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ABSTRACT

Untreatable hereditary macular dystrophy (HMD) pres-
ents a major burden to society in terms of the resulting
patient disability and the cost to the healthcare provision
system. HMD results in central vision loss in humans suffi-
ciently severe for blind registration, and key issues in the
development of therapeutic strategies to target these con-
ditions are greater understanding of the causes of photore-
ceptor loss and the development of restorative procedures.
More effective and precise analytical techniques coupled
to the development of transgenic models of disease have
led to a prolific growth in the identification and our under-
standing of the genetic mutations that underly HMD.
Recent successes in driving differentiation of pluripotent
cells towards specific somatic lineages have led to the de-
velopment of more efficient protocols that can yield

enriched populations of a desired phenotype. Retinal pig-
mented epithelial cells and photoreceptors derived from
these are some of the most promising cells that may soon
be used in the treatment of specific HMD, especially since
rapid developments in the field of induced pluripotency
have now set the stage for the production of patient-
derived stem cells that overcome the ethical and methodo-
logical issues surrounding the use of embryonic deriva-
tives. In this review we highlight a selection of HMD
which appear suitable candidates for combinatorial restor-
ative therapy, focusing specifically on where those photo-
receptor loss occurs. This technology, along with increased
genetic screening, opens up an entirely new pathway to
restore vision in patients affected by HMD. STem CELLS
2009,27:2833-2845
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INTRODUCTION

Numerous hereditary retinal disorders (HRD) that affect cen-
tral visual function in humans have been identified. The speci-
alized central region of the retina, the macula, is responsible
for central visual acuity and has distinct anatomical and phys-
iological properties. The fovea at the epicentre of the macula
contains the highest density of retinal cone photoreceptors
and receives its blood supply entirely from the choriocapilla-
ris complex of the choroid. Derived from the optic neuroepi-
thelium during eye development, the photoreceptors share a
common embryological origin with and are supported by the
retinal pigmented epithelium (RPE) [1, 2], which is separated
from the choriocapillaris by Bruch’s membrane, a multilay-
ered basement membrane (Fig. 1). Photoreceptors, RPE, and
the choriocapillaris are interdependent on each other; photore-
ceptor dysfunction and degeneration can occur secondary to
RPE pathology (e.g., in Best’s macular dystrophy) or be a pri-
mary event such as is the case in Stargardt disease (STGD),
where RPE pathophysiology resulting from photoreceptor

malfunction leads to photoreceptor depletion. Choriocapillaris
atrophy and histopathology can be observed after RPE degen-
eration in various fundus disorders [3, 4]. Such features are
characteristic of a heterogeneous subgroup of progressive
HRD affecting the macula, which can cause profound central
visual loss sufficiently severe enough for blind registration.
Blindness substantially impairs an individual’s quality of life
[5-8] and places a large burden on healthcare and support
services [9]. There is currently no cure for the underlying
causes of any of the macular dystrophies, and available treat-
ments are largely palliative.

Much effort has been invested in the development of pro-
tective and cell-based therapies for HRD. Some success has
been achieved in prolonging the survival of photoreceptors by
intraocular application of growth or antiapoptotic factors in
humans [10]; however, even with repeated application this
approach typically slows the progression but fails to arrest the
degenerative process [11]. The transfer of genes encoding for
these factors into the eye offers additional protection by modi-
fying the physiology of affected cells; however, this approach
is ineffective in cells that are dysfunctional due to an
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Figure 1. A schematic of the human eye showing the location of
the macula, and an enlarged section of the retina at this region show-
ing the organization of the retinal layers and the close relationship of
the photoreceptors with the retinal pigment epithelium, Bruch’s mem-
brane, and the choriocapillaris of the choroid.

underlying genetic mutation. RPE transplantation prevents
photoreceptor degeneration in models of RPE dystrophy [12,
13], but not in a photoreceptor degeneration model [14], and
it is an inappropriate strategy in humans once irreversible loss
of photoreceptors has occurred.

