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Abstract

Motivation: Despite being essential for numerous clinical and research applications, high-resolution human leukocyte antigen
(HLA) typing remains challenging and laboratory tests are also time-consuming and labour intensive. With next-generation
sequencing data becoming widely accessible, on-demand in silico HLA typing offers an economical and efficient alternative.
Results: In this study we evaluate the HLA typing accuracy and efficiency of five computational HLA typing methods by compar-
ing their predictions against a curated set of>1000 published polymerase chain reaction-derived HLA genotypes on three differ-
ent data sets (whole genome sequencing, whole exome sequencing and transcriptomic sequencing data). The highest accuracy
at clinically relevant resolution (four digits) we observe is 81% on RNAseq data by PHLAT and 99% accuracy by OPTITYPE when
limited to Class I genes only. We also observed variability between the tools for resource consumption, with runtime ranging
from an average of 5 h (HLAMINER) to 7 min (SEQ2HLA) and memory from 12.8 GB (HLA-VBSEQ) to 0.46 GB (HLAMINER) per sample.
While a minimal coverage is required, other factors also determine prediction accuracy and the results between tools do
not correlate well. Therefore, by combining tools, there is the potential to develop a highly accurate ensemble method that
is able to deliver fast, economical HLA typing from existing sequencing data.
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Introduction

Widely used in both clinical and research contexts, accurate
identification of a person’s human leukocyte antigen (HLA) al-
lele is necessary for many applications. However, owing to the
inherent highly polymorphic nature of the HLA system, and the
lack of a known complete sequence of this chromosome 6p21.3
region (see Figure 1A), HLA typing remains challenging [1–3].
As such, better HLA typing approaches overcoming these
issues and offering rapid, inexpensive and high-throughput
genotyping are needed. Correspondingly, with the advent of

next-generation sequencing (NGS), computational tools capable
of genotyping HLA using either whole genome (WGS), whole
exome (WES) or transcriptomic sequencing (RNAseq) data as in-
put demonstrate immense potential for satisfying these needs
and becoming the new more practical gold standard approach
for HLA typing.

Being the human major histocompatibility complex, the HLA
system encodes cell surface residing glycoproteins involved in
self and foreign protein recognition and immunity [4]. In par-
ticular, the HLA Class I (HLA-A, -B, -C) and Class II (HLA-DP, -DQ,
-DR) molecules, respectively, present endogenous antigens to
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CD8þ cytotoxic T cells for cell destruction, and exogenous anti-
gens to CD4þhelper T cells for antibody production [5, 6]. Each
of these genomic loci can have a number of different alleles
comprising multiple specific variants observed in the genomic
sequencing (see Figure 1B).

The nomenclature for describing HLA alleles uses a hierarch-
ical numbering system differentiating allele groups (two-digit
accuracy) from specific alleles (four-digit accuracy). Increasing
the resolution, the exonic variants (six digits) that are not asso-
ciated with allele groups are distinguished from the intronic
variants (eight digits). The nomenclature also allows a tag to be
added to flag alleles with observed low (L) or questionable (Q)
expression. However, as noted by Marsh et al. [7], it has become
increasingly difficult to consistently link sequence-derived al-
lele names to serology-derived results. These difficulties are in
part technological, e.g. synonymous mutations without ser-
ology effect, and in part owing to the observation that some
newly defined antigens do not comfortably fit within any
known serological grouping. Specifically, the HLA-DRB1*03, *11,
*13, *14 and *08 family of alleles exhibit a continuum of allelic di-
versity rather than five discrete sub-families. A person’s HLA
genotype is formed by using the nomenclature to specify the al-
leles from both chromosomes at a given HLA locus.

HLA typing has been widely used for reducing the risk of
organ rejection and graft-versus-host disease when matching
donors and recipients of solid organ and allogenic haemato-
poietic stem cell transplants [1, 8]. Specific HLA variants are
associated with both autoimmune (e.g. type 1 diabetes, rheuma-
toid arthritis) and infectious (e.g. HIV, Hepatitis C) diseases [9],
and adverse drug reactions such as Stevens–Johnson syndrome
and toxic epidermal necrolysis [10, 11]. HLA typing is used for
aiding the diagnosis as well as drug prescription choices of
these conditions.

