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Abstract
The term sarcopenia was first introduced in 1988 by Irwin Rosenberg to define a condition of muscle loss that occurs in the 
elderly. Since then, a broader definition comprising not only loss of muscle mass, but also loss of muscle strength and low 
physical performance due to ageing or other conditions, was developed and published in consensus papers from geriatric 
societies. Sarcopenia was proposed to be diagnosed based on operational criteria using two components of muscle abnormali-
ties, low muscle mass and low muscle function. This brought awareness of an important nutritional derangement with adverse 
outcomes for the overall health. In parallel, many studies in patients with chronic kidney disease (CKD) have shown that 
sarcopenia is a prevalent condition, mainly among patients with end stage kidney disease (ESKD) on hemodialysis (HD). In 
CKD, sarcopenia is not necessarily age-related as it occurs as a result of the accelerated protein catabolism from the disease 
and from the dialysis procedure per se combined with low energy and protein intakes. Observational studies showed that 
sarcopenia and especially low muscle strength is associated with worse clinical outcomes, including worse quality of life 
(QoL) and higher hospitalization and mortality rates. This review aims to discuss the differences in conceptual definition of 
sarcopenia in the elderly and in CKD, as well as to describe etiology of sarcopenia, prevalence, outcome, and interventions 
that attempted to reverse the loss of muscle mass, strength and mobility in CKD and ESKD patients.

Keywords Sarcopenia · Chronic kidney disease · End stage kidney disease · Skeletal muscle mass · Muscle strength · 
Physical performance

Introduction

Loss of muscle mass is a prevalent complication in patients 
with chronic kidney disease (CKD) and especially in those 
with end stage kidney disease (ESKD) [1–3]. The causes are 
diverse and ultimately converge to increased protein degra-
dation and reduced protein synthesis, resulting in a state of 
negative protein balance [4]. This condition eventually leads 
to a nutritional disturbance known as protein energy wasting 

(PEW) that for long has been mostly attributed to malnutri-
tion [5]. In addition to PEW/malnutrition, the terms sarco-
penia and cachexia denote nutritional derangements that are 
related to the loss of muscle mass (wasting) that often is pre-
sent in CKD. These conditions share common criteria and 
clinical outcome (Fig. 1) but have distinct definitions. Pure 
malnutrition is the loss of body weight, muscle mass and 
body fat due to insufficient energy and nutrient intake, while 
PEW has similar criteria, but with low-grade inflammation 
as an additional etiological condition [5]. Sarcopenia, on the 
other hand, is understood as the concomitant loss of muscle 
mass and muscle strength that occurs with aging. Cachexia 
is a syndrome that is present in diseases with chronic inflam-
mation and increased breakdown of muscle proteins, such 
as in cancer, and is characterized by severe muscle loss that 
may or may not be accompanied by loss of body fat [6]. 
These nutritional abnormalities may occur concomitantly 
depending on the severity of the nutritional impairment. As 
for example, a patient with malnutrition/PEW may also pre-
sent sarcopenia, but not necessarily cachexia; while a patient 
with cachexia may have malnutrition and sarcopenia.
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The interest in sarcopenia increased in 2010, with the 
publication of the sarcopenia consensuses from different 
societies focusing mainly on the geriatric population [6–10]. 
Since then, the subject of sarcopenia got the attention of 
other medical specialties as a condition also present in clini-
cal settings, independent of ageing. Since the publication of 
the first Sarcopenia Consensus from the European Working 
Group for Sarcopenia for Older People (EWGSOP) [6], a 
considerable amount of studies including CKD and ESKD 
patients on dialysis and kidney transplant recipients has been 
published. Now is time to analyze the strengths, flaws and 
applicability of the sarcopenia concept and its relevance for 
renal care management. This review aims to go through the 
conceptual definition of sarcopenia, its etiology, prevalence, 
association with clinical outcomes, and how it is affected 
by interventions aiming at improving muscle mass, muscle 
strength and mobility in CKD and ESKD patients.

Sarcopenia: definition, etiology, operational 
criteria and methods of assessment

The muscle tissue is one of the main organs in the body. 
The skeletal muscle is the largest component, but other 
types, including smooth muscle and cardiac muscle are 

also part of the muscle compartment. The loss of muscle 
mass, especially of skeletal muscle mass, is directly asso-
ciated with diminished strength and indirectly associated 
with worse quality of life (QoL), increased vulnerability to 
undesirable outcomes such as falls, loss of independency 
and, ultimately, higher hospitalization rates and mortality 
[11]. To the best of our knowledge, Macdonald Critchley 
in 1931, a neurologist in London, was the first in modern 
scientific literature to connect the loss of skeletal muscle 
to ageing when observing that the musculature tends to 
decrease in the elderly [12]. Since then, many observations 
were reported regarding the changes in the musculature and 
body fat that occurs with ageing [13]. These changes refer 
mainly to an interrelated loss in muscle quantity (mass and 
volume), decrease in muscle strength and muscle quality, 
and increase in body fat [14]. Most studies assessing changes 
in muscularity over life are cross-sectional and the results 
indicate an estimated decrease in muscle mass of about 1 to 
2% per year after the age of 50 years, which tends to further 
increase after 70 years of age accounting for a total accumu-
lated loss of about 40% between the age of 20 and 70 years 
[13]. Longitudinal studies including elderly subjects confirm 
these cross-sectional findings. In septuagenarian individu-
als, Delmonico et al. [14] demonstrated an annual decrease 
in muscle area of − 4.9 ± 7.4% in men and of − 3.4 ± 7.9% 

Fig. 1  Criteria and clinical 
outcome of malnutrition/protein 
energy wasting (PEW), sarcope-
nia, caquexia and muscle wast-
ing in chronic kidney disease
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in women after > 5 years of follow up. A similar result was 
found by Cameron et al. [15] also in septuagenarian recrea-
tionally active men and women, in whom the decrease in 
thigh lean mass assessed by magnetic resonance imaging 
(MRI) and whole body lean mass assessed by dual energy 
x-ray absorptiometry (DXA) was approximately 5% during 
5 years. These changes in muscularity have been termed 
sarcopenia by Irwin Rosenberg in 1988, which comes from 
Greek and means sarx = flesh and penia = loss [16].

