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Abstract: Silica dioxide nanoparticles (SiONPs) have been increasingly used in various industries;
however, this has raised concerns regarding their potential toxicity. SiONPs are also a major compo-
nent in the Asian sand dust that causes pulmonary diseases among the general public. Melatonin
exerts some inhibitory effects against lung inflammation. In this study, we explored the therapeutic
properties of melatonin against lung inflammation using an SiONPs-induced lung inflammation
murine model and SiONPs-stimulated H292 cells, human airway epithelial cell line, by focusing on
the involvement of thioredoxin-interacting protein (TXNIP) in the modulation of the MAPKs/AP-1
axis. We induced an inflammatory response by exposing mouse lungs and the H292 cells to SiONPs
and confirmed the anti-inflammatory effect of melatonin. Melatonin inhibited the expression of
various inflammatory mediators, including TNF-α, IL-6, and IL-1β, in SiONPs-exposed mice and
SiONPs-stimulated H292 cells; this inhibition contributed to a decline in inflammatory cell accumu-
lation in the lung tissues. Furthermore, melatonin treatment decreased the expression of MAPKs
and AP-1 by downregulating TXNIP, eventually decreasing the production of SiONPs-induced
inflammatory mediators. Overall, these data suggest that melatonin reduces SiONPs-induced lung
inflammation by downregulating the TXNIP/MAPKs/AP-1 signalling pathway, thereby supporting
the use of melatonin as an effective approach to control SiONPs-induced lung inflammation.

Keywords: melatonin; silica dioxide nanoparticle; lung inflammation; human airway epithelial cell
line; thioredoxin-interacting protein

1. Introduction

Silica dioxide nanoparticles (SiONPs) have been extensively used in biotechnology
owing to the simple production process and ability to modify their shape and size [1]. The
increasing use of SiONPs has raised concerns regarding their potential toxicity in humans.
This is particularly true in an industrial setting where SiONPs can be inhaled and can
be linked to serious health problems, including lung cancer, silicosis, emphysema, and
chronic obstructive pulmonary disease (COPD) [2,3]. Inhaled SiONPs induce significant
pulmonary inflammation, which can result in the activation of the MAPKs [4–7]. These
responses further induce the activation of AP-1, resulting in accelerated inflammatory
processes [8]. Furthermore, SiONPs are a major component in the Asian sand dust that
affects northeast Asian countries, including China, Japan and Korea, especially in the
spring, and are associated with the occurrence of various pulmonary diseases across
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this region [9]. Thus, controlling the respiratory diseases caused by SiONPs is critical to
maintaining human health.

Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of thioredoxin,
is closely involved in the regulation of various inflammatory responses [10]. TXNIP
contributes to the inflammation of the respiratory tract by interacting with the upregulated
MAPKs pathway [11–14]. Recent studies have reported that exposure to SiONPs elevates
the TXNIP expression, activating MAPKs and increasing pulmonary inflammation [15,16].
Therefore, inhibiting TXNIP/MAPKs signalling may be a potential strategy for treating
SiONPs-induced pulmonary inflammation.

Melatonin is primarily released by the pineal gland and is known to exert a wide
range of biological properties, such as anti-inflammatory and antioxidant properties [17–19].
Consequently, melatonin has been shown to exhibit some therapeutic effects on various
respiratory diseases [20,21]. Exogenous melatonin alleviates inflammatory response by
inhibiting MAPK signalling in the respiratory tract of asthmatic mice and attenuates
smoke-induced pulmonary inflammation by inhibiting Erk-Sp1 expression. Furthermore,
the anti-inflammatory effects of melatonin are associated with inhibition of TXNIP, as
established in a cadmium-induced liver injury model [22]. However, the underlying
mechanism of anti-inflammatory effects of melatonin against SiONPs-induced pulmonary
inflammation via TXNIP regulation is not comprehensively understood.

The goals of this study were to explore the anti-inflammatory effect of melatonin on
SiONPs-induced pulmonary inflammation and to elucidate the underlying mechanism of
this hormone by focusing on its effects on TXNIP/MAPKs signalling.

2. Materials and Methods
2.1. SiONPs

The particle size of SiONPs (Sigma-Aldrich, St. Louis, MO, USA) was <5–15 nm. It
was dissolved with phosphate-buffered saline (PBS) and sonicated (VCX-130; Sonics and
Materials) for 3 min before treatment.