The current laboratory-based approaches used for HLA typ-
ing evolved from serology-based techniques that rely on the

binding of unknown HLA antigens to known antibodies. They
enable low, two-digit antigen resolution typing [12, 13]. With
the development of the polymerase chain reaction (PCR), the
HLA genes—namely, exons 2 and 3 of HLA Class 1, and exon 2 of
HLA Class 2 genes [9, 14]—could be amplified and quantified via
sequence-specific oligonucleotide probes (SSOPs) or primers [15,
16] or PCR amplified followed by Sanger sequencing, with the
resulting sequence compared against the HLA reference (SBT).
SBT is currently considered the gold standard. However, while
these molecular genotyping approaches enable better reso-
lution typing than their serological counterparts, they are still
expensive, labour intensive and time-consuming methods that
do not meet the high-throughput requirements of clinical and
research contexts [14, 17, 18].

Flow cytometry and loop-mediated isothermal amplication
(LAMP) are recent HLA typing laboratory methods that have
been developed but they lack resolution and accuracy, respect-
ively. Specifically, LAMP, being a primer-based approach, can-
not accurately detect rare or novel alleles [19]. SNP arrays, being
primer-based approaches, suffer the same limitation, and as
such, computational methods using array data to predict HLA
such as SNP2HLA [20] also have poor accuracy.

The recently developed (2012–2015) computational programs
that type HLA from NGS data overcome many of these chal-
lenges. For patients who have already had a genomic test, HLA
typing by re-analysis of their NGS data would avoid time and
costs associated with performing a separate laboratory test.
Furthermore, sequencing-based approaches can type HLA al-
leles on each homologous chromosome (chromosome-specific
alleles) such that heterozygous alleles can be detected, and
polymorphisms outside the traditionally amplified PCR regions
can be detected to allow higher resolution typing [9, 21].
However, these approaches are also limited by read length and
coverage insufficiencies, and the highly polymorphic nature of
the HLA system [1, 8, 18]. To overcome these challenges, NGS-

Figure 1. Genomic location and nomenclature. (A) Genomic location of the HLA Class I and II genes. (B) Nomenclature of HLA Alleles. (C) Tools grouped by category as

discussed in the text. Underlined names denote tools designed for RNA and DNA data.
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based in silico HLA typing methods use a variety of different
techniques that fall into two broad categories (see Figure 1C),
alignment- or assembly-based methods. Alignment-based
methods align sequencing reads against reference HLA se-
quences (genomic, exomic or transcriptomic) and predict true
alleles based on probabilistic models. De novo assembly-based
approaches assemble reads into contigs and align these to the
reference sequences of known HLA alleles.

Erlich et al. [22] first described the use of NGS data (Roche
454) to perform HLA typing. Their method saw reads aligned
(using the SSAHA2 aligner) against the International
ImMunoGene Tics (IMGT)-HLA database [23] followed by a qual-
ity filter step to remove reads with high alignment error rate.
Genotypes were determined based on the resulting coverage of
the HLA alleles in the database. Wang et al. [24] developed a
similar approach using BLASTN as the aligner with a more strin-
gent filter criterion (e.g. valid distance between read pairs) but
also extended the approach by de novo assembling contigs
(EZ_ASSEMBLER) and comparing the resulting sequences with the
known reference to detect novel alleles.

Both studies did not release the source code but the code is
available for the similar alignment-filter-coverage approaches
from OMIXON SOFTWARE [25], which allows fewer mismatches and
insertions, and HLASSIGN [14], which introduces different filter-
ing criteria. The most recently published alignment-based
methods, POLYSOLVER [26] and HLA-VBSEQ [27], both adopt a
Bayesian classification approach for determining the HLA
genotype.