For many years, sarcopenia was mostly understood as loss 
of muscle mass that occurs with ageing; however, studies 
showed that not only the muscle quantity, but also muscle 
strength and physical performance decreases during life [17, 
18]. These new findings, conveyed in five sarcopenia consen-
sus papers from different medical societies [6–10], resulted 
in a common definition in which sarcopenia is a “syndrome 
characterized by progressive and generalized loss of muscle 
mass and strength with a risk of adverse outcomes including 
physical disability, poor QoL and death” [6]. The opera-
tional criteria proposed were similar among the consensus 
reports: sarcopenia is diagnosed when low muscle mass (by 
measurements of muscle quantity) and low muscle function 
(by measurements of muscle strength and/or physical per-
formance) occur concomitantly [6–10]. Out of the aforemen-
tioned consensuses, the EWGSOP categorized sarcopenia as 
primary sarcopenia when the etiology is related to aging and 
as secondary sarcopenia when it results from other condi-
tions that can be concomitant or not with aging and that can 
occur early in the adult life [6]. Secondary sarcopenia can 
occur due to low physical activity conditions (bed rest, zero-
gravity conditions, sedentary life style), diseases (advanced 
organ failures disease, inflammatory disease, malignant or 
endocrine diseases) and nutritional factors (insufficient food 
intake, malabsorption conditions, gastrointestinal diseases, 
use of anorexic medications).

The main difference between primary and secondary 
sarcopenia is that in the first, loss of muscle mass occurs 
continuously and in a similar fashion after the fourth dec-
ade of life, but in the latter, muscle loss is connected not 
only to ageing but also to conditions that increase protein 
degradation and therefore is more intense and occurs with 
greater magnitude than in the natural aging process [19]. 

In the disease-related secondary sarcopenia, wasting and 
cachexia are usually present, as is the case in CKD/ESKD, 
where PEW diagnosed by subjective global assessment or 
the malnutrition-inflammation score is reported to occur in 
11–54% of the patients [20]. Differentiating aging-related 
from chronic-illness induced sarcopenia is relevant to bring 
awareness that this phenomenon should be screened in other 
susceptible groups, such as in young adult CKD patients. In 
Table 1 we describe the main differences between aging-
related and CKD-related sarcopenia; the most important 
feature that differentiates between the two conditions is the 
presence of protein degradation in CKD-related sarcope-
nia, which may be absent in the aging-related sarcopenia. 
Because of these differences, the treatment goals when treat-
ing sarcopenia in elderly individuals may differ from those 
in individuals with a disease-related condition. In the first 
group, the main aim is to restore mobility and QoL and not 
primarily to diminish death rates. In disease-related sarco-
penia, where muscle wasting and PEW are more prominent, 
the main aim of reversing sarcopenia is to recover nutritional 
status allowing individuals to better respond to the treatment 
of a determined disease; thus, in addition to reestablishing 
mobility and QoL, the aim is to diminish the rate of hospi-
talization and death.

After almost 10 years following the publication of the 
first EWGSOP consensus, a revised consensus was released 
in 2019 (EWGSOP 2) [10]. Although sarcopenia continued 
to be assessed by the concomitant presence of low muscle 
strength and muscle mass, the EWGSOP 2 proposed that 
low muscle strength should be used as the first measurement 
to screen for pre-sarcopenia, and low muscle mass and/or 
poor muscle quality should be used to confirm the sarcope-
nia diagnosis. If low physical performance is also present, 
severe sarcopenia is diagnosed.

The shift from low muscle mass to low muscle strength as 
the key characteristic for the diagnosis of sarcopenia in the 
EWGSOP 2 is justified by the fact that low muscle strength 
is better than low muscle mass in predicting worse outcome 
in the elderly [21]. Moreover, low strength can be easily 
screened in hospitals, other clinical settings, and commu-
nity health care, by grip strength using a portable handheld 
dynamometer. Muscle mass, on the other hand, can be more 

Table 1  Comparison between 
CKD -related sarcopenia and 
ageing-related sarcopenia in 
terms of underlying metabolic 
abnormalities and changes in 
body fat and muscle fibers

CKD-related sarcopenia Ageing-related sarcopenia

Muscle protein degradation Increased No change
Muscle protein synthesis Decreased Decreased
Resting energy expenditure Increased/unchanged Unchanged
Inflammation Increased Increased or unchanged
Insulin resistance Present Present
Body fat Unchanged, increased or decreased Normally increased
Muscle fiber change Atrophy in type I and II fibers Preferential loss of type II fibers
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difficult to evaluate. Many methods enable the assessment of 
muscle mass, but the method of choice is dependent mainly 
on the purpose of assessment (research or clinical practice) 
and one should be aware that differences related to the defi-
nition of the tissue assessed can modify the results observed. 
For instance, fat free mass (FFM), lean body mass/lean soft 
tissue (LBM/LST), and skeletal muscle mass (SMM) are not 
equivalent although they are often used as interchangeable 
surrogates. The FFM, as the name suggests, is the total body 
mass except the body fat, and it includes the LBM and the 
bone mineral tissue. The LBM in turn is composed by the 
total body water, the SMM, and the fat free part of organs 
[22]. The available methods for the assessment of FFM and 
its compartments are many, and each one has advantages and 
disadvantages. Different techniques measure different body 
compartments and identifying the specific body compart-
ment of interest must precede the choice of the method of 
assessment. Table 2 describes the methods for the assess-
ment of FFM and its components, as well as for muscle 
strength and physical function.

Sarcopenia and CKD

Muscle loss is a frequent finding in CKD, especially for 
patients with more advanced stages of the disease including 
ESKD patients undergoing hemodialysis (HD) [1–3]. The 
consequences of muscle loss are not only related to physical 
disability as commonly observed in the elderly. In fact, many 
studies in the past decades have also linked muscle loss in 
CKD patients with worse QoL, depression, PEW, fracture 
risk, cardiovascular complications, graft failure and post-
operative complications in transplant recipients, as well as 
with increased hospitalization and mortality [23–30].