A protracted phase of inner neural retinal remodeling
occurs after the depletion of the sensory photoreceptors; how-
ever, the initial stages largely involve remodeling of the outer
nuclear layer [15, 16]. Prior to the clinical application of any
cell replacement strategy, the progress of global retinal
remodeling should first be assessed in order to define the key
impediments towards visual reconstitution. A sufficient retinal
cyto-architecture must exist for successful graft integration to
yield improvements in visual function. Functional cell
replacement may be complicated by the retraction of inter-
neuron dendrites and axon terminal fields, Miiller glial and
horizontal cell hypertrophy, and horizontal neurite sprouting
towards the inner plexiform layer [15]. Thus the optimal pe-
riod for cell engraftment within each disease paradigm should
be determined. Nonetheless, a therapeutic window of opportu-
nity for cell replacement may exist prior to significant inner
retinal remodeling. Such strategies have proved successful in
other degenerative regions of the central nervous system; for
example, Parkinsonian symptoms have been reduced for up to
six months in monkeys following chemical depletion of dopa-
minergic cells by transplanting monkey embryonic stem cells
(ESCs) or ventral mesencephalon [17, 18], and hind limb
motor function can be improved in animal models of spinal
cord injury following transplantation of olfactory ensheathing
cells [19, 20]. Cells grafted into the photoreceptor-depleted
outer retina prior to the onset of global remodeling could
potentially reconstitute the remaining retinal circuitry, par-
tially restoring visual function.

Here we present the clinical manifestations and genetic
correlations of a selection of hereditary macular dystrophies
(HMDs) that may be suitable candidates for emerging cell-
and gene-based therapy. The main focus of this review is the
outer retina and diseases affecting central visual acuity where
the primary defect results, either directly or indirectly, in the
demise of photoreceptors. Here we concentrate on photorecep-
tor replacement rather than RPE replacement, although in
many cases of HMD the replacement of both tissue types is
required. We discuss current research successes, the potential

Restorative therapy for macular dystrophy

implications and limitations of emerging techniques for visual
restoration, potential combinatorial approaches, and possible
future directions in this highly enigmatic field.

GENETIC BAsis oF RETINAL DISEASE

Hereditary Macular Dystrophy

Although modifiable lifestyle factors such as smoking and a
high body mass index increase the risk of retinal disease, new
evidence is emerging that stresses the importance of familial
influence and the underlying molecular causes of retinal dis-
ease; indeed, few clinical conditions are totally without some
genetic influence [21]. Below we describe three major types
of HMD and discuss the genetic and environmental contribu-
tion to the onset and progression of retinal disease. A sum-
mary of other HRDs is presented in Table 1.

A feature of many HMDs, although typically characteris-
tic of Age-Related Macular Degeneration (AMD), is the pres-
ence of sub-RPE deposits, or drusen [22-24]. This contributes
to disease pathogenesis by cleaving RPE cell attachment to
Bruch’s membrane, which causes disruption of membrane
transport and subsequent RPE demise [25]. Concomitant local
oxidative stress, chronic inflammation, choriocapillaris
changes, and neurosensory degeneration occur [26]. Various
underlying molecular causes alter individual susceptibility for
drusen accumulation and subsequent pathology in HMD; how-
ever, drusen and histopathological changes in RPE can also
be detected during normal physiological aging [27]. Photore-
ceptors are continuously renewed by shedding outer segment
(OS) distal disks in a circadian fashion [28]. With aging, the
heavy metabolic burden of OS phagocytosis and breakdown
on the RPE results in incomplete digestion of internalized ma-
terial and accumulation of autofluorescent lipofuscin, a com-
ponent of drusen, within RPE lysosomes and endosomes. A
major fluorophore of RPE lipofuscin is A2E [29, 30], a minor
by-product of the visual cycle [30, 31]. Given its high density
of photoreceptors, the macula accumulates the greatest levels
of A2E in its RPE. The RPE becomes less efficient in coping
with increased toxic lysosomal A2E and other visual by-prod-
ucts, thus contributing to AMD [31]. Although fundoscopi-
cally similar, the age of onset, pattern of drusen deposits, and
visual course separate normal aging from patients with HMD.
AMD, once considered effectively an environmentally exacer-
bated form of aging, can now be considered another form of
HMD with onset later in life.

STGD. STGD is the most prevalent HMD with an estimated
incidence of one in 10,000 [32]. It accounts for 7% of all
HRD and carries a 25% a priori risk to siblings [21]. The tra-
ditional presentation (STGDI) is autosomal recessive with ju-
venile onset (7-12 years); however, some rarer autosomal
dominant forms exist [33-36]. STGD is clinically character-
ized by RPE and photoreceptor inner segment lipofuscin accu-
mulation, RPE and choroidal vascular atrophy, macular photo-
receptor loss, and reactive Miiller glial hypertrophy [37, 38]
with progressive loss of central visual acuity during the first
two decades [21]. Fundus flavimaculatus, characterized by
subtly later onset, slower progression, and widespread, sym-
metrical, deeply localized retinal flecks [39, 40] is understood
to be a different manifestation of the same disease.