2.2. Cell Culture

The human airway epithelial cells (NCI-H292, ATCC) were cultured with RPMI 1640
medium (WELGENE, Gyeongbuk, Korea) added to foetal bovine serum (10%), strepto-
mycin (100 U/mL) and penicillin (100 µg/mL) and were grown in a humidified incubator
maintained at 37 ◦C with 5% CO2. The cells were serum-starved for 1 h before use.

2.3. Real-Time PCR

Cells were seeded into 60 mm dishes (8 × 105 cells/dish) and grown for 24 h and
treated with 50, 100, 200, and 400 µM melatonin for 12 h. The cells were treated with SiONPs
(12.5 µg/mL) for 6 h. Total RNA was separated using the TRIzol reagent (Invitrogen) and
reverse transcribed using a cDNA kit (Qiagen, Hilden, Germany). Information of specific
primers is described in Table 1. Real-time PCR experiment conditions were as follows:
15 min at 95 ◦C, 20 s at 95 ◦C/40 s at 55 ◦C for 40 cycles, and 10 s at 95 ◦C/5 s at 65 ◦C/60 s
at 95 ◦C for the melting curve. The qRT-PCR reaction system was 20 µL: SYBR Premix I
(Biofact, Daejeon, Korea), 10 µL; PCR Forward Primer (10 µM), 1 µL; PCR Reverse Primer
(10 µM), 1 µL; cDNA template, 2 µL; and distilled water, 6 µL. The mRNA expressions of
TNF-α, IL-6, and IL-1β were calculated by the 2−∆∆CT method with the internal reference
as GAPDH.

2.4. Ethics Statement

The Institutional Animal Care and Use Committee at the Chonnam National Univer-
sity approved the protocols used in this animal study (CNU IACUC-YB-2019-63).
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Table 1. Primer sequences for real-time PCR.

Target Genes Forward Primer (5′→3′) Reverse Primer (5′→3′)

TNF-α CAA AGT AGA CCT GCC CAG AC GAC CTC TCT CTA ATC AGC CC
IL-6 ATG CAA TAA CCA CCC CTG AC ATC TGA GGT GCC CAT GCT AC

IL-1β AGC CAG GAC AGT CAG CTC TC ACT TCT TGC CCC CTT TGA AT
GAPDH CAA AAG GGT CAT CAT CTC TG CCT GCT TCA CCA CCT TCT TG

2.5. Preparation of Animals and Experimental Design

Female BALB/c mice (6 weeks old, Samtako Co., Gyeonggido, Korea) were placed
in quarantine for one week and allowed to acclimate. The animals were fed a laboratory
diet and water ad libitum. The mice were randomized into five groups (n = 6 per group);
the (1) normal control (NC), (2) SiONPs (SiONPs only), (3) dexamethasone (DEX, SiONPs
+ 2 mg/kg DEX), (4) Mel 20 (SiONPs + 20 mg/kg melatonin), and (5) Mel 40 (SiONPs +
40 mg/kg melatonin) groups. DEX and melatonin were administered using oral gavage
over two weeks. SiONPs (20 mg/kg in 50 µL of PBS) were intranasally instilled three
times (days 1, 7 and 13) under anaesthesia. The NC group received PBS (50 µL) via the
same route.

2.6. Inflammatory Cell Count in Bronchoalveolar Lavage Fluid (BALF)

Mice were sacrificed 48 h post final SiONPs exposure and were subjected to tra-
cheostomy. The BALF was obtained by infusing the lungs with cold PBS (0.7 mL) two
times, which was subsequently collected using a tracheal cannula. Differential cell counts
in the BALF were determined using a Diff-Quik® reagent (IMEB Inc., San Marcos, CA,
USA) as described by the manufacturer.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

Expression of cytokines, including interleukin (IL)-1β, IL-6, and tumour necrosis
factor-α (TNF-α), in the BALF were quantified using ELISA kits (BD Biosciences, San Jose,
CA, USA).

2.8. Histological Examination and Immunohistochemistry (IHC)

To estimate the degree of inflammation, the lung tissues fixed with paraformaldehyde
(4% v/v) were stained with H&E (Sigma-Aldrich, St. Louis, MO, USA) after going through
a series of procedures. The degree of inflammation was quantified using an image analyser
(IMT i-Solution, Vancouver, BC, Canada). The IHC examinations were performed as
previously described [20]. The anti-AP-1 (ab21981; 1:200; Abcam) and anti-TXNIP (NBP1-
54578; 1:200; Novus Biologicals, Littleton, CO, USA) were used as primary antibodies.

