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Purpose: To evaluate measurement precision and to compare the Pentacam AXL

(Oculus Optikgeräte, Wetzlar, German), a new optical biometer based on Scheimpflug

imaging and partial coherence interferometry (PCI) with that of the OA-2000 biometer

(Tomey, Nagoya, Japan), which combines swept-source optical coherence tomography

(SS-OCT) and Placido-disk topography.

Methods: Axial length (AL), central corneal thickness (CCT), anterior chamber depth

(ACD), aqueous depth (AQD), mean keratometry (Km), astigmatism vectors J0, J45,

and corneal diameter (CD) were measured in triplicate by two technical operators.

Within-subject standard deviation (Sw), repeatability and reproducibility (2.77 Sw),

coefficient of variation (CoV), and intraclass correlation coefficient (ICC) were used to

assess the Pentacam AXL intra-observer repeatability and inter-observer reproducibility.

Paired t-test and Bland-Altman plots were used to determine the agreement between

the two biometers.

Results: The new optical biometer had high intra-observer repeatability [all parameters

evaluated had low CoV (<0.71%) and high ICC (>0.88)]. Inter-observer reproducibility

was also excellent, with high ICC (>0.95) and low CoV (<0.52%). The 95% LoA between

the new biometer and OA-2000 were insignificant for most of the parameters evaluated,

especially for AL. However, the measurement agreement was moderate for CCT.

Conclusions: Intra-observer repeatability and inter-observer reproducibility were

excellent for all parameters evaluated using the new optical biometer based on
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Scheimpflug imaging and PCI. There was a high agreement between the two

devices and hence could be clinically interchangeable for the measurement of most

ocular parameters.

Keywords: Scheimpflug imaging, swept source optical coherence tomography, repeatability, reproducibility,

agreement

INTRODUCTION

Accurate measurements of ocular biometric parameters are
crucial for both intraocular lens (IOL) power calculation and
refractive surgery (1–3). Over the last 20 years, optical biometry
has become the gold standard to measure parameters such as
axial length (AL) and chamber depth (ACD) (4–6). Recently,
a new optical biometer (Pentacam AXL, Oculus, Germany),
which combines Scheimpflug imaging and partial coherence
interferometry (PCI) has been introduced into the market. AL
measurements using the new biometer is based on PCI, whereas
measurement of anterior segment parameters, such as corneal
curvature and thickness, relies on a rotating Scheimpflug high-
definition camera. Although the Pentacam (without PCI) has
been widely used in ophthalmology, the measurement accuracy
of the new optical biometer has yet to be determined. Recent
studies have demonstrated that the OA-2000 (Tomey, Japan), an
optical biometer that combines swept-source optical coherence
tomography (SS-OCT) with Placido disc topography, offers
good repeatability and reproducibility for measuring biometrical
parameters. In addition, OA-2000 has been demonstrated to have
a high agreement with other biometers in the market for most
of the ocular parameters evaluated (7, 8). However, only a few
studies have comprehensively investigated the precision of this
new biometer based on the Bland-Altman criterion (9). Our
initial aim of this study was to prospectively evaluate the intra-
observer repeatability and inter-observer reproducibility of the
measurements obtained using the Pentacam AXL. Our second
aim was to compare the measurement agreement between these
two optical biometers.

MATERIALS AND METHODS

Subjects
This prospective observational study included 133 consecutive
subjects from the Eye Hospital of Wenzhou Medical University,
Wenzhou, China. Healthy subjects and patients with cataracts
were enrolled in this study. All procedures adhered to
the Declaration of Helsinki, and the study protocol was
reviewed and approved by the Research Review Board
of Wenzhou Medical University. The inclusion criteria
were as follows: age ≥18 years, good fixation, patients had
not worn rigid and soft contact lenses for at least 4 and
2 weeks, respectively. Subjects had intraocular pressure
between 10 and 21 mmHg, absence of eye diseases except
for refractive errors and cataracts. Subject exclusion criteria
were as follows: a history of ocular surgery or trauma,
active ocular pathology, and systemic diseases affecting
the eyes.