The etiologic factors of muscle derangements leading to 
muscle loss in CKD are diverse and can be related to several 
conditions including the kidney disease itself, the dialysis 
procedure and the typical chronic low-grade inflammation 
present in CKD patients that together increase protein deg-
radation, decrease protein synthesis and lead to a negative 
protein balance [31, 32] (Fig. 2). The non-inflammatory 
factors related to the loss of kidney function include the 
development of metabolic acidosis, insulin resistance and 
vitamin D deficiency that act as promotors of protein catab-
olism and decreased protein synthesis [33–38]. Metabolic 
acidosis acts as a potent stimulator of protein catabolism 
by triggering two systems responsible for intracellular pro-
tein degradation (caspase-3 and the ubiquitin–proteasome 
systems (UPS)) [39] and by promoting insulin and growth 
hormone (GH) resistance [40]. Vitamin D deficiency can 
reduce pancreatic insulin secretion [41, 42], and diminish 
the stimulus for protein synthesis by decreasing Vitamin D 
receptors present in muscle and reducing the calcium influx 

from cellular membranes [38]. Moreover, other factors such 
as hormonal derangements (testosterone, insulin growth 
factor (IGF-1) and GH resistance), the substantial loss of 
amino acids during the HD procedure [43] and reduced 
energy and protein intake which has shown to be even lower 
on the dialysis day [44] can also lead to a state of nega-
tive energy and protein balance. The inflammatory condi-
tions related to CKD include mainly the pro-inflammatory 
response induced by the bioincompatibility of the dialysis 
membranes [4]. More recently, an important role has been 
attributed to the gastrointestinal tract in the development of 
inflammation as a consequence of intestinal dysbiosis and 
barrier disruption [45–47]. This can result from the uremic 
environment and the reduced fiber intake due to commonly 
advised dietary restrictions of food sources of potassium, 
including fruits, vegetables, grains, nuts and whole cereals, 
which predisposes to an increase in protein fermentation and 
its metabolites (i.e. ammonium, thiols, phenols, indoles) that 
accumulates in ESKD patients due to reduced renal clear-
ance [47]. In addition, the gut dysbiosis in uremia may lead 
to increased exposure to endotoxins that induce inflamma-
tory cascades and systemic low-grade inflammation. Obesity 
in CKD patients can also act as a pro-inflammatory factor 
due to adipocyte dysfunction, characterized by increased 
synthesis of cytokines and chemokines (adipokines) that 
occurs independently of macrophage infiltration in the adi-
pose tissue, which comes secondarily from adipocyte hyper-
trophy and hypoxia [48]. Finally, the low physical activity 
frequently found in HD patients [49] results in “muscle dis-
use”, which is another important but underappreciated cause 
of muscle loss and sarcopenia in this population.

Altogether, the conditions that patients with CKD, espe-
cially those on dialysis, are exposed to will result in negative 
protein balance that can result in muscle loss, weakness (low 
muscle strength), low physical performance, disability and 
frailty [50] (Fig. 2). Since the CKD population is getting 
older, ageing is a prominent cause of sarcopenia in ESKD; 
however, it is likely that this group is more vulnerable to 
muscle changes than their non-CKD counterparts, but also in 
comparison to the younger CKD population. This was dem-
onstrated by Çelik et al. [51] who noticed that HD patients 
aged 65  years and older had lower FFM index, serum 
creatinine and dry body weight than the younger patients 
(< 65 years) and by D’Alessandro et al. [52] who showed 
that sarcopenia was more prevalent in older (> 75 years) than 
in younger (65–74 years) seniors with CKD stage 3a and 4 
(prevalence 55% vs 12.5%, respectively). Of note, the latter 
study showed that the three components of sarcopenia—
skeletal muscle index, handgrip strength (HGS) and per-
formance tests (sit-to-stand-chair-test and 6-min-walk-test) 
were significantly lower in the older senior CKD patients 
[52]. A study based on the EQUAL study (n = 1334) showed 
that the risk of PEW in CKD patients with eGFR < 20 ml/
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min increases substantially with age and is commonly char-
acterized by muscle wasting [53]. Hence, aging adds up as 
a contributing factor to the etiology of sarcopenia in CKD.

Prevalence of sarcopenia in CKD: the role 
of different operational criteria, methods, 
and cutoffs

For many years, muscle loss was considered part of the 
malnutrition/PEW syndrome [5]. However, after the pub-
lication of the sarcopenia consensuses [6–9], muscle loss 
due to chronic diseases, such as CKD, became a separate 
condition to be assessed in the clinical practice. In CKD, 
the first studies assessing the prevalence of sarcopenia are 
from 2013 and 2014 [54–58], and only in the last couple of 
years the scientific literature in this area received many more 
contributions (Table 3). Up to now, the most used sarcopenia 
operational criteria was the EWGSOP 1, which was applied 
in 12 studies [52, 55, 57–66] (sarcopenia prevalence 4–49%), 
while 4 studies defined sarcopenia only by low muscle mass, 
not assessing muscle strength or performance [54, 67–69]. 
An important finding in these studies is that sarcopenia, 
understood as concomitant low muscle mass and low muscle 
strength, is a feature of muscle changes in CKD. In addition, 
another consistent result is that—depending on CKD stage 
and age, but mostly on the method used to assess muscle 

mass (DXA, BIA or anthropometry) and the different cutoffs 
adopted—the prevalence of sarcopenia can be as low as 4% 
[55, 57] and as high as 63% [70]. These findings suggest that 
for clinical practice as well as for scientific purposes, there is 
not yet an agreement on which operational criteria to apply 
when diagnosing sarcopenia in CKD and dialysis patients.