Developing the de novo assembly idea further, HLAMINER [16]
uses the read-assembly tool TASR to generate a k-mer table of
the IMGT/HLA database, and uses these to identify seed reads
for the subsequent assembly. The method is reported to work
on DNA and RNA data. The resulting contigs are blasted against
the IMGT/HLA reference and genotypes are chosen based on
their score and probability for being observed given the contigs.
They also released an alignment-only option, however found it
to be inferior in their analysis.

A similar k-mer pre-filter approach was adopted by
ATHLATES [18]; however, they first extract the exonic se-
quences from the IMGT/HLA database and choose the most
probable HLA allele as the one with the minimal Hamming dis-
tance between the contig and each individual HLA allele. The
most recent approach using assembly is HLAREPORTER [28], which
first maps the reads to the IMGT/HLA reference sequence and
then assembles the mapped reads into contigs. They then adopt
the same scoring and HLA allele-calling as HLAMINER.

The first HLA typing method specifically developed for RNA
was SEQ2HLA [17]. The method maps reads to the MGT/HLA se-
quences and then in a greedy approach determines the allele
with the highest number of mapped reads for each locus indi-
vidually. After discarding the selected alleles and already as-
signed reads, second alleles are selected accordingly. The most
recent RNA-optimized predictor, HLAFOREST [29], uses a tree-
based top-down greedy algorithm to use the implicit hierarchy
of HLA nomenclature. The algorithm generates for each read a
tree denoting all the HLA alleles this read could be aligned to.
Trees are collectively weighted by taking all reads into account
and pruned to iteratively remove and re-weight leaf nodes until
only the most likely leaf node remains.

Like HLAMINER, PHLAT [1] was developed to use DNA or RNA
data and builds on Erlich et al.’s alignment-filter-coverage ap-
proach; however, it then applies a likelihood model, which com-
bines the probability of unevenly distributed HLA alleles in the
human population with the likelihood of the observed coverage

of the different alleles at each locus. OPTITYPE [15] also predicts
from DNA or RNA data; however, it leverages information from
the intronic regions to make its calls. As 94.6% of HLA se-
quences contained in the IMGT database lack parts of their
exonic or intronic sequences, they had to reconstruct the refer-
ence by imputing from the other partially sequenced alleles
with small phylogenetic distance. The HLA allele is then deter-
mined by solving the optimization problem of finding the best
combination of up to six major and six minor HLA alleles, which
maximizes the number of reads mapped to this selection, under
the biological constraints that at least one and at most two al-
leles are selected per locus. The method currently has only HLA
Class I reference information available.

In this study, we compare these 12 HLA typing computa-
tional programs with the aim of evaluating their prediction per-
formance, and potentially identifying an optimal HLA typing
approach. To achieve this, we first compile a novel literature
curated test set of samples with publicly available PCR-verified
HLA genotypes (gold standard). For these samples we then
source WGS, WES and RNAseq and compare the predictions
made by the NGS tools against the HLA genotype in the gold
standard. We evaluate the tools’ accuracy and efficiency on all
data sets noting that some tools were specifically designed for
DNA or RNA (only OPTITYPE, PHLAT and HLAMINER are designed to
handle both) or Class I genes (OPTITYPE).

Methods
Gold standard

To enable comparison of the prediction performance of recently
developed NGS-based HLA typing tools, we created a literature
curated data set consisting of >1300 samples from five pub-
lished studies whose HLA genotypes have been determined
using PCR-based methods (see Table 1). We collated the geno-
types from all sources and annotated any discrepancies in the
HLA alleles that were reported for each locus. We marked these
disagreements as ‘conflicts’ and created a duplicate row in our
data set for each different allele that was reported for each sam-
ple. For the evaluation we treated a prediction as correct if it
corresponded to any of the reported alleles for the locus in the
sample (see Results section).

Furthermore, in our gold standard data set, we also recorded
whether these primary literature sources typed all or only some
of the loci. Unless stated otherwise in Table 1, results for loci
that are missing for some samples are likely owing to failed pri-
mer hybridization and we did not include those sample loci in
the comparison. Moreover, we also made note of which samples
were used to train and develop each tool (see Figure 2C).