Instruments
The Pentacam AXL (Oculus, Germany) (software version
1.20r134)combines Scheimpflug imaging and PCI. It uses a
blue light-emitting diode (LED) with a wavelength of 475 nm
as the light source and a rotating Scheimpflug camera (180
degrees) that provides a 3-dimensional scan of the eye. It
captures 25 images to obtain 138, 000 true elevation points
from the front and back of the cornea surface (10, 11). From
these data, curvature and thickness of the cornea are obtained.
For this study, several corneal power values obtained from the
Scheimpflug camera and mean keratometry (K) calculated using
the 1.3375 keratometric index were considered. In addition, the
Scheimpflug camera is able to measure the anterior chamber
depth (ACD, from epithelium to the lens), aqueous depth (AQD,
from the endothelium to the lens) and CD (corneal diameter).
AL is measured using PCI which has a laser diode that emits
780 nm near-infrared short-coherent light (coherent length of
approximately 160 µm).

The OA-2000 (software version 3C) is based on the
principles of SS-OCT and Placido disk topography. The
topographer has nine rings with 256 points projecting
onto the cornea in a 5.5mm zone. It is used to
measure corneal parameters, such as K over a 2.5mm
and 3.0mm diameter (the latter was investigated in
this study). The SS-OCT was designed for measuring
AL, central corneal thickness (CCT), ACD and lens
thickness. The SS-OCT light source is a swept-source
laser set at a wavelength of 1,060 nm. It can effectively
reduce scattering and attenuation from the penetrating
tissue (8, 12).

Procedures
For each subject, only one randomly selected eye was
measured. Measurements were performed randomly using the
two biometers. Each eye was evaluated on the same day using the
two biometers. All measurements were performed between 10:00
am to 17:00 pm in order to reduce the effect of diurnal variation,
and all measurements were acquired within a time period of
30min (13, 14).

The subject was asked to sit in front of the biometer,
keep both eyes open and focus on a target. The subject
was asked to blink before each scan was performed. Two
experienced technicians scanned each eye three times
using both the biometers. The order of both biometers
and experienced technicians were randomized. Scans with
a quality specification of “OK” (for the Pentacam AXL)
and scans without a red mark (for the OA-2000) were
considered for analysis. For intra-observer repeatability, all
eyes were scanned using each biometer in triplicate by the
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TABLE 1 | Intraobserver repeatability outcomes for biometric measurements obtained using the new Scheimpflug imager in combination with partial coherence

interferometry biometer.

Parameter Observer Mean ± SD Sw TRT CoV (%) ICC (95% CI)

AL (mm) 1st 24.37 ± 1.49 0.04 0.11 0.16 0.999 (0.999–0.999)

2nd 24.38 ± 1.49 0.04 0.10 0.15 0.999 (0.999–1.000)

CCT (µm) 1st 535.35 ± 29.68 3.73 10.33 0.70 0.984 (0.979–0.988)

2nd 535.04 ± 29.56 3.49 9.67 0.65 0.986 (0.982–0.990)

AQD (mm) 1st 2.87 ± 0.45 0.02 0.05 0.68 0.998 (0.997–0.999)

2nd 2.86 ± 0.45 0.02 0.05 0.61 0.999 (0.998–0.999)

ACD (mm) 1st 3.40 ± 0.45 0.02 0.06 0.62 0.998 (0.997–0.998)

2nd 3.40 ± 0.45 0.02 0.05 0.56 0.998 (0.998–0.999)

Km (D) 1st 43.70 ± 1.55 0.10 0.28 0.23 0.996 (0.994–0.997)

2nd 43.70 ± 1.56 0.10 0.27 0.22 0.996 (0.995–0.997)

J0 (D) 1st −0.26 ± 0.42 0.06 0.17 −23.16 0.979 (0.973–0.985)

2nd −0.25 ± 0.42 0.06 0.17 −23.97 0.979 (0.972–0.985)

J45 (D) 1st 0.00 ± 0.21 0.07 0.19 −1,417.77 0.896 (0.864–0.922)