2.9. Western Blot Analysis

Western blot analysis was conducted as previously described [21]. Phospho-ERK1/2
(#9101), total ERK (#9102), phosphor-JNK (#9251), total JNK (#9252), phosphor-p38 (#4631),
total p38 (#9212) and β-actin (#4967) were obtained from Cell Signalling. TXNIP (NBP1-
54578) and AP-1 (ab21981) were purchased from Novus Biologicals and Abcam, respec-
tively. Protein expression was measured by a ChemiDoc system (Bio-Rad, Hercules,
CA, USA).

2.10. Double-Immunofluorescence and Confocal Microscope

Double-immunofluorescence was performed as previously described [23], using anti-
AP-1 (ab21981; 1:200; Abcam) and anti-TXNIP (NBP1-54578; 1:200; Novus Biologicals)
antibodies, and imaging was completed using a Leica TCS SP5 AOBS laser scanning
confocal microscope (Leica Microsystems, Hesse, Germany) under a Leica 63× (N.A. 1.4)
oil objective.
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2.11. siRNA Transfection

Small interfering RNAs (siRNA) against the scrambled siRNA (4390843) control and
TXNIP (4392420) were obtained from Ambion. Each siRNA (20 nM) was transfected into
cells using LipofectamineTM RNAiMAX (Invitrogen, Carlsbad, CA, USA) via the forward
transfection method, as prescribed by the manufacturer. After suppression of endogenous
TXNIP expression, cells were treated with 12.5 µg/mL SiONPs or PBS and harvested after
6 h. To investigate the protein expression, Western blot was performed as mentioned above.

2.12. Statistical Analysis

Data are presented as the means ± standard deviation. All statistical analyses were
performed using GraphPad Prism 7 (San Diego, CA, USA). One-way analysis of variance
(ANOVA) was performed, followed by the Bonferroni multiple comparison test. p < 0.05
was considered significant.

3. Results
3.1. Melatoinin Reduces the Number of Inflammatory Cells of the BALF from
SiONPs-Exposed Mice

Exposure to SiONPs showed markedly higher inflammatory cell counts of BALF
when compared with those in the NC group (Figure 1), with neutrophils and macrophages
exhibiting significant elevation. DEX-treated animals exhibited lesser inflammatory cells
than those in the SiONPs-exposed specimens. Moreover, there was a significant decrease
in the number of inflammatory cells in the melatonin-treated animals compared with those
in the SiONPs-exposed group, as observed in 40 mg/kg of melatonin (Figure 1).
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Figure 1. Melatonin decreased inflammatory cell count in SiONPs-exposed mice. Particularly,
melatonin reduced the elevated neutrophils and macrophages of BALF in SiONPs-exposed mice.
## p < 0.01, vs. the NC; * p < 0.05, ** p < 0.01, vs. the SiONPs.

3.2. Melatonin Decreases Inflammatory Cytokines of the BALF from SiONPs-Exposed Mice

Exposure to SiONPs significantly elevated the TNF-α (119.64 ± 14.9 pg/mL, p < 0.01)
and IL-6 (109.18± 27.5 pg/mL, p < 0.01) levels in BALF in comparison with those in the NC
group (TNF-α: 13.50 ± 5.21 pg/mL, IL-6: 15.64 ± 6.68 pg/mL) (Figure 2a,b, respectively).
However, both the DEX- and melatonin-treated groups exhibited marked declining in the
levels of TNF-α (DEX: 70.07 ± 11.0 pg/mL, p < 0.01; Mel 20: 98.01 ± 13.2 pg/mL, p < 0.05;
Mel 40: 88.57 ± 11.2 pg/mL, p < 0.01) and IL-6 (DEX: 58.49 ± 13.8 pg/mL, p < 0.01; Mel 20:
82.69 ± 8.07 pg/mL, p < 0.05; Mel 40: 74.62 ± 8.13 pg/mL, p < 0.01) in comparison with
those in the SiONPs group (Figure 2a,b, respectively). Additionally, the increased IL-1β
(72.56 ± 10.1 pg/mL) levels in the SiONPs group significantly decreased following treat-
ment with melatonin (Mel 20: 54.81 ± 4.93 pg/mL, p < 0.01; Mel 40: 49.10 ± 3.21 pg/mL,
p < 0.01) (Figure 2c).
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3.3. Melatonin Ameliorates Pathological Changes in the Respiratory Tract of
SiONPs-Exposed Mice