Fastq file preparation

From the 2706 samples in the 1000 Genomes phase 3 data set,
we downloaded the WGS and WES alignment files from the
1147 samples with HLA typing in our gold standard table
(European Nucleotide Archive ERP006600).

For 154 and 155 samples, no WGS and WES alignment data,
respectively, was available. Our final data sets included 993 and
992 WGS and WES, respectively. We also downloaded from the
465 lymphoblastoid cell lines RNAseq data [30] (ERP001942) the
373 alignment files for which HLA typing information was avail-
able. For all three data sets, we extracted the aligned reads from
the bam file using SAMTOOLS/1.3 view for the region 6:29677984-
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33485635, combined them with the unaligned reads, and used
BEDTOOLS/2.25.0 bamtofastq to convert them to fastq files.

Evaluation metric
Success rate is calculated over all alleles and all samples as

Success ¼ #RightAlleles
#RightAllelesþ #WrongAlleles

where ‘Right Allele’ means the HLA allele called by the software
tool matches any of the PCR-determined alleles provided by one
or more literature sources for a specific locus. Typing ambiguity
is a well-established phenomenon [31]. Three of the investi-
gated programs hence suggest more than one allele for loci
where typing confidence is low. We therefore calculate the
‘Approximate Success’ by taking into account the top 5 predic-
tions for HLA-VBSEQ, and the top 3 predictions (per chromo-
some) for HLAMINER and SEQ2HLA and evaluate a call as
approximately accurate if the correct solution is among this list.

The accuracy is also called over all samples but takes the
number of uncalled alleles into consideration with

Accuracy ¼ #RightAlleles
#RightAllelesþWrongAlleles þNAAlleles

Similar to ‘Approximate Success’, ‘Approximate Accuracy’
again is calculated over the top 5 and 3 predictions for HLA-
VBSEQ and HLAMINER, respectively.

Program execution notes

As listed in Table 2, not all published tools could be included in
the comparison. This is because, despite seeking advice from

the developers, we were unable to run several tools (ATHLATES,
HLAFOREST, HLAREPORTER, HLASSIGN). We were able to directly exe-
cute HLA-VBSEQ, OPTITYPE, PHLAT and SEQ2HLA and updated
HLAMINER’s source code to support multi-sample experiments by
enabling the output to be redirected into a sample-specific
location.

Results
The concordance of HLA typing by the current gold
standard methods is low

Our gold standard data set comprises PCR-based HLA typing
data from several different studies that used samples from the
1000 Genomes study. Each study used different variations of
PCR-based HLA typing methods, so that we could assess the
agreement of typing methods between studies that used the
same samples.

In Figure 2A, we summarize the samples in common be-
tween the different studies. Gourraud et al. [8] and Erlich et al.
[22] have 1017 and 12 distinct samples, respectively. A further
33 samples in total were HLA typed in Bai et al. [1], Liu et al. [18]
and Warren et al. [16], but not in any other studies. Of the 263
samples (205þ 15þ 7þ 36) that were HLA typed in more than
one study, only 84% of these samples (n¼ 221) had HLA type re-
sults that agreed between the studies demonstrating the dis-
crepancies that arise between different PCR-based methods. For
the 42 samples where HLA type results disagreed between at
least two studies, we investigated the concordance of HLA typ-
ing results between the three studies with the most samples in
common (Figure 2B).

Most concordance can be seen between Gourraud et al. [8]
and de Bakker et al. [32] likely owing to the underlying

Table 1. PCR-based method used in the gold standard data set

Data set PCR method Sample numbers

De Bakker et al. [32] PCR-SSOP amplification followed by visualization hybridization patterns via autoradiography 229
Erlich et al. [22] SO hybridization and exon sequencing using the Roche 454 GS FLX Titanium platform 12
Warren et al. [16] PCR amplicons cloned and sequenced using an ABI 3730XL instrument (Class I only) 16
Liu et al. [18] PCR amplification followed by Sanger sequencing of the exons (SBT) 13
Bai et al. [1] PCR amplification followed by Sanger sequencing of the exons (SBT) (HLA-A and -B loci only) 5
Gourraud et al. [8] PCR amplification followed by Sanger sequencing of the exons (SBT) 1233

Figure 2. Gold standard. (A) Samples in common between different studies. The image does not show the 33 samples from Bai et al. (5), Liu et al. (13) and Warren et al.