2nd 0.00 ± 0.20 0.07 0.19 1,490.90 0.894 (0.862–0.921)

CD (mm) 1st 11.53 ± 0.39 0.06 0.18 0.56 0.974 (0.965–0.980)

2nd 11.54 ± 0.38 0.06 0.17 0.55 0.974 (0.965–0.980)

AL, axial length; CCT, central corneal thickness; AQD, aqueous depth; ACD, anterior chamber depth; Km, mean keratometry; CD, corneal diameter; SD, standard deviation;

Sw , within-subject standard deviation; TRT, test-retest repeatability (2.77 Sw ); CoV, within-subject coefficient of variation; ICC, intraclass correlation coefficient.

TABLE 2 | Interobserver reproducibility outcomes for biometric measurements obtained using the new Scheimpflug imager in combination with partial coherence

interferometry biometer.

Parameter Mean ± SD Sw TRT CoV (%) ICC (95% CI)

AL (mm) 24.37 ± 1.49 0.02 0.06 0.09 1.000 (1.000–1.000)

CCT (µm) 535.19 ± 29.56 2.14 5.92 0.40 0.995 (0.993–0.996)

AQD (mm) 2.86 ± 0.45 0.01 0.04 0.51 0.999 (0.998–0.999)

ACD (mm) 3.40 ± 0.45 0.02 0.04 0.46 0.999 (0.998–0.999)

Km (D) 43.70 ± 1.55 0.06 0.17 0.14 0.999 (0.998–0.999)

J0 (D) −0.26 ± 0.42 0.04 0.12 - 0.989 (0.985–0.992)

J45 (D) 0.00 ± 0.21 0.04 0.12 - 0.957 (0.940–0.969)

CD (mm) 11.54 ± 0.39 0.04 0.12 0.38 0.987 (0.982–0.991)

AL, axial length; CCT, central corneal thickness; AQD, aqueous depth; ACD, anterior chamber depth; Km, mean keratometry; CD, corneal diameter; SD, standard deviation;

Sw , within-subject standard deviation; TRT, test-retest repeatability (2.77 Sw ); CoV, within-subject coefficient of variation; ICC, intraclass correlation coefficient.

same technician. For inter-observer reproducibility, the same
measurements were repeated using the same new biometer by
the other technician.

AL, ACD, AQD, CCT, mean K over 3.0mm diameter and
corneal diameter (CD) were recorded. Astigmatism was analyzed
using the J0 and J45 vectors and calculated according to the
following formulas (15).

J0 = − (C/2)∗ cos(2∗A) (1)

J45 = − (C/2)∗ sin
(

2∗A
)

(2)

(C= cylinder, A= axis).

Statistical Analysis
Statistical analysis was performed using SPSS (version 21.0,
IBM Corporation, USA), and results were presented as mean
± standard deviation (SD). A p < 0.05 was considered

statistically significant. The Kolmogorov-Smirnov test was used
to evaluate normal distribution of data (P > 0.05). To evaluate
intra-observer repeatability and inter-observer reproducibility
of the Pentacam AXL, the within-subject SD (Sw), test-
retest repeatability (TRT), coefficients of variation (CoV) and
intraclass correlation coefficient (ICC) were calculated. TRT,
defined as 2.77Sw, shows the interval within which 95%
of the differences between the measurements are expected
to lie (16). The lower the TRT value and CoV, the better
is the repeatability. ICC values ranged between 0 and 1.
ICC values >0.75 denotes good repeatability, while values
>0.9 suggests high repeatability (17). Agreement between the
Pentacam AXL and OA-2000 were evaluated using paired t-
test and Bland-Altman plots with 95% limits of agreement
(LoA), which was defined as the mean difference ± 1.96 SD of
difference (18).
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TABLE 3 | The mean difference, paired T-test, and 95% limits of agreement (LoA)

for differences between the new Scheimpflug imager in combination with partial

coherence interferometry biometer and the swept-source optical coherence

tomography-based biometer.