Exposure to SiONPs noticeably increased inflammatory cell accumulation (34.70 ±
6.03%, p < 0.01) in the respiratory tract as compared with that in the NC group (3.37± 1.22%)
(Figure 3). However, the accumulation in these tissues markedly declined in the DEX-
treated mice (15.02 ± 1.04%, p < 0.01) in comparison with that in the SiONPs group.
Melatonin-treated animals also exhibited a notable decrease in inflammatory cell accumula-
tion (Mel 20: 26.73 ± 2.75%, p < 0.05) in comparison with that in the SiONPs group, which
was also evident in the 40 mg/kg melatonin specimens (Mel 40: 21.80 ± 2.59%, p < 0.01).
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Figure 3. Melatonin ameliorated inflammatory responses in the respiratory tract of SiONPs-exposed mice. Lung tissue was
stained with H&E stain to assess airway inflammation (magnification: x200). Degree of inflammation was quantified using
image analyzer (IMT i-Solution). Scale bars = 50 µm. ## p < 0.01, vs. the NC; * p < 0.05, ** p < 0.01, vs. the SiONPs.

3.4. Melatonin Inhibits TXNIP/MAPK/AP-1 Pathway in the Lungs of SiONPs-Exposed Mice

Exposure to SiONPs resulted in a clear increase in TXNIP expression (Figure 4a,b).
However, DEX- and melatonin-treated mice exhibited a notable decline in TXNIP expres-
sion compared with that on SiONPs exposure. Additionally, SiONPs exposure markedly
elevated phosphorylation of ERK, JNK, and p38, which was accompanied with an in-
crease in the AP-1 expression. However, these significantly decreased following melatonin
treatment. These observations were also consistent with those of the TXNIP expression
assays.
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Figure 4. Melatonin suppressed the activation of TXNIP/MAPK/AP-1 pathway in SiONPs-exposed mice. (a) Representative
figure for Western blot, (b) densitometric value. Densitometric expression value of each protein was quantified using
Chemi-Doc (Bio-rad). ## p < 0.01, vs. the NC; * p < 0.05, ** p < 0.01, vs. the SiONPs.

3.5. Melatonin Inhibits the Expression of TXNIP and AP-1 in Respiratory Tract of
SiONPs-Exposed Mice

SiONPs exposure resulted in elevated expression of TXNIP (31.03 ± 4.34%, p < 0.01)
and AP-1 (29.03 ± 5.31%, p < 0.01) in the respiratory tract as compared with that in the
NC group (TXNIP: 5.73 ± 0.51%, AP-1: 4.93 ± 0.49%) (Figure 5a–c). However, DEX-
treated mice exhibited decreased expression of TXNIP (14.02 ± 0.97%, p < 0.01) and AP-1
(15.36 ± 1.52%, p < 0.01) compared with that observed in the SiONPs group; this trend
was also observed for the 40 mg/kg melatonin-treated animals, which exhibited the most
significant decrease in expression of TXNIP (Mel 20: 20.57 ± 2.68%, p < 0.01, Mel 40:
17.13 ± 2.38%, p < 0.01) and AP-1 (Mel 20: 22.40 ± 1.65%, p < 0.01; Mel 40: 19.47 ± 1.66%,
p < 0.01).

3.6. Melatonin Attenuates mRNA Expression of Inflammatory Cytokines in
SiONPs-Stimulated Cells

The TNF-α and IL-6 mRNA expression were markedly higher in the SiONPs-stimulated
cells than in non-stimulated cells (Figure 6a,b, respectively). However, melatonin treatment
reduced this increase in a concentration-dependent manner. Additionally, the elevated
IL-1β mRNA expression in the SiONPs markedly decreased following treatment with
melatonin (Figure 6c).
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Figure 6. Melatonin suppressed the mRNA expression of inflammatory cytokines in SiONPs (12.5 µg/mL)-stimulated
cells as assessed using real-time PCR. (a) TNF-α (b) IL-6, (c) IL-1β (n = 3). ## p < 0.01, vs. non-exposed cells; ** p < 0.01, vs.
SiONPs-stimulated cells.

