and 95% of 
VO2 max.

Results:  Characteristic features of cyclists with single amputation of leg were increases in ARV for proximal region of 
the rectus femoris muscle in first half of pulling phase, increases in ARV for the biceps femoris muscle in first half of 
pulling phase, and increases in ARV for the medial gastrocnemius muscle in pulling phase. These findings in this study 
suggest that cyclists with single amputation of leg use characteristic neuromuscular coordination in the muscles 
contributing to hip and knee flexion joint moments during pulling phase and this may be the strategy in cyclists with 
single amputation of leg to compensate lack of hip and/or knee extension torque from contralateral leg.
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Introduction
Pedaling movement on bicycle mainly consists of pushing 
and pulling actions by lower extremity joints and related 
muscles to rotate cranks via pedals. Since two cranks are 
linked on a bicycle, pushing and pulling actions by two 
legs would be well coordinated in cyclists [2, 10]. In Para-
cycling competitions, cyclists with amputation of one-leg 
and no prosthesis, i.e., Division Cycle, Sport Class C2, 
perform pedaling movement on bicycle by unilateral leg. 
Their pedaling skill should not be comparable with those 

by two legs and different neuromuscular coordination 
strategy would be used in cyclists with single amputa-
tion of leg. In the case of one-leg pedaling movements, 
contribution of pulling action to rotation of cranks could 
be greater than two-leg cycling because pushing action 
produce the power to rotate crank during half of crank 
cycle [3]. Hasson et  al. [5] reported that a single prac-
tice session of one-leg pedaling to direct cyclist’s applied 
pedal force perpendicular to the crank arm increased hip 
and knee flexion joint torques [5]. Therefore, it is rea-
sonable to assume that cyclists with single amputation 
of leg emphasize to activate hip and/or knee flexor mus-
cles during pulling phase. Understanding of the pedaling 
technique related with neuromuscular activation would 
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provide helpful knowledges to improve pedaling effi-
ciency and then performance in competitions [1].

The purpose of this study was to describe neuromuscu-
lar activation of lower extremity muscles in two cyclists 
with single leg amputation and one cyclist with two legs 
during pedaling. This is case study because of small num-
ber of samples.

Main text
Methods
Participants
Two cyclists with single amputation of leg (CS1, male; 
CS2, female) who participate Sport Class C2 in com-
petitive Para-cycling and one cyclist with two legs (CT, 
male) were recruited in this study. These cyclists partici-
pate world championships of Para-cycling (Sport Class 
C2 for CS1 and CS2 and tandem pilot of visual impaired 
cyclist for CT) and 3, 5, and 12 (The tandem competition 
of para-cycling was 2 years) years of competitive cycling 
experiences for CS1, CS2, and CT. The main competition 
results from 2016 to 2018 in these participants were 3rd 
place in UCI Track cycling World Championships for 
CS1, 3rd place in Asian athletics championships for CS2, 
and first place in Asian athletics championships, and 
first place in Asian athletics championships (participate 
as a tandem pilot of visual impaired) for CT. They gave 
written informed consent for the study after receiving a 
detailed explanation of the purposes, potential benefits, 
and risks associated with participation. All procedures 
used in this study were in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee at 
Nippon Sports Science University (No. 018-H069).

Experimental design
Participants performed maximum exercise tolerance test 
to estimate maximum oxygen consumption (VO2 max). 
In same day of the maximum exercise tolerance test, sub-
maximal pedaling exercises were performed at various 
relative workloads to measure surface electromyography 
(sEMG) from lower extremity muscles on an electrically 
braked cycle ergometer with saddle and handle positions 
that subjects usually used. Submaximal pedaling exer-
cises were conducted 3 h after the maximum exercise tol-
erance test.

From the results of the maximum exercise tolerance 
test, we calculated workloads at 65%, 80%, and 95% of 
VO2 max for each participant and used for submaximal 
pedaling test. Participants were instructed to maintain 
their optimal pedaling cadence for 2 min for 65% and 80% 
of VO2 max and 1–2 min for 95% of VO2 max. Same ped-
aling cadences were used among three workloads within 
each participant. Three workloads were applied in order 

of 65%, 80%, and 95% of VO2 max with at least of 5 min 
of rest among the exercises with different workloads.