(16), as only three samples from Liu et al. intersect with the other studies. (B) Agreement in HLA typing of 42 samples where there were discordant results between at

least two studies. (C) Total number of samples with HLA typing information and tested in this study, as well as the number of these samples used by the different pre-

diction tools for development. Y-axis on square root scale.
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methodology being similar, i.e. de Bakker et al. [32] used PCR-
SSOP amplification followed by visualizing hybridization pat-
terns via autoradiography, and the more recent method by
Gourraud et al. [8] used PCR amplification followed by Sanger
sequencing of the exons (SBT). Erlich et al. [22], on the other
hand, omitted the PCR amplification step and combined results
from SSO hybridization with exon sequencing from the Roche
454 GS FLX Titanium platform.

This is somewhat surprising as Lane et al. [33] compare the
HLA status derived from SSOP against clonally amplified DNA,
using Roche 454 technology for 993 samples from newborns
with maternally reported African American ancestry and found
a concordance of 92.3%. However, it is consistent with Gourley
et al. [34], who reported typing discrepancies between 3.9% and
6.7% for HLA-A and B, respectively, based on SSOP typing of
1983 samples. The discrepancy we observed in our gold stand-
ard data set may hence reflect inaccuracy of the laboratory
method as well as inter-laboratory variability. Because there is
an underlying ambiguity, we include all observed genotypes in

the gold standard table and assess the computational tool
against the union.

PHLAT has the highest accuracy

We compare the runnable programs (see Methods) on the fastq
files extracted from the HLA region of the 1000 Genomes align-
ment files and compare the tools’ predictions against the gold
standard table as described in the ‘Methods’ section. The accur-
acy for the four-digit resolution prediction is listed in Table 3
(WGS), with more detailed tables (two digits, Class I) listed in
the Supplementary Material (Supplementary Table S1–S3).

As shown in Figure 3, the overall highest accuracy (81%) is
achieved by PHLAT on the RNAseq data set. For WES, HLA-
VBSEQ performs the best (77%) when the correct solution in the
top 5 predictions is accepted. When evaluating only the top so-
lution, PHLAT performs the best with 73%. For WGS, the best
performance is achieved by HLA-VBSEQ both for the approxi-
mate (66%) and exact (52%) results. In our test, HLAMINER consist-
ently performs poorly, particularly using the alignment-based
workflow. OPTITYPE only predicts HLA Class I genotypes; how-
ever, it is the only tool in the test that predicts 99% (four digits)
of Class I genotypes correctly. The next best performance on
this subset was by PHLAT with 96% (four digits). We see similar
results when the analysis is limited to the 37 samples that had
a single genotype for every HLA locus (see Supplementary
Figures S2 and S3).

Coverage is not influencing performance

Major et al. noted that phase 1 of the 1000 Genomes data was
unsuitable for HLA typing, as the coverage was low. As shown
in Supplementary Figure S1, phase 3 also has low coverage with
only 2-fold coverage (Standard Error (ste) ¼ 0.05), compared with
WES with 17-fold coverage (ste¼ 0.22) and RNA 27-fold coverage
(ste¼ 0.36). We therefore investigated the claim by Major et al.
that coverage has a direct influence on accuracy. As shown in
Figure 4A, there is only a weak Pearson correlation between

Table 3. Accuracy table NGS data for Class Iþ II

Data set (Samples) Tool Accuracy (Success) Approximate accuracy (Success) Samples failed