Device Pairings Mean ± SD P Value 95% LoA

AL (mm) −0.03 ± 0.03 < 0.001 −0.09 to 0.02

CCT (µm) 10.80 ± 5.41 < 0.001 0.18 to 21.41

AQD (mm) 0.01 ± 0.04 < 0.001 −0.07 to 0.10

ACD (mm) 0.03 ± 0.04 < 0.001 −0.06 to 0.11

Km (D) −0.19 ± 0.14 < 0.001 −0.48 to 0.09

J0 (D) 0.01 ± 0.10 0.242 −0.18 to 0.20

J45 (D) −0.01 ± 0.08 0.302 −0.17 to 0.15

CD (mm) −0.20 ± 0.15 < 0.001 −0.50 to 0.09

AL, axial length; CCT, central corneal thickness; AQD, aqueous depth; ACD, anterior

chamber depth; Km, mean keratometry; CD, corneal diameter; SD, standard deviation.

RESULTS

This study enrolled 133 eyes of 133 subjects (71 females),
including 69 healthy subjects and 64 patients with cataracts, with
a mean age of 42.95± 19.95 years (range 23–63 years).

Intra-observer Repeatability
The repeatability outcomes of measurements using the biometer
based on Scheimpflug imaging and PCI are shown in Table 1.
For the first observer, the intra-observer repeatability of the new
biometer was high for all parameters, i.e., the CoV of AL, CCT,
AQD, ACD, Km (3.0mm) and CDwere lower than 0.71%. For J0,
J45, and Km, the TRT was no >0.3 D. The TRT was lower than
10.5µm for CCT and lower than 0.2mm for AL, AQD, ACD,
and CD. The ICC for all parameters was higher than 0.88. In
addition, the intra-observer repeatability was high for the second
observer and was even better compared to the first observer. The
CoV for all parameters were lower than 0.65%. Taking all the
ocular parameters into account, the AL measurements had the
best outcomes for both observers.

Inter-observer Reproducibility
The inter-observer reproducibility outcomes of the
Scheimpflug/PCI based-biometer are shown in Table 2. The CoV
of the ocular parameters were lower than 0.52%. In addition,
the TRT of J0 and J45 were lower than 0.12D. The ICC for all
the ocular parameters were higher than 0.9. These measurement
outcomes demonstrated that inter-observer reproducibility for
the above-mentioned parameters was high.

Measurement Agreements Between the
Two Biometers
The measurement agreement of the new biometer and the
biometer with the combined SS-OCT and Placido-disk
topography were excellent (Table 3). There were no statistically
significant differences in J0 and J45 measurements (P > 0.05).
For the other parameters, the differences were statistically
significant (P < 0.001), but not clinically significant. The 95%
LoA between the two biometers were narrow for most of the

FIGURE 1 | Bland-Altman plots showing agreement between the new

Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based

biometer for measuring axial length. Solid lines represent the bias between the

two devices and dotted lines represent the 95% confidence interval for

the difference.

FIGURE 2 | Bland-Altman plots showing agreement between the new

Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based

biometer for measuring central corneal thickness. Solid lines represent the bias

between the two devices and dotted lines represent the 95% confidence

interval for the difference.

parameters, especially for AL, and were moderate for CCT (95%
LoA, 0.18 to 21.41µm). Bland-Altman plots for each parameter
is illustrated in Figures 1–5 and Supplementary Figures 1–3.

DISCUSSION

The new ocular biometer, Pentacam AXL is considered an
upgraded version of the Pentacam HR, which is based on
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FIGURE 3 | Bland-Altman plots showing the agreement between the new

Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based

biometer for measuring aqueous depth. Solid lines represent the bias between

the two devices and dotted lines represent the 95% confidence interval for the

difference.

FIGURE 4 | Bland-Altman plots showing the agreement between the new

Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based

biometer for measuring anterior chamber depth. Solid lines represent the bias

between the two devices and dotted lines represent the 95% confidence

interval for the difference.