Also of relevance, is to contextualize the operational 
definitions of sarcopenia in the general population. These 
definitions were first developed to predict the risk of mobil-
ity loss as well as declines in functional status in the geri-
atric population. However, accounting for the fact that 92% 
of older adults have at least one chronic disease [71], the 
associated effect of ageing and chronic comorbidity must be 
taken into account when defining sarcopenia. CKD has often 
been called a model of “accelerated ageing” [72, 73]; there-
fore, it is likely that the direction of associations between the 
components of sarcopenia (low muscle mass, strength and 
performance) and outcomes related to disability and mortal-
ity is the same as in the general population. Nevertheless, the 
magnitude of these relationships is probably different and 
more pronounced in CKD because of the independent effects 
of the disease on muscle. In fact, in HD patients, muscle loss 
occurs at younger ages, and are more marked in comparison 
to age-matched controls [74, 75]. Therefore, currently used 
cutoffs to clinically identify sarcopenia in the general popu-
lation might not be appropriate for CKD including dialysis 
patients. The definition of what constitutes a low nutritional 
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marker of body composition is dependent on the normal 
distribution of a nutritional marker in a representative popu-
lation. For example, in order to define the threshold for low 
SMM in CKD/ESKD patients, first it would be necessary to 
search for the distribution of SMM in a representative popu-
lation of dialysis individuals to investigate the distribution 
of percentiles of SMM according to age and gender, before 
finally tracing those with threshold below, for example, the 
10th or 5th percentile. In addition, it would also be important 
to investigate whether SMM at these thresholds is associated 
with worse outcome. Such a study is difficult to perform 
and, to the best of our knowledge, has not yet resulted in 
published work. Studies in CKD/ESKD patients to define 
appropriate cutoffs to screen for low muscle mass, strength 
and mobility are scarce. By using computed tomography 
(CT) to assess muscle mass at the level of the  3rd lumbar 
vertebra in 233 patients on CKD stages 3–5, Giglio et al. 
demonstrated that among many surrogate methods tested to 
assess muscle mass (BIA, MAMC, anthropometry, Janssen 
and Baumgartner equations, and physical examination of 
muscle mass from subjective global assessment, SGA), the 
Baumgartner and Janssen equations (cutoffs for low muscle 
mass for Baumgartner equation was below 21.4 kg for men 
and below 14.8 kg for women and for Janssen was 29.3 kg 
for men and 18.2 kg for women) showed the best agree-
ment in terms of sensitivity, specificity and area under the 
curve with muscle mass assessed by CT, using the value 
below the 25th percentile to define low muscle mass (for 
men 139.1 cm2 and for women 97.5 cm2) [30]. In a subse-
quent study with the same cohort, the use of muscle mass 
assessed by CT at the 3rd lumbar vertebra with the cutoff 
value below the 25th percentile to define low muscle mass 
(< 138 cm2 for men and < 98 cm2 for women) was associated 
with higher all-cause mortality [76]. For low muscle strength 
assessed by handgrip strength, when examining 265 dialysis 
patients (218 HD and 17 peritoneal dialysis (PD) patients) 
followed for 13.4 ± 7.9 months to analyze mortality, it was 
shown that the cutoff of handgrip strength best able to pre-
dict mortality rate was 22.5 kg for men (61% sensitivity and 
76% specificity) and 7 kg for women (83% sensitivity and 
37% specificity) [77]. However, since these cutoffs showed a 
moderate sensitivity for men and a low specificity for women 
and that ideally, a cutoff to evaluate sarcopenia should screen 
low values when it can still be reversed and not necessarily 
when it associates with higher mortality rates, appropriate 
cutoffs for CKD/ESKD patients are yet to be determined. 
Until we know better about cutoffs directed to CKD/ESKD, 
it may be prudent to assume that those proposed in the sarco-
penia consensus can be used in CKD patients. However, it is 
important to acknowledge that cutoffs should be understood 
as a starting point to screen for patients at risk or who need 
special medical nutritional attention; thus, continuous fol-
low up using the patient as his/her own control is the best 

approach to better recognize when an intervention should 
be implemented as well as to monitor the possible impact in 
ameliorating poor clinical outcomes.

Muscle mass, muscle strength or physical 
function: which one is more clinically 
relevant for CKD?

Although the three main components of sarcopenia—low 
muscle mass, low muscle strength and low physical perfor-
mance—are closely related, they do not necessarily have a 
causal relation. When sarcopenia was first conceptualized 
by Rosenberg in 1988, the statement was that the reduction 
in muscle mass affects ambulation, mobility and weakness, 
suggesting that loss of muscle mass would lead to low mus-
cle strength and mobility and that the opposite would also 
occur [16]. However, longitudinal studies following older 
individuals for 3–5 years showed that the loss of muscle 
strength occurs more rapidly than the loss of muscle mass 
[14, 17]. Delmonico et al. [14] showed that among 1880 
older individuals (aged 70–79 years), the annual decline in 
leg muscle strength (~ 3%/year) was 3–5 times higher than 
the rate of loss in the leg lean mass (~ 1%/year); this pattern 
of different decline rates occurred in the group that lost as 
well as in the group that maintained/gained body weight. Of 
particular interest is the finding that the group that gained 
body weight had a small increase in lean mass, although 
muscle strength decreased [14]. These findings suggest that 
loss of muscle mass is not the only etiologic factor in the loss 
of muscle strength and thus that other factors are involved. 
Manini and Clark [78] suggested that conditions related to 
impairments in neural (central) activation combined with 
reductions in force-generating capacity of skeletal muscle 
are involved in the loss of muscle strength [78]. Examples of 
impaired neural (central) activation are decreased excitatory 
voluntary stimulus from supraspinal centers and lower or 
suboptimal motor unit recruitment that cause lower muscle 
strength. An example of damaged force-generated muscle 
capacity is that there are changes in actomyosin structure 
and function with infiltration of adipocytes into muscle fib-
ers that can decrease muscle strength.

