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Abstract

Decision making at a cellular level determines different fates for isogenic cells. However, it is not yet clear how rational
decisions are encoded in the genome, how they are transmitted to their offspring, and whether they evolve and become
optimized throughout generations. In this paper, we use a game theoretic approach to explain how rational decisions are
made in the presence of cooperators and competitors. Our results suggest the existence of an internal switch that operates
as a biased coin. The biased coin is, in fact, a biochemical bistable network of interacting genes that can flip to one of its
stable states in response to different environmental stimuli. We present a framework to describe how the positions of
attractors in such a gene regulatory network correspond to the behavior of a rational player in a competing environment.
We evaluate our model by considering lysis/lysogeny decision making of bacteriophage lambda in E. coli.
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Introduction

How do organisms adapt in order to survive in ever-changing

environments? In this process, one important factor is mutation

that affects the survival of organisms through proper genotypic

changes. In a classical view, natural selection chooses the best-fit

phenotype in the environment, and the next generation inherits

the genotype associated with it. In a dynamic environment,

genotype correction can be thought of an organism’s strategy to

survive. The fact that evolution occurs in an environment

containing competing organisms, each playing its own optimized

strategies, further complicates the picture.

In terms of time, biological evolution is a process that stabilizes

after several trial and errors. However, some environmental

fluctuations happen so quickly that there is not enough time for the

organism to adapt itself through appropriate mutations. Organ-

isms may face challenges caused by fluctuations in extracellular

conditions. Early studies focused on the relationship between these

environmental fluctuations and genetic diversities [1–4]. Other

studies have shown that phenotypic variation exists, not as a

consequence of underlying heritable genetic variation, but as an

independent way of adapting to an ever-changing environment

[5–9]. They discovered that cells with the same genotype can play

different strategies and exhibit different phenotypes even when

they are living in an identical environment.

From an extracellular point of view, phenotype variability as a

risk-reducing strategy has been modeled by evolutionary game

theory [10–16]. In this model, individuals with the same genotype

compete for a longer life and more descendants by using various

strategies. These strategies are interpreted as being different

phenotypes. The fitness of an individual depends on the benefits

and costs accrued by that individual in the presence of others. The

pattern of phenotypic variations, which cannot be invaded by any

alternative phenotypes, is described and predicted using the

evolutionarily stable strategy (ESS) [10]. In ESS, the ratio of

different phenotypes is considered as a mixed strategy which does

not include changes at the level of the genotype. This concept has

been successfully applied to explain why bacterial RNA-phage has

different frequencies of Phi6 and PhiH2 phenotypes [11]. It has

been shown that the fitness of phenotypes in RNA-phage

generates a payoff matrix which is similar to the payoff matrix

of the prisoner’s dilemma problem. Furthermore, evolutionary

game theory has provides an appropriate framework to learn

important evolutionary phenomena such as altruistic behavior

[12,13], the evolution of sex ratio [14], pathogen-host interaction

[15], and the rate and quantity of ATP production in different

pathways of ATP synthesis in yeast [16].

From an intracellular point of view, there exist several

biochemical reactions underlying phenotypic variation. The study

of these intracellular functions is associated with quantitative

genetic analysis such as gene regulatory networks [17,18]. Gene

regulatory networks play an important role in controlling the

cellular behavior in varying environments. The structure and
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features of gene regulatory networks are evolved as a result of

adaptation to fluctuating environment [19].

A regulatory network of genes with positive and negative

feedback loops creates a potential landscape with different

attractor states and bifurcation points [20]. Moreover, it explains

reshaping of the landscape based on alterations in network

parameters. In the 1940s, Waddington provided a basis to explain

how the cells of an organism evolve differently during embryonic

development [21]. He introduced the term epigenetic landscape
and portrayed it as a marble rolling down a mountain with

different valleys that eventually comes to rest at the lowest point

which represents the ultimate fate of the cells. The valleys of the

landscape represent stable attractor states while the other less

stable states represent transient states of the early embryonic or

progenitor cells [20]. The location and the shape of the attractor

states define the natural probabilities of different biological

decisions. It is not entirely clear how a qualitative picture of a

landscape can be quantified and how the structure of the

landscape is encoded in the genome.

We present a framework that combines the cooperative and

competitive decision making of a living organism with its

underlying intracellular gene regulatory network (see Figure 1).

In this framework, game theoretic methods are applied to model

the strategies of various living organisms. We show that the natural

probabilities of organisms’ decisions are fine-tuned to increase

their chance of survival. Then, we argue that the location and the

shape of the attractors in the Waddington landscape define the

natural probabilities of different biological organisms, while the

location and shape of attractors are characterized by the structure

of the gene regulatory network. Altogether, we propose a

framework that describes quantitatively how a gene regulatory

network directs a cell to behave in a manner that is similar to that

of a rational player in a game. This implies that the probability

distribution of a rational decision, if we model a living organism as

a cooperative and competitive decision maker, matches the

probability distribution over stable states of its underlying gene

regulatory network.