Scheimpflug imaging and is commonly used to measure anterior
segment parameters. With the corresponding optical biometer,
PCI was included for AL measurement. However, only a few
studies have investigated its measurement precision. In this
study, all measurements using the Pentacam AXL demonstrated
high precision. With respect to intra-observer repeatability for
AL measurements, the ICC of the two observers were both 0.999
and was similar to the study performed by Saadettin et al. (19)

FIGURE 5 | Bland-Altman plots showing the agreement between the new

Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based

biometer for measuring mean keratometry at 3.0mm. Solid lines represent the

bias between the two devices and dotted lines represent the 95% confidence

interval for the difference.

(ICC = 0.995) and Güler et al. (20) (CoV = 0.11%, ICC =

0.998). To our knowledge, the current study was the first to
assess interobserver reproducibility of this new biometer. Our
results showed high reproducibility for AL measurements (CoV
= 0.09%, ICC=1.000), and was similar to the study using another
optical biometer performed by Yu et al. (21) (CoV = 0.09%,
ICC = 1.000). Agreement between PCI and SS-OCT for AL
was high, with a mean difference of only −0.03 ± 0.03mm,
which was not clinically significant. In addition, the 95% LoA
was narrow (from −0.09 to 0.02mm). The mean difference
between PCI and SS-OCT in the study performed by Shajari
et al. (5) was −0.026mm with an average LoA of 0.11mm.
Srivannaboonet et. al. (22) compared SS-OCT (IOLMaster 700)
and PCI (IOLMaster 500) for AL measurements of cataract
eyes and observed high agreement (95% LoA, from −0.03
to 0.06mm) with no statistically significant differences. Yang
et al. (6) demonstrated that the SS-OCT biometer (IOLMaster
700) had a slightly longer AL compared to the PCI biometer
(IOLMaster 500), with a mean difference of 0.060± 0.144 mm.

Excellent intra-observer CCT repeatability was observed in
our study, with a CoV of 0.65% and ICC of 0.986. These results
were similar to those reported by Paola et al. (23) (ICC = 0.982)
and Crawford et al. (24) (CoV = 0.7%, ICC = 0.979). Previous
studies had demonstrated good repeatability of Scheimpflug
imaging (22, 25–29). Viswanathan et al. (30) evaluated the inter-
observer reproducibility of the rotating Scheimpflug camera in
normal and keratoconic eyes and observed excellent results for
CCT measurement (ICC = 0.988). We demonstrated a similar
ICC (0.986) and a lower CoV (0.65%) in our study using the
Scheimpflug/PCI based biometer. Compared to measurements
using the rotating Scheimpflug imager (Pentacam HR) with
that of another optical biometer based on SS-OCT (IOLMaster

Frontiers in Medicine | www.frontiersin.org 5 February 2022 | Volume 8 | Article 814519

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Ocular Biometry of Pentacam AXL vs. OA-2000

700), moderate CCT agreement was observed (31). The mean
difference was 10.99 ± 7.57µm and the 95% LoA was between
−3.85 and 25.83µm. Pelin et al. (32) demonstrated that the mean
difference was −5.05 ±7.67µm and the 95% LoA was between
9.8 and −19.9µm. These results showed moderate agreement
between Scheimpflug imaging and SS-OCT and were similar to
our results.

We found that the optical biometer with the Scheimpflug
camera had good intra-observer repeatability (TRT < 0.07mm,
ICC > 0.997) and inter-observer reproducibility (TRT <

0.04mm, ICC > 0.998) for ACD measurements, and were
in good agreement with results from previous studies. Wang
et al. (2) assessed the intra-observer repeatability (TRT <

0.08mm, ICC > 0.986) and inter-observer reproducibility
(TRT = 0.06mm, ICC = 0.992) of the rotating Scheimpflug
camera (Pentacam HR). They had excellent results for
ACD measurements. The high precision of the dual-
Scheimpflug-Placido (Galilei, Ziemer, Port, Switzerland)
was also demonstrated by Mehmet et al. (33) and Altiparmak
et al. (34). High agreement of ACD measurements between the
biometer based on Scheimpflug imaging and the biometer based
on SS-OCT was demonstrated in our study (95% LoA between
−0.07 and 0.10mm, mean difference: 0.03 ± 0.04mm). These
results are similar to previous studies comparing the Pentacam
AXL and the IOLMaster 700 (5, 19).