Since CKD patients manifest a phenotype of accelerated 
aging [79], one can expect that similar to changes observed in 
elderly, a decrease in muscle strength and function are associ-
ated, but not only as a result of muscle mass loss. In fact, in 
a study using an animal model of progressive CKD, it was 
shown that compared to controls, muscle function of CKD 
rats decreased although muscle mass did not change. Instead, 
changes in muscle quality and increased muscle fiber atrophy 
was observed [80]. In dialysis patients, Fahal et al. [81] inves-
tigated changes in muscle weakness by examining quadriceps 
muscle force and contractile properties, in addition to muscle 
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biopsy with quantification of the type of muscle fibers in HD 
and PD patients and in healthy controls. The first finding is that 
muscle strength in dialyzed patients was lower than in healthy 
controls, and dialyzed patients with malnutrition (assessed by 
SGA) were weaker than well-nourished patients. Secondly, the 
most prominent difference between dialysis and controls was 
the slower relaxation in the muscle, which can compromise 
muscle strength and contraction, regardless of muscle mass. 
Third, 78% of the dialysis patients presented some morpho-
logic abnormality in the muscle biopsies, with atrophy in fiber 
type I (slow-twitch) present in 45% of the patients and atrophy 
in fiber type II (fast-twitch) in 40% of the patients. Moreover, 
fiber type II (fast-twitch) area was significantly smaller in the 
malnourished dialysis group as compared to the well-nour-
ished. These findings corroborate that muscle mass is not the 
only determinant of muscle strength, but other factors such 
muscle relaxation and fiber muscle atrophy can also explain a 
low muscle strength. In fact, in a subsequent cross-sectional 
study it was demonstrated that compared to age-and sex-
matched healthy individuals, HD patients had lower strength, 
contractive muscle area and gait speed, although the total 
muscle sectional area was similar to that of healthy matched 
individuals [82]. These findings support the hypothesis that 
similar to the elderly, muscle function worsens independently 
of the progressive loss of muscle mass. A decrease in muscle 
quality caused by muscle fat infiltration seems to be a missing 
link. Although studies in this area are scarce, some studies in 
CKD and HD patients showed that increased muscle fat infil-
tration in the thigh was associated with lower muscle function 
assessed by muscle strength and physical performance tests 
[83, 84]. However, longitudinal studies in CKD/ESKD are 
warranted to further investigate the role of muscle fat infiltra-
tion mediating loss of muscle function.

In addition, in longitudinal studies of patients with 
ESKD, low muscle strength was a stronger predictor of 
increased hospitalization and mortality rates than lower 
muscle mass, reinforcing the idea that low muscle strength 
is a more powerful determinant of worse outcome [3, 58, 
85]. This does not mean, however, that muscle mass should 
be of less importance when assessing nutritional status, but 
rather that measurements of muscle strength, that can be 
easily assessed by HGS, should be incorporated as an impor-
tant component for the diagnosis of muscle derangements 
in CKD and ESKD.

Protein intake: how much is required 
to avoid muscle wasting in the elderly 
with CKD?

This question is particularly important for patients with 
CKD on stages 3 to 5 not on dialysis. The 2020 Updated 
practice guideline for nutrition in CKD from the Kidney 

Disease Quality Initiative—National Kidney Foundation 
(KDOQI-NKF) guidelines recommends a protein intake of 
0.6 to 0.8 g/kg/day for patients with CKD on stages 3 to 5 
with an energy intake of 30 kcal/kg/day. However, no spe-
cific recommendation for elderly subjects with CKD was 
addressed [86]. For the elderly with CKD, a position paper 
from the PROT-AGE Study Group, recommends a protein 
intake of 0.8 g/kg/day for patients with GFR < 30 ml/min 
and > 0.8 g/kg/day if GFR is between 30 to 60 ml/min [87]. 
As for elderly not with CKD, a recent guideline recom-
mended a minimum protein intake 1 g /kg/day with 30 kcal/
kg/day, but no specific recommendation for elderly with 
CKD was discussed [88]. These diverse protein recommen-
dations can be explained by the outcome expected. In the 
elderly without CKD, a higher intake of protein—higher 
than the intake of 0.8–1.0 g/kg/day recommended for healthy 
adults—is motivated by findings that protein intake lower 
than 1 g/kg/day is associated with loss of muscle mass in 
non-CKD elderly, most likely due to the lower protein syn-
thesis and higher protein degradation rates that are inher-
ent to aging [89]. In individuals with CKD not on dialysis, 
the recommendation of controlling protein intake aims to 
reduce the metabolic derangements from the gradual loss 
of renal function [86]. Therefore, the optimal protein intake 
for elderly patients with CKD stages 3 to 5 not on dialysis is 
a controversial subject. The question is—how much protein 
intake an elderly with CKD not on dialysis should eat to 
ensure muscle mass preservation and at the same time not 
further increase the derangements resulting from the loss of 
renal function? So far, there are no clinical trials addressing 
this question with conclusive endpoints, such as changes 
in muscle mass, muscle strength and physical performance. 
However, interventional studies in patients with CKD (stages 
3–5 not on dialysis) evaluating the use of controlled protein 
intake (moderate to low protein diets—0.6 to 0.8 g/kg/day, 
or very low protein diet—0.3 to 0.4 g/kg/day supplemented 
with amino acids or their nitrogen-free keto-analogues) and 
with adequate energy intake have shown positive findings in 
elderly CKD patients in preserving good nutritional status 
[90–93], postponing the beginning of dialysis therapy [90], 
lowering all-cause mortality [91], good adherence to a mod-
erate restriction in protein intake (0.8 g/kg/day) and increas-
ing serum albumin [92] and better quality of life [93]. More 
recently, not only the protein amount, but the adherence to 
higher scores of plant-based diet in elderly men with CKD 
stages 3–5 was associated with better insulin sensitivity and 
lower inflammatory markers, supporting the concept that 
the source and type of protein also plays an important role 
and has the potential to offer benefits to elderly with CKD 
[94]. Altogether, these findings are suggestive that control-
ling the protein intake (0.6–0.8 g/kg/day) in elderly patients 
with CKD 3–5 can be beneficial but only if an adequate 
amount of energy is provided as this is needed to prevent 
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impaired protein degradation and the risk of muscle wasting 
[95]. However, if poor adherence and signs of muscle wast-
ing (indicating malnutrition/PEW, sarcopenia or cachexia) 
occur, the priority of the dietary scheme should be to inter-
rupt the loss of muscle mass and recover nutritional sta-
tus. In this case, an energy and protein recommendation 
of 30 kcal/kg/day and 0.8–1 g/kg/day, respectively, would 
likely cover for the nutritional needs and can be used as a 
starting point with subsequent monitoring.