Our framework is supported by experimental data from one of

the well-studied biological cases of phenotypic variation, the

infection of E. coli with bacteriophage lambda. After E. coli is

infected by bacteriophage lambda, the virus chooses between

lysogenic or lytic pathways [22–24]. In the lysogenic mode, the

virus’s genome is inserted into the bacterial genome and is

replicated along with the bacterial genome; viral particles are not

produced. In the lytic pathway, the viral genome is replicated

independently of the bacterial genome, viral particles are

produced within the bacterial cell, the membrane of the host cell

is lysed and the particles are released into the environment. Hence

they can resume the infection cycle in other bacterial cells.

The decision between lysogenic and lytic pathways contains a

trade-off between safe maintenance of the viral genome within the

bacterial host genome and increased bacteriophages production.

Similar counter-intuitive situations exist where individuals sacrifice

themselves and cooperate to win the overall game [25]. At the

molecular level, the bacteriophage lambda gene regulatory

network acts like a switch with two attractor states. This bistable

network is the same as a biased coin that is falling on either side

with different probabilities according to the environmental

conditions. We demonstrate how the gene regulatory network

directs phages to behave in a manner very comparable to what we

expect from a rational player in a game.

Description of the Model

Representing living organisms as cooperative and competitive

agents, game theory provides an elegant mathematical model to

describe the behavior of a rational player. Consider an individual

that makes a decision by selecting an action from a set of all

possible actions A. The strategy of the individual can be seen as a

probability distribution over all possible actions of the finite set A.

In other words, the strategy of the individual can be defined by a

Figure 1. The proposed framework. The framework that links the game theoretic perspective of decision making in a living organism and
Waddington’s perspective of the underlying gene sequence.
doi:10.1371/journal.pone.0103569.g001
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vector s : A?½0, 1�, where s(a) shows the probability of action a
and

P
a [ A s(a)~1. The strategy is pure if s(a) has only values 0

or 1. It is mixed if s(a) accepts all values in the interval [0, 1]. The

utility of an individual represents how efficient its behavior is with

respect to the environment. In general, each individual’s utility

depends on the state of the environment and strategies of all other

individuals in the game. Therefore, the utility of individual j is

usually represented as a function uj : AN|E?R where N is the

set of size n of all individuals and E is the set of all possible

environmental states. In this paper, we consider a situation where

the effects of other strategies are implicit, and assume the utility of

an individual only depends on the environmental state, i.e., uj(e)

represents the utility of individual j when the state of the

environment is e [ E.

As a consequence, the utility of an action a [ A depends on the

state of the environment. However, an individual only detects

internal signals through its biochemical network and thus predicts

the environmental state. Let I be the set of all possible internal

states and i [ I be an instance of it. Assume E and I are two

random variables defining the environmental state and internal

state respectively. An individual detects internal state i and infers

the environmental state by determining posterior probabilities

f (E~eDI~i), for each e [ E. To summarize the system dynamics,

we express it in the following iterative steps. First, the environ-

mental state e affects each individual’s internal state. Second, each

individual infers the environmental state based on its internal

signals. Third, each individual estimates the expected utility of

each action a based on its internal state. Fourth, each individual

chooses its mixed strategy based on the expected utility of each

action. At last, all individuals’ strategies determine the future

environmental state. It is worth mentioning that while individuals’

strategies affect the environmental state, we do not aim to model

these effects in this paper.

From an intracellular point of view, the gene regulatory network

is responsible for determining an organism’s behavior. We

represent the gene regulatory network G as a set of m vertices

V~fv1, v2, � � � , vmg and a set of weights W where wi,j is the

effect of gene vi on gene vj . A positive value for wi,j means vi

initiates the expression of vj and a negative value for wi,j means vi

inhibits the expression of vj . Every gene regulatory network

characterizes a dynamical system which can be represented by a

set of differential equations [26,27]. Let DG be the set of all

attractors of the dynamical system of gene regulatory network G. A

dynamical system in good conditions ends up in one of its attractor

states as time goes to infinity and each attractor state induces a

specific action. In this model, the action of a cell deterministically

depends on its initial conditions. However, finding the exact initial

conditions of a cell in a noisy environment is impractical.

Therefore, we assign different probabilities to different attractor

states by considering stochastic initial states. In particular, a

probability distribution q : DG?½0, 1� is assigned to a dynamical

system to describe the state of the system as times goes by. For

every d [ DG the value q(d) shows the probability that a system

with a random starting point ends up in attractor state d.

Results

Let us consider an organism which receives internal signals and

selects between all its possible actions. The probability distribution

s will be the strategy of a rational player in this situation. We

demonstrate that for every internal, signal the weights of edges in

the gene regulatory network are changed such that the probability

distribution q of the corresponding dynamical system is almost the

same as the mixed strategy s of the corresponding game.