STGD dystrophies are mapped to chromosome 1p21-
p22.1 and vary in onset, clinical course, and severity. This is
likely due to allelic mutations, largely missense, producing a
continuum of disease pathology and presentation [21, 41, 42].
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The adenosine triphosphate—binding cassette (ABC) transport-
ers function to aid adenosine triphosphate—dependent translo-
cation of substrates across cell membranes and are implicated
in human inherited disorders. Deletion of the ABC subfamily
A (ABC1), member four (ABCA4, alternatively ABCR) gene
[43, 44], which encodes for the rod OS protein Rim (RmP)
[45, 46], functions in the transmembrane transport of vitamin
A derivatives to the RPE and accounts for 60% of STGD
cases [47]. Mutations in ABCA4 have been identified in retini-
tis pigmentosa (RP) and cone-rod dystrophy [48-51]. ABCA4
mutations are also associated with all juvenile HMD, reces-
sive RP, and cone-rod degeneration [47, 50].

Aber™~ mice display biochemical, physiological, and ul-
trastructural changes with delayed rod dark adaptation,
delayed clearance of all-trans-retinaldehyde (all-frans-RAL),
increased levels of PE in rod OS, accelerated A2E accumula-
tion in the RPE, thickening of Bruch’s membrane, and visual
loss [52, 53]. When raised in total darkness, A2E accumula-
tion in Abcr™/~ mice is completely inhibited, indicating that
the rate of STGD progression in humans might be slowed by
limiting light exposure [54].

The two dominant forms are genetically distinct from re-
cessive STGD, mapped to chromosome 6cen-ql4 (STGD3)
and 4p (STGD4). These affect the elongation of very long-
chain fatty acid-like gene four (ELOVL4), expressed abun-
dantly in photoreceptors [55]. A knock-in mouse model of a
five base pair deletion in ELOVL4 was recently reported [56].
Mice heterozygous for this mutation show photoreceptor
degeneration, while the homozygous variety have abnormally
compacted outer epithelium, lack key hydrophobic compo-
nents of the stratum corneum affecting permeability barrier
function, and die shortly after birth.

Sorsby Pseudoinflammatory Fundus Dystrophy. Sorsby
pseudoinflammatory fundus dystrophy (SFD) is a highly pene-
trant, rare, autosomal dominant condition characterized by loss
of central vision due to extracellular matrix abnormalities in
Bruch’s membrane and bilateral choroidal neovascularization
(CNV). This disrupts choroidal nutrient and metabolite trans-
port leading to atrophy of the neural retina [57, 58]. Onset is
typically 40-50 years of age [59, 60]. Fine drusen-like deposits,
atrophic lesions at the macula [21], and lipid deposits at the
RPE/Bruch’s membrane interface are observed [22]. This is
usually complicated by CNV and associated hemorrhage lead-
ing to a disciform macular scar [61]. The peripheral retina is
also affected, resulting in night blindness (nyctalopia).

SFD shares several features with late-stage AMD, resulting
in SFD becoming an accepted AMD genetic model [62]. Whilst
AMD has highly complex and largely unknown etiology, SFD
is a single-gene disorder that occurs due to mutations in the
TIMP3 gene on chromosome 22 [63—65]. Its product is an RPE
enzyme important in extracellular matrix regulation [66, 67],
and the presence of a mutant form may affect retinal protein
turnover [61]. Eight mutations are described, seven affecting
the coding sequence in exon 5; six are missense, introducing a
novel unpaired cysteine residue into the C-terminal domain [61,
62, 66, 68—70]. Other mutations introduce a stop codon at posi-
tion 139 [71] or a single base (A) in the splice acceptor site
between exons 4 and 5 (CAG to CAAG) [72]. A region of the
TIMP3 C-terminus appears particularly vulnerable; three muta-
tions are found between residues 166-168 with two others (172
and 181) in close proximity [61]. The serine to cysteine substi-
tution of residue 181 [Ser181Cys] in exon five is the causal
mutation in the majority of Sorsby’s families tested in the
United Kingdom.