WGS optitypeþ 35% (71%) 6
(993) hlavbseq 52% (52%) 66% (66%) 0

hlaminer assembly 17% (36%) 23% (49%) 19
hlaminer alignment 15% (26%) 20% (35%) 0
phlat 38% (46%) 0
seq2hla* 7% (12%) 9% (32%) 0

WES optitypeþ 49% (98%) 1
(992) hlavbseq 68% (68%) 77% (77%) 0

hlaminer assembly 43% (49%) 53% (61%) 0
hlaminer alignment 26% (27%) 42% (43%) 0
phlat 73% (73%) 0
seq2hla* 60% (61%) 71% (71%) 0

RNA optitypeþ 50% (99%) 0
(373) hlavbseq* 67% (67%) 80% (80%) 0

hlaminer assembly 52% (61%) 61% (71%) 0
hlaminer alignment 20% (20%) 30% (30%) 0
phlat 81% (81%) 0
seq2hla 79% (79%) 81% (81%) 0

HLA typing results for four-digit resolution on 1000 Genomes Project samples. Bold highlights the best performance in the category.

‘*’ labels tools that were not designed to handle DNA or RNA data, respectively.

þOPTITYPE predicts Class I only, hence can only achieve an accuracy of 50%.

Please see Supplementary Tables S1–S3 for Class I comparison.

Figure 3. Accuracy and success rate for each tool for the three different data sets

and two different resolutions (two and four digits).
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accuracy and coverage, except for SEQ2HLA on WGS data
(Correlation Coefficient r¼ 0.76). More generally, Figure 4B
shows that the accuracy of the tools on the same sample are
only weakly correlated (RNA mean¼ 0.17, ste¼ 0.02; WES mean-
¼ 0.23, ste¼ 0.02; WGS mean¼ 0.37, ste¼ 0.02), indicating that
there are other factors influencing accuracy, which affect the
tools differently.

SEQ2HLA is the most performant

In this section, we discuss the resource consumption as re-
corded on a LINUX cluster of 64 Intel Haswell 10-core processors
with 25 MB cache and 8 TB of global shared memory. Figure 5
visualizes the average runtime per tool and data set broken
down by task.SEQ2HLA is the fastest program, with an average
runtime of 65 s per sample (ste¼ 1.7 s) on WES, compared with

1 h 28 min per sample (ste¼ 27 s) by OPTITYPE on the same data.
HLAMINER alignment does not use any parallelization strategies
for alignment (BWA) nor typing and hence uses 5 h per sample
(ste¼ 403.6 s) on RNAseq data compared with 7 min by SEQ2HLA
(ste¼ 18.7 s). With the highest accuracy on RNAseq data, PHLAT
requires on average 15 min (ste¼ 19.9 s) per sample.

Figure 6 visualizes the average memory consumption per
tool. HLAMINER assembly has the lowest memory consumption
with 0.3 GB (ste¼ 0.003) on WES, compared with 5.7 GB
(ste¼ 0.03) by PHLAT. HLA-VBSEQ has the largest consumption
of memory on RNA data with 12.8 GB (ste¼ 0.65) compared with
HLAMINER assembly with 0.46 GB (ste¼ 0.007). PHLAT required on
average 5.8 GB (ste¼ 0.0002) per sample.

Overall, SEQ2HLA is the most performant method with con-
sistently the fastest runtime while simultaneously being among
the three tools consuming the least amount of memory.

Figure 4. Association between coverage and accuracy. (A) Class I þ II accuracy versus the average coverage over the HLA region (6:29677984-33485635) as mapped by

RAZERS3 [35]. Note while OPTITYPE only predicts Class I loci, the plot shows some samples reaching>50% owing to these samples lacking a PCR-determined Class II geno-

type. (B) Correlation of the prediction accuracy for each sample between the different tools as well as the read coverage in this sample.

Figure 5. Runtime of the different tools showing the breakdown of different

tasks. Y-axis on square root scale.