Gene regulatory network of the lysis/lysogeny decision
After the E. coli has been infected with bacteriophage lambda, a

decision is made between either the death of the host (lysis) or viral

dormancy (lysogeny) [28,29]. Multiple internal and environmental

signals arising during the decision making process affect the

biochemical network and consequently, the fate of phages. These

signals include the number of infecting phages, the metabolic state

of the bacterium, the position of the infecting phages on the

bacterium surface, and the bacterium size [22–24,30–32]. To

model the decision making process of bacteriophage lambda, some

parameters are more prominent in the final state of bacteriophage.

The number of phages infecting a bacterium (multiplicity of

infection; MOI) has long been known to affect the final decision of

the bacteriophage [22,30–32]. In addition, recent results represent

the volume of the infected bacterium as an important parameter in

the decision-making process [23,24]. Recent results also show the

relation between the concentration of phages in the host bacterium

and the phage’s final fate [23,24].

From intracellular perspective, the decision making of bacte-

riophage lambda is linked to the competitive gene expression of cI
and Cro (see Figure 2). The regulatory circuit chooses between

two outcomes including cI and Cro genes. The expression of the

cI gene will lead to a lysogeny decision, and Cro expression is

followed by lysis [30–34]. These two genes are about 100
nucleotides far apart in the genome, and the area between them

consists of the promoter of Cro (PR), the promoter of cI (PRM),

and three operator sites OR1, OR2, and OR3. The operator sites

OR1 and OR2 are located in PR, and operator site OR3 is located

in PRM [35] (see Figure 2). Dimer cI2 has a strong binding affinity

to OR1. Dimer Cro2 acts contrarily with the highest binding

affinity to OR3. Binding of cI2 to OR1 and OR2 inhibits PR (down

regulating Cro) and has a positive effect on PRM (auto-activating),

while binding of Cro2 to the operator sites has a negative effect on

the expression of the two genes.

Rational decision making perspective
After the infection of E. coli by bacteriophage lambda, a

decision is made between lysis and lysogeny. A rational decision

infers the environmental state (the average MOI), based on

internal signals and increases the probability of lysogeny in a

higher than expected average MOI. The host bacterium MOI,

size, and concentration as internal signals define the phage fate.

We calculate the probability distribution of estimated average

MOI in different situations and describe the effect of host

bacterium MOI, size and the concentration on it. Since the

probability of each action, s(a), highly depends on estimated

average MOI, a higher estimated average MOI results in a higher

probability of lysogeny.

Let f (E~lDIL~m) be the probability that the average MOI
equals l, given host bacterium size L and host bacterium MOI m.

In other words, we are infering the enviromental state (the avarege

MOI), with respect to the internal signals (host bacteriom size and

MOI). The probability f (E~lDIL~m) is calculated in Figure 3 for

a fixed m and different host bacterium sizes. The estimated average

MOI is highly correlated with the number of phages in a fixed size

host bacterium.

The probability f (E~lDIL~Lm) is shown in Figure 3 for a

specific host bacterium concentration and different host bacterium

sizes. Figure 3 demonstrates the effect of the host bacterium size

on the estimation of l for the same host bacterium concentration.

The expected value of estimated average MOI remains un-

changed for the same host bacterium concentrations. However, it

has been shown that for the same concentration, the variance

decreases as the size of the host bacterium increases. This implies
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that increasing the size of the host bacterium decreases the

probability of having a high environmental MOI. In conclusion,

we expect different reactions from a rational player in situations

with the same host bacterium concentration but different host

bacterium sizes.

In Figure 4, we use the experimental data of [30–32] and [24]

to analyze the phages’ behavior. The experimental data of [30–32]

measures the rate of lysogeny versus the average MOI. The same

data has been used in [36]. The second experimental data set

comes from [24]. This work measures both the probability of

lysogeny based on the host bacterium MOI and also the rate of

lysogeny based on the average MOI [24]. We calculate the

expected probability s(a) for both the lysis and the lysogeny

actions. For a given average MOI, we integrate over all possible

host bacterium sizes and different MOIs to calculate the expected

probability of lysogeny. The probability distribution of the host

bacterium MOI is modeled by a Poisson distribution for a given

average MOI. Figure 4A shows the expected probability of

entering lysogeny as a function of the average MOI. This figure

clearly illustrates that the behavior of phages is remarkably close to

the behavior of rational players. We use the root-mean-square

error (RMSE) to measure the accuracy of the proposed model and

obtain an RMSE of 0:105.

We use the experimental data of [24] to verify our results. The

data in [24] estimates the probability of entering lysogeny based on

the host bacterium MOI. We compute the expected probability

s(a) for both actions lysis and lysogeny. For a given host bacterium

MOI, we integrate over all sizes of the host bacterium to calculate

the expected probability of lysogeny (see Figure 4). An RMSE of

0:048 confirms that the behavior of a rational player is almost the

same as the bacteriophages’ behavior.

Figure 4B also shows the probability of lysogeny for different

host bacterium MOIs. Phages tend to lysogenize as the MOI
increases, since the estimation of average MOI is an increasing

function of the host bacterium MOI. Moreover, Figure 4C

indicates that the probability of lysogeny decreases as the size of

the host bacterium increases. In fact, the growth of the host

bacterium size reduces both the concentration of phages and the

estimated average MOI.