Restorative therapy for macular dystrophy

In SFD, mutant T/MP3 accumulates in the RPE and Bruch’s
membrane, prompting the disease process [65, 73, 74]; TIMP3
overexpression can induce apoptosis in several cell types
including RPE [75]. Unlike other T/MP family members,
TIMP3 binds to the extracellular matrix via its C-terminal, the
site of all known SFD mutations [61, 76-78]. Whereas mice
with targeted deletion of TIMP1 show CNV [79], homozygous
TIMP3-null mice do not exhibit an obvious retinal phenotype
[80]. A knock-in mouse carrying a Ser156Cys mutation in the
orthologous murine T/MP3 gene shows clinical features of
human SFD, including abnormalities and elevated TIMP3 in
Bruch’s membrane and RPE [68, 81], providing an experimen-
tal system in which to investigate SFD pathophysiology. The
range of mutations is limited in SFD, meaning that genetic anal-
ysis makes diagnosis quick and reliable, although the underly-
ing disease process remains untreatable.

Age-Related Macular Degeneration. AMD is the leading
cause of blindness in the developed world over 60 years of
age and accounts for 50% of blind registration [82-87]. Inci-
dence of AMD rises exponentially with age [88]. While its
prevalence is increasing in the United Kingdom, blind regis-
tration from cataract, glaucoma, and optic atrophy has
declined [89]. There are two main forms of AMD: an early
form characterized by degenerative changes in the RPE and
accumulation of drusen, and a late form that manifests with
geographic atrophy alongside sub-RPE and subretinal CNV
[90]. Therapies to prevent and treat AMD are limited. High-
dose antioxidant vitamins and metabolic therapies can reduce
the progressive visual loss in patients with early AMD and, in
the case of metabolic therapy, the regression of drusen; how-
ever, the absolute reduction in new cases is small [91-93].
Although environmental factors are known to play a role in
disease pathology and progression, epidemiological and fam-
ily-based studies provide convincing evidence for a genetic
basis for AMD, with inheritance thought to be polygenic [94—
100]. Despite its prevalence, the etiology and pathogenesis of
AMD remains poorly understood. Susceptibility loci (chromo-
some 1, 5, 9, 10, and 17) [101-103] and candidate genes that
appear to play a role have been identified [104—-108], some
correlating with AMD pathology more strongly than others;
more than 100 different proteins are associated with AMD
deposits [108].

The complement system, involved in our immune defense
against foreign antigens, is implicated in AMD [109-111].
Complement factor H (CFH) inhibits the complement cascade
that ensures the system is directed against pathogens and not
the body’s own tissues, and is a major susceptibility gene in
AMD. Complement components are found alongside drusen
and the RPE-choroid interface [110], and abnormal macular
dysregulation of the complement cascade in RPE and Bruch’s
membrane appears to cause unrestrained complement activa-
tion and drusen formation [112]. The CFH Y402H haplotype
on chromosome 1q32 confers the greatest risk of AMD [113];
however, multiple polymorphism variants in caucasian AMD
patients have been determined [104, 114-118]. Y402H is not
a primary indicator in Japanese patients, however [119], nor
in the Chinese population in which this polymorphism is asso-
ciated specifically with neovascular AMD [120]. The classical
complement pathway is largely regulated by the SERPING1
gene product, and a common polymorphism in SERPINGI
was recently identified as a causal factor in AMD [121]. Inter-
estingly, a CFH haplotype with a deletion in CFHR1 and
CFHR3 elicits an independent decreased risk of AMD [113].

Oxidative stress pathways are also causally involved
[122]. Schmidt and colleagues identified a coding change

Stem CruLs
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[Ala69Ser] in the LOC387715/ARMS2 gene on chromosome
1026 as the second major identified susceptibility allele
[123]. They report that genetic susceptibility in combination
with a modifiable lifestyle factor conveys a significantly
higher risk than either factor alone. The population-attribut-
able risk is 36% for LOC387715/ARMS2 and 43% for
Y402H, however combining LOC387715 and cigarette smok-
ing increases risk to 61% [123]. The LOC387715/ARMS?2
protein product colocalizes with the mitochondrial outer mem-
brane in mammals [106]; thus, the Ala69Ser mutation pre-
sumably contributes to AMD pathogenesis by affecting mito-
chondrial function. Polymorphisms of other immune response
genes, such as human leukocyte antigen, are also implicated
after observation of strong human leukocyte antigen immuno-
reactivity in drusen [109, 124]. Variants of complement cas-
cade component factor B and complement component two are
protective against AMD [105].