Can sarcopenia be reversed in CKD?

Classically, nutritional interventions characterized by energy 
and protein supplementation have been used to improve 
nutritional intake of malnourished or sarcopenic patients 
[87, 89]. Evidences suggest that protein supplementation 
alone may offer limited benefits to older adults in terms of 
improving muscle mass and strength [96–98] which may 
be a reflection of the anabolic resistance present in older 
individuals [99]. On the other hand, studies suggest that the 
best effect of protein supplementation on muscle protein 
synthesis occurs when protein supplementation is given 
immediately after exercise [100, 101]. Despite some data 
suggesting immediate additional anabolic benefits on com-
bining oral nutritional supplementation and exercise training 
[102], the available randomized controlled trials (RCT) that 
investigated long-term effects of both interventions com-
bined, failed to demonstrate any additive benefits on func-
tion, strength and muscle mass [103, 104]. Reasons for the 
lack of positive results may be related to the populations 
studied being younger than the general dialysis population 
and had relatively adequate nutritional status; and secondly 
that the low volume and intensity of the exercise prescribed 
did not overcome the anabolic resistance that is character-
istic of ageing and of HD patients [105–107]. Of note, the 
exercise load was not aligned with the recommended levels 
by standard exercise guidelines [108].

Robust evidence in healthy elderly subjects demonstrate 
the benefits of exercise, particularly resistance training, and 
physical activity, on muscle mass, strength and performance 
[109]. The synergistic effects of protein supplementation and 
exercise to increase protein synthesis and stimulate muscle 
growth have also been investigated in the elderly. Particu-
larly, resistance exercise in conjunction with increased pro-
tein intake may improve the utilization of ingested amino 
acids for de novo protein synthesis [110, 111]. Similar 
results were found during prolonged protein supplementa-
tion combined with resistance exercise [112]. Results from 
the renal population are summarized in Table 4.

In the ESKD population, a number of studies have 
investigated various modalities of exercise in HD patients 
[113–115]. In comparison to aerobic exercise, that 

predominantly improves cardio-respiratory endurance and 
fitness, resistance training promotes muscle growth and 
strength, and theoretically this may be considered to be the 
preferred type of exercise to promote physical function in 
this patient population. Furthermore, the timing of exer-
cise is also of importance in the clinical setting. There are 
reports suggesting that resistance training during the dialy-
sis session helps to improve compliance to prescribed exer-
cise and could have a positive effect in counteracting the 
increased catabolism caused by the HD session. An early 
study from Kopple et al. [106] with 80 HD patients, showed 
that intradialytic exercise, resistance or endurance, induced 
transcriptional changes in genes favoring muscle anabolism 
and improved LBM as assessed by anthropometric param-
eters [106].

In a single-blind RCT in which 23 HD patients were ran-
domized to progressive resistance exercise training (PRET) 
or low-intensity lower body stretching activities [116], 
patients in the intervention group increased thigh muscle 
volume assessed by MRI, and strength assessed by isometric 
dynamometer, while patients in the control group presented 
muscle loss. However, in contrast to findings in the elderly 
population, no effects on QoL and performance in physical 
function tests were detected. In a more recent multicenter 
RCT that tested the effects of a simple personalized walk-
ing exercise program at home on functional status of HD 
patients [107], improvements of the six minutes walking test 
and the five times sit-to-stand test were described after six 
months, together with improvements on self-reported QoL.

Regarding the non-dialysis CKD population, fewer stud-
ies are available. The RENEXC study compared balance and 
resistance exercise, both combined with endurance training, 
in 150 patients with CKD stages 3–5 for four months and 
reported a significant improvement in muscle strength and 
physical performance in both groups [117]. In addition, in a 
pre-specified sub-analysis of the same study with prolonged 
12 months duration of the intervention, the effect of both inter-
ventions on sarcopenia status was assessed [118]; while no 
intervention was able to reverse sarcopenia the two groups 
showed either stabilization (in the resistance exercise group) 
or improvement (in the balance group) in muscle mass. In 

Table 4  Potential effects of exercise training (resistance/endurance) 
on muscle parameters in CKD/ESKD patients summarized from 
available evidence

Resistance 
training

Aerobic 
training

Muscle mass ↑↑ –
Muscle strength ↑↑ –
Measures of functional fitness/capacity ↑ ↑↑
Performance ↑ ↑
Health-related quality of life – ↑
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the LIFE-P study, elderly subjects were randomized into two 
groups, physical activity (PA) and a successful aging health 
education group (SA) for 12–18 months [119]. CKD patients 
in the PA group had better physical performance results as 
assessed by the short physical performance battery (SPPB) at 
12 months in comparison to patients enrolled in the SA group. 
While in the ExTra CKD study [120], the addition of resist-
ance exercise to aerobic exercise conferred greater increases in 
muscle mass and strength in CKD patients than aerobic exer-
cise alone. Finally, in addition to the positive results of exercise 
in patients on HD reported by Manfredini et al. [107], a recent 
RCT on exercise in overweight CKD patients by Aoike et al. 
[121] found that patients who were instructed to perform aero-
bic exercises at home had similar improvements in functional 
capacity tests (6 min walking test, 2 min step test, sit to stand, 
arm curl test, sit-and-reach test, and timed up-and-go), reflect-
ing important improvements in cardiorespiratory fitness, as 
well as improved QoL and quality of sleep when compared to 
patients that performed in-center exercises, while no changes 
in any of the parameters investigated were found in the control 
group (no exercise).