The probability of lysogeny in the different concentration of

phages inside the host bacterium is illustrated in Figure 4D. As we

have discussed, the size of the host bacterium is one of the most

important variables in the lysis/lysogeny decision [23]. Neverthe-

less, in the same concentration of the host bacterium, the phages in

the smaller host bacterium show more tendency to lysogenize [24].

Our model’s assessment of phage behavior with an RMSE of

0:077 matches the results of [24] as shown in Figure 4. Let us

recall that the variance of average MOI estimation is higher for a

small bacterium than a large bacterium (see Figure 3). Hence, in a

fixed concentration, it is more likely to have a higher estimated

avarage MOI in a smaller host bacterium. This means in the same

concentration, the probability of lysogeny increases as the size of

the host bacterium decreases.

Intracellular perspective
Analytical and numerical methods for solving differential

equations will enable us to derive a set of steady state equations

for a given system. To analyze this dynamic system, however, we

would need more advanced methods. For this reason, we

Figure 2. Regulatory network of bacteriophage lambda. Left: Genes and operators which are involved in lysogenic and lytic process of
bacteriophage Lambda. Right: Simplified regulatory network of cI and Cro in bacteriophage lambda.
doi:10.1371/journal.pone.0103569.g002

Figure 3. The probability distribution of estimated average MOI. (A) The host bacteria have the same MOI, but different sizes. (B) The host
bacteria have the same phage concentration, but different sizes.
doi:10.1371/journal.pone.0103569.g003
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approach the problem from a Waddington perspective. As shown

in Figure 5, the Waddington landscape of the phages’ decision-

making varies with the number of phages infecting the same

bacterium. In the case of a single phage infection, there is one

attractor state with high Cro concentration that results in a lysis

decision. Thus, the majority of the bacteria undergo lysis after a

single infection (although there is a small probability for lysogeny

due to the internal noise). A new attractor state with high cI
concentration is distinguishable at MOI~3. This results in a

lysogeny decision. At MOI~6, although there is still a vestige of

the lysis attractor, but the deeper valley of the other attractor

shows a higher likelihood of attracting the phages toward lysogeny.

Video S1 describing changes of attractor points in the Waddinton

landscape, for the host bacterium MOI from 1 to 7, is provided in

the supplementary material.

To visualize the proposed landscape similar to the well-known

drawing of Waddington envisioned in his book [21], the results of

different MOI values are integrated in a 3D contour (Figure 6).

According to the Waddington’s original drawing, the vertical axis

of the diagram represents the potential function and the back-to-

front axis represents time [20]. For the lysis/lysogeny decision, we

assign different values of MOI to the back-to-front axis. The left-

to-right axis of Waddington’s original diagram is the output of the

system. It can be either the gene expression levels or phenotypic

markers, whichever suitably distinguish between different cell

types. The concentration level of the cI gene is chosen for this

purpose in Figure 6. The attractors with low cI concentration

represent the lysis state, and the attractor with high cI
concentration represents the lysogeny state.

The Waddington landscape of a host bacterium with different

MOI is shown in Figure 6. In a single phage infection, (MOI~1),

the bacterium goes for lysis in the backside of the landscape. There

is only one lysis valley with cI concentration close to 0. Due to the

stochasticity of the system, there is a low probability for bacterium

to undergo lysogeny after a single infection. As MOI increases, the

single valley bifurcates and a new attractor for lysogeny appears in

high cI concentrations. The front-side of the landscape shows what

happens at MOI~7. At this point, the channel for lysogeny is

deeper (more stable) and wider (more probable) than the lysis. The

high-potential barrier separating the two valleys represents the

unstable states which the cells rarely pass. It justifies why the

bacterium cannot easily change the outcome from lysis to lysogeny

or vice versa.

For every value of MOI from 0 to 7 with 0:1 steps, we

performed 100000 simulation iterations to compute the probabil-

ity of lysis or lysogeny decision-making (Figure 7). In each

iteration, we pick a random starting point in the landscape for

the initial expression values of cI and Cro, and track the trajectory

of the cell towards different attractor states for a limited time,

based on equation set 12. The commitment to either lysis or

lysogeny is decided based on the final relative abundance of cI and

Cro proteins (§1 for lysogeny, v1 for lysis). For every value of

MOI, the lysis or lysogeny probabilities are defined as the ratio of

the trajectories that ended in each corresponding state (Figure 7).

We selected 100000 iterations since the probabilities do not

significantly change between 10000 to 100000 simulation itera-

tions (see Figure 8). The commitment of the phage to either lysis

or lysogeny is assigned based on the relative abundance of cI and

Cro proteins (§1 for lysogeny, v1 for lysis).

The trajectory path of the phage is divided into a fine mesh.