Figure 6. Memory consumption of the different tools. Y-axis on square root

scale.
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Discussion and conclusion

In this article, we have evaluated publicly available computa-
tional tools for HLA typing from sequencing data for their accur-
acy and resource consumption on WGS, WES and RNAseq data.
The majority of the published tools (7 of 12) could not be
included in the comparison because the software was not exe-
cutable in our hands, they depended on commercial compo-
nents, imposed sample restrictions or were not made available.
Of the remaining five tools, none delivered the high prediction
accuracy claimed in the respective papers.

OPTITYPE performed closest to the reported accuracy with
99% for four-digit resolution for RNAseq Class I loci (four-digit
accuracy on WGS was 71% and WES 98%), see Supplementary
Tables S1–S3. Although OPTITYPE may have benefitted by seeing
more of the test data than other tools (21%; see Figure 2C), the
high accuracy of this method is more likely owing to their pur-
posely constructed reference genome that uses a broader region
of exonic and intronic sequence than the smaller PCR-based ref-
erence regions in the IMGT/HLA database.

Unfortunately, as OPTITYPE can only type HLA Class I geno-
types, its clinical application may be limited. The authors claim
that ‘it can be easily adapted to predict genotypes for loci other
than HLA-I such as HLA-II’; however, as there are fewer known
alleles for Class II compared with Class I (3743 versus 10,730),
there may be insufficient diversity captured yet to construct an
equally high performing reference sequence for typing Class II
genotypes with OPTITYPE.

Class Iþ II predictions were most accurately made by PHLAT
with 81% accuracy on four digits. PHLAT is also the second fast-
est tool with on average 4.8 min per sample (ste¼ 7.6 s) over all
data sets but requires the second most memory with on average
5.7 GB per sample (ste¼ 0.01). The edge over other approaches
may arise from incorporating the diversity of the locus within
the human population as a prior in determining the alleles.

Among the approaches that report multiple solutions if
ambiguities cannot be resolved, HLA-VBSEQ performs best for
WGS and WES, while SEQ2HLA performs best on RNAseq data,
the respective datatypes they were designed for. These
approaches are best suited to clinical applications where it is
useful to rule out a specific detrimental genotype, rather than
clinical scenarios, such as transplantation, where the patients’
exact HLA genotype needs to be determined.

On the requirement of data quality, we find that while the
phase 3 WGS coverage of 2X is too low to produce reliable pre-
dictions (best four-digit accuracy was 66% by HLA-VBSEQ), where
there is sufficient coverage, performance between tools was in-
consistent, highlighting that other factors inherent in the meth-
ods themselves impact performance.

We conclude that the maximum prediction accuracy of 86%
for Class Iþ II may not be sufficient for clinical application; how-
ever, there is scope to improve the performance through an en-
semble approach. Specifically, the higher performance from
OPTITYPE and PHLAT makes an approach attractive that har-
nesses the alternative assemblies in the new human reference
build, hg38, and weights them according to the observed HLA al-
lele frequency. This would enable construction of larger alleles
that are anchored in the wider genomic context, as well as pos-
sible imputation of areas of low coverage owing to pseudogenes
or other technical challenges in NGS. Furthermore, a recent
study demonstrated that a large fraction of the alleles in the
IMGT/HLA database are limited to a single population or indi-
vidual [36]. Combining the genomic information from large-

scale WGS studies will likely see a shift from allele to variant-
based definitions of HLA genotypes.

In summary, as improvement in accuracy appears feasible, we
expect that in the future, computational tools will be able to deliver
fast economical HLA prediction from existing sequencing data.

Key Points

• On-demand in silico HLA genotyping offers an economical
and efficient alternative to serology-based pathology tests.

• This article compares computational HLA typing
methods on their accuracy and resource consumption
based on >1000 samples with known HLA genotype.

• The highest accuracy for clinically relevant resolution
(four digits) and scope (Class Iþ II) we observe is 81%.

• The fastest performance we observe was an average
of 7 min per sample and the lowest memory consump-
tion was on average 0.46 GB, however not by the same
method.

• Clinical applications likely require higher accuracy,
which may be achieved by an ensemble approach,
such as using the alternative assemblies in the new
human reference build and weighting them according
to the observed HLA allele frequency.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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