3.7. Melatonin-Mediated TXNIP Inhibition Reduces the MAPKs Phosphorylation and AP-1
Expression in SiONPs-Stimulated Cells

SiONPs treatment markedly elevated TXNIP expression (Figure 7a–c). However, mela-
tonin treatment suppressed TXNIP expression in SiONPs-stimulated cells when compared
with that in non-stimulated cells, which was accompanied with increases in JNK, ERK, and
p38 MAPK phosphorylation. However, this reduced following the addition of melatonin,
consistent with the TXNIP expression trend (Figure 7a,b). Furthermore, SiONPs treat-
ment noticeably elevated AP-1 expression, which was declined following the melatonin
treatment (Figure 7a–c).

TXNIP or MAPK expression was not affected by the control siRNA, whereas their
expression was downregulated by the TXNIP siRNA (Figure 8a,b). Furthermore, melatonin
and TXNIP siRNA together demonstrated an even more pronounced reduction in TXNIP
expression and the MAPKs phosphorylation in SiONPs-stimulated cells than TXNIP siRNA
treatment alone.
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cells; * p < 0.05, ** p < 0.01, vs. SiONPs-stimulated cells.



Antioxidants 2021, 10, 1765 9 of 12Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 12 
 

 

Figure 8. Melatonin suppressed inflammatory signalling in SiONPs-stimulated cells via TXNIP downregulation. (a) Rep-

resentative figure for Western blot, (b) densitometric value. Densitometric expression value of each protein was quantified 

using Chemi-Doc (Bio-rad) (n = 3). ## p < 0.01 vs. scrambled siRNA-transfected cells; * p < 0.05, ** p < 0.01 vs. SiONPs-

stimulated cells; † p < 0.05, †† p < 0.01 vs. TXNIP siRNA-transfected cells stimulated by SiONPs. 

4. Discussion 

SiONPs have various industrial applications owing to their many advantages, but 

their increasing use has proven detrimental to the health of workers dealing with them 

[2,3]. Furthermore, SiONPs are a major constituent of Asian sand dust; thus, they are the 

underlying cause of increasing susceptibility to bacteria or viral infections in populations 

exposed to Asian sand dust [9]. In recent studies, SiONPs were shown to induce changes 

in the immune function of exposed cell; in particular, exposure to these particles has been 

linked to excessive inflammation in the respiratory tract [4,6,7,24]. Conversely, melatonin 

has exhibited protective effects against asthma and COPD owing to its pharmacological 

properties [17,20,21,25]. Based on literature, we investigated the activity of melatonin on 

SiONPs-induced pulmonary inflammation using both experimental animal models and 

cell lines. In this study, melatonin effectively attenuated SiONPs-induced pulmonary in-

flammation and this anti-inflammatory effect was linked to the downregulation of the 

TXNIP/MAPK/AP-1 pathway. 

Excessive inflammatory responses result in the development and exacerbation of 

lung injuries due to the production of inflammatory cytokines [26,27]. SiONPs increase 

inflammatory cell infiltration and cytokine expression levels by activating inflammatory 

signalling, resulting in lung injury [7,16]. Therefore, a reduction in the inflammatory re-

sponses induced by SiONPs may offer a potential therapeutic strategy for preventing and 

treating SiONPs-related lung damage. The therapeutic effects of melatonin against inflam-

matory responses have been reported by several experimental studies, which suggest that 

melatonin is effective in preventing lung damage associated with enhanced inflammatory 

responses [20,21,28–30]. Several studies have shown that melatonin reduces inflammatory 

mediators produced in response to various stimuli including radiation, carbon tetrachlo-

ride, and allergens, thereby preventing lung injury [28,29,31]. Moreover, melatonin treat-

ment alleviates the pulmonary inflammation associated with cigarette smoke-induced 

COPD by suppressing MAPK phosphorylation [21]. In this study, SiONPs induced the 

inhibition of several inflammatory mediators as previously reported [15,16]. However, 

treatment with melatonin reduced the inflammatory index, including those of inflamma-

tory cells and cytokines, in both the SiONPs-exposed mice and SiONPs-stimulated cells. 

These changes were accompanied by histological evidence of a decrease in inflammatory 
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Representative figure for Western blot, (b) densitometric value. Densitometric expression value of each protein was
quantified using Chemi-Doc (Bio-rad) (n = 3). ## p < 0.01 vs. scrambled siRNA-transfected cells; * p < 0.05, ** p < 0.01 vs.
SiONPs-stimulated cells; † p < 0.05, †† p < 0.01 vs. TXNIP siRNA-transfected cells stimulated by SiONPs.