The direction of the next step is computed based on the

combination of the deterministic force field and the stochastic

noise. For every value of MOI, the ratio of the phages assigned to

every outcome in the simulation is considered as the probability of

Figure 4. The probability of lysogeny as a function of the avarege phage input, the host bacterium MOI, and the host bacterium
concentration. (A) The average phage input is the total number of phages divided by the total number of bacteria and it is shown in logarithmic
scale. Red circles show phages behavior based on the experimental data of [30–32]. Green circles show phages behavior based on the experimental
data of [24]. Blue curve shows our estimation of rational players reactions with a RMSE of 0:105. (B) The probability of entering lysogeny as a function
of the host bacterium MOI. The host bacterium MOI is shown in logarithmic scale. Red circles show phages behavior base on the experiments of
[24]. Blue curve shows the estimation of rational players reactions with an RMSE of 0:048. (C) The effect of the size of host bacterium on the
probability of lysogeny. The results are displayed for the host bacterium sizes 0:7, 0:9, and 1:1. (D) The probability of lysogeny versus host bacterium
concentration with different host bacterium MOI. Blue, red, and black lines represent the estimations based on our model for MOI~1, 2, and 3
respectively. Blue, red, and black points show the experimental results of [24] for MOI = 1, 2, and 3 respectively. Blue plus shows the experimental
result of [30–32] for MOI~1. Note that our estimations have an RMSE of 0:077.
doi:10.1371/journal.pone.0103569.g004
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every decision (Figure 7). The results of the simulation show a

strong agreement with both experimental results reported in [24]

and our expectation from a rational player reported in Figure 4.

To investigate the predictability of the model, the effect of the

bacterium volume on the lysis/lysogeny decision is analyzed

(Figure 7). In a population of bacteria with similar MOI, the

computational model predicts that the smallest bacterium would

have the highest probability of lysogeny. This is in agreement with

in vitro experiments. It also shows that smallest volume bacterium,

at the same MOI, has the highest viral concentration. It has a

positive effect on cI expression and increases the chance of

lysogeny [24].

Discussion

We have studied the decision-making problem of bacteriophag-

es lambda after infecting the E. coli bacterium. In particular, we

have proposed a model of rational decision making that considers

phages as competitive and cooperative agents and where there

exists a trade-off between lysogenic and lytic pathways. The

lysogenic pathway maintains the host bacterium as a host for

reproduction, while lytic pathway increases the number of

bacteriophages in the environment and destroys the host

bacterium [22–24,28,29,37]. Thus, a rational decision maintains

the host bacterium when there are enough bacteriophages in the

environment and lysis otherwise. Making this decision requires

external information from the environment which is represented

by the average MOI. Such information is inferred based on

internal signals such as size, MOI, and concentration of the host

bacterium [38]. Given these parameters, we have analyzed the

behavior of a rational decision in various environmental situations

(see Figure 3). Our results show that the behavior of a rational

player matches that of bacteriophages as reported in the

experimental results of [24,30–32] (see Figure 4).

Figure 5. The effect of MOI on the Waddington landscape of phages in the lysis/lysogeny decision making. Three different values of
MOI are presented in three rows. (A, B, C) The 2-D force-field representation for MOI~1, 3 and 6 respectively. The concentration of cI and Cro free-
monomers are assigned to the x-axis and y-axis respectively. The small arrows are directed toward the attractor states which are shown by the blue
areas. (D, E, F) The 3-D potential function representation for MOI~1, 3 and 6 respectively. The cI concentration, the value of the potential function,
and the Cro concentration are shown by x-axis, y-axis, and z-axis respectively. The attractor states are displayed as the local minimum of the
potential function.
doi:10.1371/journal.pone.0103569.g005

Figure 6. The Waddington landscape of lysis/lysogeny in different MOI. The Waddington landscape changes from MOI~1 to MOI~7.
The back-to-front axis represents increasing MOI values, the right-to-left axis shows different cI protein concentrations, and the vertical axis shows
the pseudo-potential function. At MOI~1 there is almost one valley with cI~0 which represents a lysis attractor state. Increasing MOI results in a
bifurcation and at MOI~7 there are two distinct valleys with low (lysis) and high (lysogeny) cI concentrations. The potential values higher than {4
are truncated for better visualization.
doi:10.1371/journal.pone.0103569.g006
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From an intracellular point of view, the probability distribution

of the lysis/lysogeny decision, under different MOI values, is

defined by the structure of the gene regulatory network [30–

35,39]. In this context, mapping the structure of the gene

regulatory network to the Waddington landscape gives compre-

hensive insight into the decision-making process. We trace how the

environmental fluctuations reshape the landscape and change the

fate of bacteriophages (see Figure 5 and Figure 6). We have

argued that there exists an internal switch that makes decisions

based on internal signals. We call it an internal biased coin that is

encoded in the genome and inherited from its ancestors.

Moreover, internal signals affect the weights of the edges in the

gene regulatory network which, in turn, determine the shape of the

Waddington landscape, the position of stable points, and the

behavior of bacteriophages. On the other hand, internal signals

also influence the estimation of average MOI which defines the

expected utility function, and consequently, the mixed strategy of a

rational player. Our results demonstrate that internal signals

determine both the weights of edges in the regulatory network and

the estimation of average MOI such that the probability

distribution over attractors of the gene regulatory network is

almost the same as the mixed strategy of a rational player (see

Figure 7).