In summary, available data suggest a possible anabolic 
resistance in HD patients, probably due to catabolic factors 
related to the kidney disease per se and disturbances affecting 
HD patients (uremia, inflammation, acidosis, insulin resist-
ance etc.) [122], which might require a more intensive, com-
prehensive, and tailored nutrition and exercise prescription to 
counteract the deleterious consequences of the uremic milieu. 
Furthermore, presence of these catabolic factors highlights the 
notion that a one size-fit-all approach may not be equally ben-
eficial for different patients. As discussed above, low muscle 
mass can be the cause of muscle weakness, which is strongly 
associated with function and disability; however, muscle mass 
alone may have no or little direct effect on function and dis-
ability [9]. Patients that are weak and have low muscle mass 
may benefit by interventions that address muscle hypertrophy, 
such as high load resistance exercise, while weak patients with 
normal muscle mass may require other strategies. In addition, 
strength training in CKD was not shown to increase muscle 
mass, but could improve muscle strength in six out of eight 
tests and was capable to ameliorate self-rated physical health 
and physical function assessed by short-form 36 [123]. Future 
studies should characterize investigated populations in terms 
of presence of low muscle mass and strength alone or com-
bined, as this distinction may guide the appropriate tailoring 
of the intervention accordingly.

Pharmacological interventions

Treatments for sarcopenia have focused mostly on pro-
moting exercise and improving nutritional intake. How-
ever, recent scientific advances have brought attention to 

some potential pharmacological options that will be briefly 
discussed.

Amino acids supplementation

CKD and ESKD are characterized by a status of abnor-
mal amino acid (AA) metabolism, particularly involving 
branched chain amino acids (BCAA) and keto acids (BCKA) 
[124]. As a consequence, low plasma and cellular levels of 
BCAA and BCKA are common [124, 125]. BCAAs, par-
ticularly leucine, are the most powerful AAs in the stimula-
tion of muscle anabolism and inhibition of catabolism [126]. 
Several studies have shown that leucine supplementation 
improves muscle protein synthesis in older adults [127]. 
Therefore, BCAA supplements were proposed in CKD and 
ESKD patients to improve muscle synthesis and AA plasma 
levels. In addition, since protein restriction is a key factor in 
the conservative management of CKD, essential AA (EAA) 
and keto-acid (KA) supplements including also BCAA and 
BCKA were proposed to maintain or improve nutritional 
status while reducing protein intake as much as possible.

The administration of EAA in malnourished HD 
patients improved appetite, increased albumin and 
plasma AA concentrations, and enhanced muscle strength 
[128–130]. In particular, BCAA supplementation was 
reported to stimulate appetite and to improve albumin 
and anthropometric indices [128]. More recently, the use 
of β-hydroxy-β-methylbutyrate (HMB), a metabolite of 
leucine that has been shown to attenuate muscle loss in 
the elderly [131], has been studied in HD patients but 
there was no apparent benefit of HMB on body composi-
tion [132]. Considering the catabolic effects of HD ses-
sion per se, during which substantial AA losses occur 
triggering muscle catabolism to maintain constant plasma 
AA concentration [133, 134], Deleaval et al. [43], per-
formed a pilot cross-over trial in which BCAA enriched 
dialysis fluids were used to prevent BCAA losses and, 
consequently, protein catabolism. They found that the 
intervention increased plasma concentration of valine, 
isoleucine and leucine, while in the standard dialysate 
session the mass transfer of amino acids was negative 
[43]. Regarding patients with CKD not yet on dialysis, 
nutritional interventions are mainly characterized by a 
reduction in protein intake in order to minimize uremic 
toxicity, avoid malnutrition and delay progression of 
the kidney disease [86]. In this clinical setting, BCKAs 
are mainly used to fix amine groups and to regenerate 
BCAAs, with the advantage of being amino-free [135]. 
The supplementation of very low protein diets (VLPD, 
0.3–0.4 g protein/kg/day) and LPD (0.6 g protein/kg/day) 
with EAA and keto acids is able to maintain a neutral 
nitrogen balance and body composition [135, 136]. To 
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assess the effect of supplemented VLPDs, Garibotto et al. 
[136] performed a cross-over trial in which patients had 
a period of supplemented VLPD and a period of classic 
LPD. They observed that supplemented VLPD was not 
associated with changes in body weight and body com-
position; however, in terms of muscle kinetics, supple-
mented VLPD was able to reduce the net muscle protein 
catabolism compared with the classic LPD.

Blockage of the myostatin and ActRII pathway

Myostatin is a negative regulator of muscle growth via the 
ActRIIB receptor that is increased in inflamed CKD/ESKD 
patients [137], and is currently the most investigated tar-
get for the development of new drugs intended to block 
muscle loss and stimulate muscle hypertrophy. The use of 
a recombinant fusion protein of modified human follista-
tin (a natural myostatin inhibitor), showed an increase in 
muscle mass and strength in animal studies [138], but in 
humans, no effect in muscle strength was observed [139]. 
The use of anti-myostatin peptibodies led to increased 
muscle mass and body weight in animal studies [140], as 
well in humans [141–143]. However, effects on muscle 
strength were absent or inconsistent, reinforcing the idea 
that strength is not directly related only to muscle mass, 
but mainly to the neural system as previously described.

The use of a receptor blockade of both ActRIIA and 
ActRIIB in humans, resulted in increase in muscle mass 
and reduced total fat mass [144], and improvement of 
insulin sensitivity [145]. Effects in muscle strength and 
function were only described in a proof-of-concept study 
with improvement of usual gait speed and 6-minute walk 
distance [146]. In experimental uremia [147], the use of 
anti-myostatin peptibody for four weeks reversed weight 
loss and muscle wasting in mice by decreasing protein 
degradation, increasing protein synthesis and enhanc-
ing IGF-signaling and satellite cell function. They also 
reported a reduction in circulating inflammatory markers. 
Dong et al. [148], showed that in rodents with CKD, the 
inhibition of myostatin using a neutralizing peptibody 
improved muscle fibrosis. Both studies suggest anti-cata-
bolic and anti-inflammatory effects of myostatin inhibitors 
in experimental uremia.