Surface electromyography
During submaximal pedaling exercises, sEMG was 
recorded from RF, vastus lateralis (VL), biceps femoris 
(BF), medial gastrocnemius (MG), and tibialis anterior 
(TA) muscles using wireless sEMG device (Sessanta-
quattro, OT Bioelettronica, Torino, Italy) with 1000  Hz 
of sampling frequency and 256 of amplitude gain. These 
muscles have been often interested as the muscles which 
contributes to pedaling movements in the previous 
studies [7, 8]. We used bipolar electrodes with 15  mm 
of diameter of gel type detection area (CDE, OT Bioel-
ettronica, Torino, Italy) and 20  mm of inter-electrode 
distance. Electrode locations for VL, BF, MG, and TA 
muscles were determined by the recommendations 
from SENIAM [6]. For RF muscle, we recorded proximal 
(RFp) and distal regions (RFd) of the muscle. Recently, 
we reported that proximal regions of the rectus femo-
ris (RF) muscle preferentially contributes to hip flexion 
joint moment [12] and this region-specific functional role 
within this muscle had been confirmed during pedal-
ing movement [11]. So, this study applied this separated 
recording of surface EMG from RF muscle to assess the 
neuromuscular activation of hip flexor muscle. Elec-
trodes for proximal and distal regions of RF muscle were 
placed at one-sixth length of the distance between the 
anterior superior iliac spine and superior edge of patella 
from the anterior superior iliac spine and superior edge 
of patella, respectively.

Data analysis and statistics
Averaged rectified value (ARV) of sEMG amplitude was 
calculated every 10° of crank angle for 2 min for 65% and 
80% of VO2 max and 1–2  min for 95% of VO2 max. In 
this study, top dead of center in crank cycle was defined 
as 0°. Crank angle was calculated from a motion capture 
system (Vicon, Vicon Motion System Ltd. Oxford, UK). 
Three dimensional coordinates of reflective markers on 
pedal center and crank center were captured by eight 
infrared cameras at 200 Hz of sampling rate. Coordinates 
of these markers on sagittal plane were filtered by Butter-
worth low-pass digital filter with 8 Hz. From the filtered 
data, angles relative to a perpendicular line and the line 
between pedal center and crank center were calculated as 
crank angle.

Relationship between crank angle and ARV [13] at vari-
ous workload was represented for each muscle and each 
participant for the further analyses. For each participant, 
the effect of increase in workload on ARV were qualita-
tively assessed to estimate the role of each muscle during 
pedaling performance.
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Results
Rectus femoris proximal region (RFp)
CS1 and CS2 showed increases in ARV from 0° to 90° 
of crank angle and from 180° to 360° of crank angle and 

latter activations were greater than former activations 
(CS1 and CS2 in left panels of Fig. 1). In CT, an increase 
in ARV around 270° of crank angle with shorter 

Fig. 1  Averaged rectified values of surface electromyography during a crank cycle for proximal region of the rectus femoris muscle (Left panels) 
and distal region of the rectus femoris muscle (Right panels) at various workloads. CS1 and CS2, cyclists with single amputation of leg; CT, cyclist 
with two legs
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duration and this is seemed to be increased with an 
increase in workload (CT in left panels of Fig. 1).

Rectus femoris distal region (RFd)
In CS1 and CS2, an increase in ARV was found from 
270° to 90° of crank angle and this is increased with an 
increased in workload (CS1 in right panels of Fig. 1). CS2 
and CT showed increases in ARV from 270° to 360° of 
crank angle were increased with an increase in workload 
(CT in right panels of Fig. 1).

Vastus lateralis (VL)
For all participants, common patterns were represented, 
i.e., increases in ARV from before 0° to 90° of crank angle 
(Left panels of Fig. 2).

Biceps femoris (BF)
Increase in ARV were found from around 0° to 270° of 
crank angle for all participants (Right panels of Fig.  2). 
For CS1 and CS2, greater activations were shown from 
180° to 270° of crank angle when compared with CT 
(Right panels of Fig. 2).

Medial gastrocnemius (MG)
CS1 showed increases in ARV from 0° to 90° and 180° to 
360° of crank angle and both activations were increased 
with an increase in workload (CS1 in left panels of Fig. 3). 
Increase in ARV for CS2 were found during a crank cycle 
(CS2 in left panels of Fig. 3).