Overall, the gene regulatory network controls the decision

making of individuals in a biological environment [17,18]. Every

cell makes decisions based on its intracellular genetic network and

internal signals. The later determine the weights of the edges in

gene regulatory network, and lead the organism to a stable point.

A well-defined biochemical network, for decision making, is the

one that can meet all of the cells requirements and changes the

Figure 7. The probability of lysogeny in different models. (A) Lysogeny decision-making probability based on Waddington’s model affected
by bacterium size. The horizontal axis is MOI value and the vertical axis shows the probability of lysogeny. The results are displayed for different E.
coli sizes from 0:7, 0:9 and 1:1. (B, C) The probability of lysogeny when the size of the host bacterium is 0:9 and 1:1 respectively. Black curve
represents the behavior of a rational player. Blue dashed curve shows the behavior of bacteriophages from the intracellular view based on its
regulatory network. Red circles show the behavior of bacteriophages based on the experimental data of [24].
doi:10.1371/journal.pone.0103569.g007

Figure 8. Number of simulation runs for robust results. We perform measurement of lysis/lysogeny probabilities with 10i simulation runs
where 0ƒiƒ5. For each iw0, we computed the average absolute change in measured probability values from 10i{1 to 10i simulation runs (x-axis
labels show 10i). Our analysis shows 100000 simulation runs are sufficient for producing robust results.
doi:10.1371/journal.pone.0103569.g008
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probability of their strategies based on different environmental

situations. Mutations occur over time and change the structure of

proteins, the shape of the regulatory network, the decision

landscape, and the probability distribution of different decisions

of an organism. Organisms with the highest adaptability will

survive [19]. We have proposed a framework that shows how the

gene regulatory network in the survivors leads the organism to

behave almost the same as a rational player.

Limitations of the Study, Open Questions, and
Future Work

The proposed framework can be used to study various

fundamental cellular decision-making problems, e.g. decision

between two different pathways of ATP synthesis in yeast. We

believe that in binary decision-making problems, there is a bistable

network which determines the fate of the organism. Internal

signals define both the weights of the edges of the bistable network

from intracellular perspective, and the estimation of the environ-

mental state considering them as competitor and cooperative

organisms. Based on the proposed framework, the bistable

network can be viewed as a biased coin that defines an almost

optimal mixed strategy in the presence of cooperators and

competitors. More precisely, our approach can be used for other

cellular decision-making processes to quantitatively assess how the

corresponding gene regulatory network affects the rational

decision-making process in different isogenic cells.

We use sigmoid utility functions and the logit-response rule to

model the rational player’s decision-making process. Different

utility functions and rules can be used for modeling decision-

making processes. Studying the effect of different functions on

decision-making models might be an appropriate direction for

future studies. In addition, the gene regulatory dynamic equations

presented in [22] are used as a basis for studying the decision-

making process at the intracellular level, though other various

mathematical models can also be used to represent the dynamic of

a gene regulatory network in lysis/lysogeny decision making.

Furthermore, the gene regulatory model we have used from [22] is

limited to the triple key genes in lysis/lysogeny decision making.

Investigating post-transcription modifications and translation

noises that can cause deviations from quasi-steady state approx-

imations of gene expression dynamics is a limitation of our study

and can be studied further in the future.

Conclusion

In this paper we present a framework to show how the decision

making of isogenic cells corresponds to the underlying gene

regulatory network from an intracellular perspective. We use a

game theoretic approach to model the decision-making process,

considering cells as cooperative and competitive agents. We also

quantitatively model the underlying gene regulatory network and

use the Waddington landscape for a comprehensive understanding

of attractor states. We demonstrate that the attractor states of the

corresponding Waddington landscape fit the strategies of a

rational player in the corresponding game. We study a

fundamental decision-making problem in E. coli where a decision

between lysis/lysogeny is made. We show that a decision between

lysis or lysogeny from an intracellular perspective, considering the

gene regulatory networks, almost matches a rational decision

which maximizes the chance of living. To conclude, we provide a

framework that uses game theory on one end and gene regulatory

networks on the other end to study various fundamental cellular

decision-making problems. The proposed framework explains how

cells make decisions similar to a rational player in an analogous

game.

Materials and Methods

Mathematical model of a rational decision
To model the decision-making process of bacteriophages in E.

coli, we first show how the environmental state can be estimated

based on the internal information of phages such as MOI and size

of the host bacterium. Then we present a method to determine the

utility of each action and its corresponding probability based on

the environmental state.

Determining environmental state. A phage inside E. coli
senses the size and the multiplicity of infection by probing the

concentration of proteins and the concentration of dimers such as

cI and Cro inside the host bacterium [33,34]. Therefore, in our

model, size and MOI of the host bacterium are considered as

internal signals.