4. Discussion

SiONPs have various industrial applications owing to their many advantages, but
their increasing use has proven detrimental to the health of workers dealing with them [2,3].
Furthermore, SiONPs are a major constituent of Asian sand dust; thus, they are the
underlying cause of increasing susceptibility to bacteria or viral infections in populations
exposed to Asian sand dust [9]. In recent studies, SiONPs were shown to induce changes
in the immune function of exposed cell; in particular, exposure to these particles has been
linked to excessive inflammation in the respiratory tract [4,6,7,24]. Conversely, melatonin
has exhibited protective effects against asthma and COPD owing to its pharmacological
properties [17,20,21,25]. Based on literature, we investigated the activity of melatonin
on SiONPs-induced pulmonary inflammation using both experimental animal models
and cell lines. In this study, melatonin effectively attenuated SiONPs-induced pulmonary
inflammation and this anti-inflammatory effect was linked to the downregulation of the
TXNIP/MAPK/AP-1 pathway.

Excessive inflammatory responses result in the development and exacerbation of
lung injuries due to the production of inflammatory cytokines [26,27]. SiONPs increase
inflammatory cell infiltration and cytokine expression levels by activating inflammatory
signalling, resulting in lung injury [7,16]. Therefore, a reduction in the inflammatory re-
sponses induced by SiONPs may offer a potential therapeutic strategy for preventing and
treating SiONPs-related lung damage. The therapeutic effects of melatonin against inflam-
matory responses have been reported by several experimental studies, which suggest that
melatonin is effective in preventing lung damage associated with enhanced inflammatory
responses [20,21,28–30]. Several studies have shown that melatonin reduces inflammatory
mediators produced in response to various stimuli including radiation, carbon tetrachloride,
and allergens, thereby preventing lung injury [28,29,31]. Moreover, melatonin treatment
alleviates the pulmonary inflammation associated with cigarette smoke-induced COPD
by suppressing MAPK phosphorylation [21]. In this study, SiONPs induced the inhibition
of several inflammatory mediators as previously reported [15,16]. However, treatment
with melatonin reduced the inflammatory index, including those of inflammatory cells and
cytokines, in both the SiONPs-exposed mice and SiONPs-stimulated cells. These changes
were accompanied by histological evidence of a decrease in inflammatory cell infiltration in
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the respiratory tract. Overall, these results indicate that melatonin can act as a therapeutic
agent and prevent lung damage caused by exposure to SiONPs.

TXNIP has been implicated in the development of many biological reactions, including
inflammatory responses [10]. TXNIP overexpression in response to various stimuli induces
the phosphorylation of various MAPKs including p38 and JNK, whereas silencing of TXNIP
suppresses the activation of MAPK signalling [32,33]. This increase in MAPK phospho-
rylation increases AP-1 activation, leading to an increase in inflammatory mediators and
consequently making TXNIP an important regulator of the inflammatory responses [34,35].
Exposure to SiONPs induces airway inflammation in experimental animals, and these
increases were associated with an elevation in TXNIP expression levels [15]. However,
silibinin, an antioxidant and anti-inflammatory agent, suppressed the pulmonary inflam-
mation caused by SiONP exposure by inhibiting TXNIP expression [16]. Thus, TXNIP
inhibitors may effectively suppress the lung inflammation associated with SiONP exposure.
In this study, exposure to SiONPs caused pulmonary inflammation and activated the
TXNIP/MAPK/AP-1 pathway in mice. However, in both the experimental animal models
and H292 cell lines, melatonin reduced the activation of TXNIP/MAPK/AP1 signalling
associated with SiONP exposure, resulting in a decline in the production of inflammatory
mediators and the eventual reduction of lung inflammation, thus indicating that melatonin
acts as a TXNIP inhibitor and can effectively inhibit the lung inflammation associated
with SiONPs.

5. Conclusions

Our data show that melatonin suppresses the SiONP-induced inflammatory responses
in both the mouse lung tissues and H292 cells. These effects were closely associated
with the downregulation of the TXNIP/MAPK/AP-1 pathway, allowing us to establish
that melatonin effectively inhibits SiONP-induced lung inflammation by downregulating
TXNIP expression.
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