Tibialis anterior (TA)
For CS1, increases in ARV were found from 0° to 180° of 
crank angle (CS1 in right panels of Fig. 3). CS2 showed 
increases in ARV around 180° of crank angle and from 
270° to 360° of crank angle (CS1 in right panels of Fig. 3).

Discussion
This regional neuromuscular activations along RF 
muscle were also shown in the present study, but CS1 
and CS2 showed marked differences in neuromuscu-
lar activation patterns between RFp and RFd (Fig.  1). 
However, this difference were not found in CT (Fig. 1) 
and in non-cyclists in our previous study [11]. ARV of 
RFp increased during whole pulling phase in CS1 and 
CS2, while ARV of RFp increased during latter half of 
pulling phase in CT. It can be assumed that RFp for all 
participants contribute to hip flexion joint moment, but 
this action or joint torque would be emphasized in CS1 
and CS2. This characteristic neuromuscular regulation 
in cyclists with single amputation of leg for hip flexion 
may be compensation to lack of hip and/or knee exten-
sion torque from contralateral leg. However, it should 

be noted that ARV of RFp during pulling phase were 
not increased with an increase in workload (Fig. 1). For 
example, ARV of VL (Left panels of Fig. 2) consistently 
increased with an increase in workload. This would 
reflect contribution to generate crank force for increas-
ing workload. We thus estimated that neuromuscu-
lar activation in RFp could not contribute to generate 
crank force to increase workload and its act as pulling 
up their leg.

Activations of hamstrings muscles such as BF during 
pedaling movements is one of characteristic strategies 
in cyclists [10] and could contribute to pull up actions 
to rotate crank along the pedal trajectory. In the pre-
sent study, CS1 and CS2 showed increases in ARV of BF 
during first half of pulling phase that was not found in 
CT (Right panels of Fig. 2). The previous study showed 
increase in surface EMG amplitude during pushing 
phase in cyclists [2, 9, 13]. This characteristic activation 
of BF in cyclists with single amputation of leg would 
contribute to knee flexion joint moment, since knee 
flexion joint torque is observed during latter half of 
pushing phase and first half of pulling phase [4]. [Has-
son et  al. [5]] also showed a small increase in sEMG 
for hamstrings muscles and knee flexion joint moment 
following one-leg pedaling practice [5]. However, simi-
larly to ARV of RFp during pulling phase (Left panels of 
Fig. 1), ARV of BF during first half of pulling phase was 
also not increased with an increase in workload (Right 
panels of Fig.  2). This means BF also could not act as 
generator of crank force and its activation contributes 
to pulling up their leg during first half of pulling phase.

Gastrocnemius muscles act as planter flexor and knee 
flexor because of their anatomical properties. From 
planter flexion joint torque is observed during pushing 
phase and knee flexion joint torque is seen mainly dur-
ing pulling phase [4], it can be estimated that increases 
in ARV during pushing phase and pulling phase are 
associated with planter flexion and knee flexion joint 
torque, respectively. In this study, increase in ARV of 
MG were found during pushing phase for all partici-
pant and during pulling phase for CS1 and CS2 (Left 
panels of Fig. 3). As similar with CT in this study (Left 
panels of Fig. 3), neuromuscular activation of MG were 
mainly found during pushing phase, but not during 
pulling phase [2, 9]. Therefore, we assumed that MG 
commonly acted as planter flexor for all participants in 
this study and this muscle also contributed to knee flex-
ion joint moment in CS1 and CS2.

In conclusion, as we hypothesized, characteris-
tic neuromuscular activation patterns were observed 
in cyclists with single amputation of leg for RFp, BF, 
and MG, which associate with hip and knee flexion 
moment, during pulling phase.
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Limitations
Number of the participants were limited. Further stud-
ies are needed to clarify the characteristic neuromuscular 
strategy in in cyclists with single amputation of leg. Also, 
we measured sEMG only from six muscles out of large 

number of lower extremity muscles. Therefore, we should 
note that other muscles also should contribute to gener-
ate crank rotation force in characteristic strategy during 
pedaling in cyclists with single amputation of leg.

Fig. 2  Averaged rectified values of surface electromyography during a crank cycle for the vastus lateralis muscle (Left panels) and the bicep femoris 
muscle (Right panels) at various workloads. CS1 and CS2, cyclists with single amputation of leg; CT, cyclist with two legs
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