Let the random variable E be the average MOI within a

population of phages and bacteria, where the average MOI is the

total number of phages infecting a bacterium over the total

number of bacteria in the environment. Also let IL be the MOI of

a host bacterium with size L, and m be the number of phages

inside the host bacteria. A bacterium with size L is a bacterium

which its volume is L times the average volume of all bacteria in

the environment A rational player infers about the average MOI
and defines posterior probability f (E~lDIL~m) based on the

Bayes rule:

f (E~lDIL~m)~
f (IL~mDE~l)f (E~l)

f (IL~m)
: ð1Þ

To compute the posterior probability, we estimate the value of

f (IL~mDE~l), f (E~l), and f (IL~m). Consider an environment

with average MOI l in which phages move and infect bacteria

randomly. The infection process can be seen as a Poisson process

with average rate l [36]. The Poisson distribution is a probability

distribution that expresses the probability of a given number of

events that occur in a fixed interval of time and/or space when the

events occur with a known average rate [40]. On the other hand,

the bacterium infection by phages is a random process, with an

average number of infections l, which is independent of previous

infections. Hence, the probability distribution of MOI for a single

bacterium of size L, given the average MOI l, can be expressed by

a Poisson distribution:

f (IL~mDE~l)~f (I1~mDE~Ll)~
e{Ll(Ll)m

m!
: ð2Þ

For prior probability f (E~l) we assign a uniform distribution

between 0 and L, i.e., f (E~l)~
1

L
for 0ƒlƒL. The above

simple distribution enjoys the maximum entropy and equivalently

the minimum knowledge among all priors. Uniform distribution is

the most rational assumption when there is no prior information

on the parameter [41,42]. At the end, probability f (IL~m) can be

obtained by marginalizing out l as follows:

f (IL~m)~

ðL
0

f (IL~m, E~x)dx~

ðL
0

f (IL~mDE~x)f (E~x)dx
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~

ðL
0

e{Lx(Lx)m

Lm!
dx~

1

Lm!

ðL
0

e{Lx(Lx)mdx

~
1

Lm!

ðLL

0

e{x’x’m

L
dx’~

1

LLm!

ðLL

0

e{x’x’mdx’: ð3Þ

Now, probability f (E~lDIL~m) can be calculated based on

equations 1, 2, and 3 as follows:

f (E~lDIL~m)~
f (IL~mDE~l)f (E~l)

f (IL~m)

~
Le{Ll(Ll)m

ðLL

0

e{xxmdx

: ð4Þ

From the definition of gamma function, we have

C(mz1)~

ð?
0

e{xxmdx, where C(mz1)~m! for a positive integer

m [43]. There is also a nice bound for the value of

ðLL

0

e{xxmdx as

follows:

ðLL

0

e{xxmdx~C(mz1){O((LLz1)e{LL): ð5Þ

Equation 5 shows that C(mz1) is a good estimation forðLL

0

e{xxmdx. Putting all these facts together, we have:

f (E~lDIL~m)&L|
e{Ll(Ll)m

m!
, ð6Þ

f (IL~m)&
1

LL
: ð7Þ

Utility Function. The lysis action increases the number of

phages and kills the host bacterium. The lysogeny action only takes

care of the host bacterium. Therefore, decision making in E. coli
depends on the average MOI. It means if the number of phages in

the environment is high and there are not enough host bacteria, a

rational player takes care of host bacterium and lysogenize.

Otherwise, a rational player tends to lyse. The utility function is

modeled with a threshold a. The utility of lysis overcomes the

utility of lysogeny if and only if a rational player infers that the

average MOI is less than a.

To simplify the model, we look at the environmental state as a

result of individual’s strategies and define the utility functions

based on the environmental state. We demonstrate the utility of

individual j by function uj : A|E?R. Note that individual’s

strategies affect the state of the environment in the future. Thus, in

our model the utility function implicitly depends on other

individual’s strategies. Let uj(a, l) be the utility of action a [ A

of individual j [ N when the environmental state, average MOI, is

l. Let’s assume the set of all possible actions is

A~flysis, lysogenyg. The utility of lysis should drop at threshold

point a and the utility of lysogeny should rise at the same threshold

point. This means the phages tend to keep the average MOI
around a which is their desired average MOI. We focus on the

sigmoid function and define the utility functions as follows:

uj(lysis, l)~ag=(agzlg), ð8Þ

uj(lysogeny, l)~lg=(agzlg), ð9Þ

where a is a threshold point and phages are more likely to choose

lysogenic pathway when their estimation about the average MOI
exceeds threshold a and g is a parameter that defines the slope of

the sigmoid function.