Scheimpflug imaging has been demonstrated to have high
precision in terms of repeatability and reproducibility for corneal
curvature measurements (10, 30, 35, 36). Our data also showed
good intra-observer repeatability (CoV < 0.24%, ICC > 0.995)
and inter-observer reproducibility (CoV < 0.14%, ICC > 0.998)
for Km measurements using the Pentacam AXL, and were
similar to those reported by Ruiz-Mesa et al. (3). Mean K
measurements showed a narrow range for 95% LoA (from−0.48
to 0.09 D), demonstrating good agreement between Scheimpflug
imaging and Placido disk topography. A similar outcome was
also demonstrated in our previous study (37) which compared
Placido disk topographer (OphthaTOP, Hummel AG, Germany)
and rotating Scheimpflug camera (Pentacam HR). The 95% LoA
was between −0.45 and 0.09 D, and the mean difference was
−0.18 ± 0.14 D. With respect to J0 and J45 measurements
using the Scheimpflug based biometer, excellent intra-observer
repeatability (ICCs: J0 > 0.972, J45 > 0.862, TRT: J0 = 0.17
D, J45 = 0.19 D) and inter-observer reproducibility (ICCs: J0
> 0.972, J45 > 0.862, TRT: J0 = 0.12 D, J45 = 0.12 D) were
observed and were similar to those of previous studies (30, 38).
Good agreement with the optical biometer and the Placido disk
were observed with no significant differences and were similar to
previous studies (P: J0= 0.059, J45= 0.133) (95% LoA: J0:−0.17
to 0.23 D, J45:−0.18 to 0.14 D) (37).

With regards to CD measurements, the Pentacam AXL
had a high precision and moderate agreement with that of
the SS-OCT biometer (the mean difference was −0.20 ±

0.15mm, 95% LoA, −0.50 to 0.09mm). The high precision
was similar to those published by Lattimore et al. and
Shajari et al. (39). However, Salouti et al. (40) showed poor
agreement for CD measurements between the SS-OCT
optical biometer (IOLMaster 700) and the same rotating

Scheimpflug camera (95% LoA, −0.17 and 0.78mm). These
results suggest that the accuracy of CD measurements
depends on the method that each device uses to define the
limbus and the quality of the anterior segment images that
are generated.

There were several limitations to this study. We only assessed
the repeatability, reproducibility, and agreement between normal
and cataract eyes and did not evaluate keratoconus, glaucomas, or
post-refractive surgery patients. Additional studies are required
to assess the repeatability, reproducibility, and agreement in
patients with the above-mentioned conditions. Furthermore, we
did not evaluate lens thickness measurements, as they require
pupil dilation using the optical biometer based on Scheimpflug
imaging and PCI.

In summary, the new optical biometer that utilized
Scheimpflug imaging in combination with PCI provides
repeatable and reproducible measurements of all
parameters evaluated in this study. The measurement
agreement between the two devices was high for most
parameters. This suggests that the two biometers
could be clinically interchangeable for the majority
of measurements.
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Supplementary Figure 1 | Bland-Altman plots showing the agreement between

the new Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based biometer

for measuring J0. Solid lines represent the bias between the two devices and

dotted lines represent the 95% confidence interval for the difference.

Supplementary Figure 2 | Bland-Altman plots showing the agreement between

the new Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based biometer

for measuring J45. Solid lines represent the bias between the two devices and

dotted lines represent the 95% confidence interval for the difference.

Supplementary Figure 3 | Bland-Altman plots showing the agreement between

the new Scheimpflug imager in combination with partial coherence interferometry

biometer and the swept-source optical coherence tomography-based biometer

for measuring corneal diameter. Solid lines represent the bias between the two

devices and dotted lines represent the 95% confidence interval for the di?erence.
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