The results from different trials have shown that block-
age of myostatin and ActRII pathways had significant 
effects on muscle hypertrophy; however, they failed to 
demonstrate any significant effect on muscle strength and 
physical function. As discussed above, muscle strength is 
thought to be the most important parameter in the sarco-
penia definition as it is strongly related to disability, hos-
pitalization and mortality. No studies testing these novel 
drugs on the CKD/ESKD population have been reported.

Angiotensin II receptor blockers (ARB)

Angiotensin II overexpression is known to intensify mus-
cle catabolism by inhibiting the mTOR pathway, but also 
to induce protein degradation through the activation of 
nuclear factor kappa B (NF-κB) and p38 mitogen-activated 
protein kinase by reactive oxygen species (ROS) accumula-
tion [149]. Cumulative evidence in animal studies reported 
a protective effect of ARB on skeletal muscle by reduc-
ing muscle fibrosis and improving muscle function [150], 
and a dose dependent enhancement in muscle healing and 
regeneration [151, 152]. The only available study in humans 
had a cross-sectional design and reported that ARB use in 
chronic HD patients was protective, with an independent 
75% decrease in the odds of having muscle weakness as 
assessed by handgrip, when compared to patients who did 
not use it [153]. Considering these positive results of ARBs 
that are common drugs patients with CKD/ESKD, further 
longitudinal and interventional studies are needed to fully 
clarify the role of ARB in the preservation of muscle mass 
and strength in ESKD.

AST‑120

AST-120 is an adsorbent used to inhibit the intestinal 
absorption of indole, p-cresol, and food derived advanced 
glycation end-products [154]. It has been proposed to slow 
CKD progression as assessed by estimated creatinine clear-
ance in mild and moderate CKD [155] and to improve the 
uremic syndrome [156]. Uremic toxins, specially indoxyl 
sulfate have been described as contributors to the chronic 
inflammation present in ESKD, known to induce skeletal 
muscle loss [157]. Available evidence in animal and in vitro 
studies suggest that AST-120 has protective effects on mus-
cle atrophy via the maintenance of mitochondrial function 
and reduction of the oxidative stress [158]. However, there 
are no clinical studies showing such effects.

Ghrelin

Ghrelin, a peptide hormone derived from the gastrointesti-
nal tract that stimulates appetite, increases food intake and 
promotes fat storage, has been reported to enhance oxygen 
utilization in skeletal muscle [159]. In nephrectomized mice, 
the use of acylated ghrelin increased muscle mass and mito-
chondrial content of muscle [160]. Plasma ghrelin levels 
are elevated in patients with CKD/ESKD and correlate with 
fat mass [161]. In a placebo-controlled RCT in malnour-
ished PD patients administration of subcutaneous ghrelin 
enhanced acute food intake [162]. However, the role if any 
of ghrelin as a feasible adjunct pharmacologic therapy in 
patients with PEW/malnutrition, sarcopenia and cachexia 
remains unclear.
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Ursolic acid

Ursolic acid is a plant compound, found in apple peels, 
basil leaves, prunes and cranberries. In animal models it 
has shown beneficial effects in glucose and lipid metabo-
lism [163]. Recently, its effect on skeletal muscle has been 
investigated in animal models of starvation and denervation 
[164]. In these models, ursolic acid reversed muscle atrophy 
by modulating the insulin/IGF-1 signaling. In CKD, a con-
dition with known insulin resistance and IGF-1 deficiency, 
ursolic acid blocked CKD induced muscle atrophy by sup-
pressing myostatin expression, inflammatory responses asso-
ciated with NF-κB activations, and by stimulating protein 
synthesis [165].

Future perspectives and conclusion

Undoubtedly, sarcopenia is an important nutritional distur-
bance present in CKD and ESKD that should be routinely 
screened in clinical practice using one or more of the many 
available methods (Table 2). CKD-related sarcopenia can 
occur early in adult life and may develop rapidly as a con-
sequence of the negative energy-protein balance coming 
from insufficient food intake coupled with increased protein 
catabolism in patients exposed to the uremic milieu and in 
HD-patients it may be further enhanced by catabolic effects 
of the hemodialysis procedure. The prevalence of CKD-
related sarcopenia is higher than that observed in ageing-
related sarcopenia. It is notable that the prevalence of sar-
copenia is higher in HD patients than in non-dialyzed CKD 
or PD patients, and in kidney transplant recipients (Table 3). 
Reliable diagnostic methods using models with specific cut-
offs for muscle mass and strength that could be used for 
operational screening for sarcopenia in CKD are however 
lacking and ought to be developed and tested for valida-
tion. Criteria and methods for the diagnosis of sarcopenia 
should consider the setting (research or clinical practice), the 
group assessed (CKD, HD, PD or kidney transplant recipi-
ents) and periodicity of assessment. Interventions to reverse 
sarcopenia usually include the use of oral energy and protein 
supplementation combined with supervised physical resist-
ance exercise (Table 4). However, RCTs show controversial 
results in reestablishing muscle mass and strength, and in 
ameliorating physical performance, mobility and QoL. Dif-
ferent study designs, length and type of intervention and pri-
mary outcomes make comparisons between studies difficult, 
but, in general, positive findings in ameliorating one or more 
components of sarcopenia (muscle mass, muscle strength or 
physical performance) are observed, with tendency towards 
more positive effects of ameliorating muscle strength than 
interventions designed to increase muscle mass. Pharma-
ceutical interventions aiming at reversing inflammation and 

protein catabolism have shown promising results in terms of 
ameliorating CKD-related sarcopenia in experimental set-
tings but are with some exceptions, such as supplementation 
with amino acids or their keto acid analogues, not routinely 
used in clinical practice. Investigations with intervention 
with CKD-related sarcopenia are scarce and the research 
field is still in its infancy. Moreover, considering the major 
negative impact on this complication on morbidity and mor-
tality as well as quality of life in patients with CKD/ESKD, 
further studies are warranted.
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