Note that phages only detect internal signals, e.g., MOI and size

of the host bacterium and thus they need an estimation about the

utility of each action based on the observed internal signals rather

than the average MOI. This is done by inferring about the average

MOI based on the internal signals. Therefore, the expected utility

of action a [ flysis, lysogenyg for a phage with host bacterium

MOI m and host bacterium size L, u�(a, IL~m), is defined by

integrating over all possible environmental average MOIs as

follows:

u�j (a, IL~m)~El½uj(a, l)DIL~m�~
ðL

0

f (E~lDIL~m)uj(a, l)dl:ð10Þ

Strategies. There are several rules in the population games

and evolutionary dynamics that determine the strategy of players

based on their utility. We employ the noisy best-response rule, the

logit-response rule, as a well-known rule in the discrete choice

literature for environmental evolution that well matches our

setting [44–47]. In the logit-response rule, every individual plays

its best-response strategy with a probability close to 1. However,

we allow a small possibility for making mistakes. Individuals might

make mistakes in their inferences if their information about their

surroundings are noisy or the agents are not entirely rational

[44,48–51]. In the logit-response rule the probability that

individual j takes action a [ flysis, lysogenyg, sj(a), is propor-

tional to ebu�j (a, IL~m) as follows:

sj(a)~
e

bu�
j

(a,IL~m)

e
bu�

j
(lysis,IL~m)

ze
bu�

j
(lysogeny,IL~m)

, ð11Þ

where b [ Rz determines how noisy the system is. b~? shows

that the system is noise-free and every individual plays its best

action and b~0 represents a full noisy environment in which

every individual plays randomly. A value between these two

extreme points is chosen for modeling the behavior of real-world

decision makers [44,48–51].

Mathematical model of a gene regulatory network
The gene regulatory networks are mathematically represented

in many different ways, including Boolean networks [52], Bayesian

networks [53], ordinary differential equations (ODEs) [22], hybrid

models [54], and even game theory [55]. Among all, we selected
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ODEs since they represent the dynamical states of small networks

more precisely along the time.

The ordinary differential equations (ODEs) reported by [22] are

used as a basis for the computational study of the lysis/lysogeny

decision making at a molecular resolution.

A non-restrictive quasi-steady state approximation (QSSA)

method is applied to reduce the number of equations based on

the great difference in the rate of fast (binding and unbinding of

proteins) versus slow reactions (transcription, translation and

protein degradation):

dx

dt
~

max2

1zx2zy2
{bx,

dy

dt
~

mc

1zx2zy2
{dy: ð12Þ

Here m stands for multiplicity of infection (MOI), x and y are

the rescaled concentrations of cI and Cro free monomers, a is

transcriptional rate of cI when the promoter is bound, c is the

transcriptional rate of Cro when the promoter is unbound, and b

and d are degradation rates for cI and Cro proteins respectively.

More details about equations and parameters are provided in the

supplementing information.

We model equation set 12 as a two-dimensional sample space,

the force-field representation of which is provided in 5. Since this

force-field representation is not a gradient vector fields, it is not

possible to find an exact potential function for it. Therefore, we use

a computationally feasible pseudo-potential function, only for a

graphical representation of the landscape of the gene regulatory

network. This potential function is monotonically increasing while

it goes from an attractor center out to transient states (Figure 5).

The logarithmic scale enables us to track the precise position of the

attractor points. A pseudo-potential function is defined as follows:

P(x, y)~ log (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
dx

dt
)2z(

dy

dt
)2

r
zE): ð13Þ

Here E is a small positive value ensures that the logarithm

function is computed for positive values. This equation assigns the

minimum potential log (E) to all attractor states where dx=dt and

dy=dt are zero. In theory, a similar potential function is assigned to

unstable fixed points. However the vector-space representations of

the force fields show such points are not present in our

experiments (Figure 5, A–C).

Additional Information

Programs for modeling both a rational decision and gene

regulatory network have been written in C++ and MATLAB.

Supporting Information

Figure S1 The root-mean-square error. (A) This figure

shows the root-mean-square error when b~3 and g~1:3 are

fixed, and a varies from 0 to 5. (B) This figure shows the root-

mean-square error when a~2:1 and g~1:3 are fixed, and b varies

from 0 to 20. (C) This figure shows the root-mean-square error

when a~2:1 and b~3 are fixed, and g varies from 0:1 to 7.

(TIFF)

Figure S2 Lysogeny probability changes by different
rate of cI dimerization. Decreased dimerization rate of cI will

decrease the lysogeny probability. A factor of 0:3 to the cI
dimerization rate decreases the depth of lysogenic attractor (left).

By a factor of 0:1, the lysogenic valley vanishes and only the lytic

attractor remains (right).

(TIFF)

Figure S3 Alternations to the network structure will
destruct the function of the genetic switch. First, the

negative effect of the Cro protein on the expression of its own gene

is replaced by a positive effect. Second, the positive effect of cI on

its own gene is replaced by a negative effect.

(TIFF)

Figure S4 Promoter mutations can alter the decision
landscape. The mutations that increase the binding affinity of

Cro to the operator sites will deepen the lytic attractor (left), while

the contrary mutations increase the chance of lysogeny (right).

(TIFF)

Appendix S1 Definition of parameters. In this appendix we

define parameters for modeling a rational decision and the

Waddington model.

(PDF)

Appendix S2 Verifying predictability of the Waddington
model. In this appendix we perform several analyses for

confirming the predictability of the proposed Waddington model.

(PDF)

Video S1 The effect of MOI on the Waddington land-
scape of phages in the lysis/lysogeny decision making.
This video describes how the positions of attractor points change

in the Waddinton landscape, for the host bacterium MOI from 1
to 7.

(MP4)
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