Several genes implicated in the etiology of various HMD
have been examined in AMD. Carrier relatives of STGD are
more likely to develop AMD [125], and genetic similarities
may exist between the two [43]; however, it remains contro-
versial as to whether the ABCA4 gene plays a pathogenic role
[43, 44]. The high level of ABCA4 polymorphism across indi-
viduals makes it difficult to determine any responsibility for
ABCA4 in AMD [21]; however, its involvement is possible in
a small number of cases [107]. A2E, which accumulates in
the STGD eye, is also found in the RPE in AMD and perturbs
efflux of cholesterol from RPE endosomes/lysosomes, causing
cholesterol and cholesteryl ester deposit accumulation [61,
126, 127]. Initially identified as a causal factor in Doyne’s
disease, a mutation in the extracellular matrix protein Fibulin
3 gene [128] led to the correlation of missense mutations in
Fibulin 5 in 1.7% of 402 AMD cases in the United States
[129]. These contribute to AMD by causing reduced Fibulin
five and elastin production—a key Bruch’s membrane compo-
nent—but were not causal [129]. The TIMP3 mutation in
SFD has not correlated with AMD [66, 130], although distri-
bution of the TIMP3 enzyme product in the AMD Bruch’s
membrane is significantly higher than age-matched controls,
remains in active form, and is associated with drusen patches
[76].

Late-onset retinal degeneration (LORD) is a rare autoso-
mal dominant disorder that has striking parallels with AMD.
Histopathology reveals thick sub-RPE deposits that result in
RPE dysfunction and photoreceptor loss [24, 131-133]. A
Ser163Arg mutation in the CTRPS/CIQTNFS5 gene is reported
to cause approximately 50% of documented LORD cases
[134]. As yet it is unknown whether mutations in CTRPS
influence susceptibility to AMD. Apolipoprotein E (ApoE)
and f-amyloid aggregates, associated with Alzheimer’s dis-
ease, have been found in AMD-related macular drusen [135,
136]. Some studies implicate the ApoE ¢4 allele as a protec-
tive factor which delays disease onset, while the ¢2 allele
accelerates disease onset and progression [137, 138]. How-
ever, although there is currently no significant association
between Alzheimer’s disease and AMD [139], a recent study
supports some relationship between cognitive function and
dementia with early AMD in older individuals [140]. Muta-
tions in the Bestrophin gene, responsible for vitelliform macu-
lar dystrophy (Best’s disease) show a small, nonsignificant
correlation with AMD [141, 142].

The identification of vascular endothelial growth factor
(VEGF) polymorphisms in late-stage AMD has led to the use
of optical coherence tomography-guided anti-VEGF (OCT-
VEGF) treatments which slow disease progression by treating
CNV [143]. They do not, however, alter the underlying patho-
physiology, and atrophic macular changes can still progress
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despite successful CNV treatment. A naturally occurring
mouse model with autosomal recessive late-onset severe reti-
nal degeneration mapped to the Mdml gene on mouse chro-
mosome 10 was recently reported, but is not associated with
the human Mdml ortholog or AMD [144]. The Sodl =/~ and
ApoE knock-in mice show the most similarities to the human
clinical manifestation of AMD thus serve as good disease
models [145, 146]. In conclusion, the most prominent genetic
factors identified to date in the etiology of AMD are the
Y402H variant of CFH, LOC387715, and SERPINGI, which
are found in more than 60% of cases [121].

Cell Replacement Strategies

While modifiable lifestyle factors present an increased risk of
retinal disease to an individual already expressing high-risk
alleles, there is clear evidence that genetics plays an important
role in the occurrence and development of HMD. Understand-
ing the inheritance and genetic basis of these retinal diseases
will undoubtedly provide new treatment platforms for restora-
tive therapy. Gene therapy, whether corrective [147-150] or
to overexpress various neuroprotective substances [135] either
on its own or combined with stem cell therapy, has enormous
potential in these diseases, although it may be less applicable
to those cases where the dystrophy is advanced at birth or
where perturbed retinal and cortical development has compro-
mised visual function [151]. Stem cell therapy could be used
in two main ways, namely by enhancing endogenous repair
using stem cells that secrete growth factors or deliver drugs
utilizing the innate attraction of diseased structures to various
stem cell populations, or by exogenous cell replacement strat-
egies. In the case of HMD, the latter strategy could be a use-
ful therapeutic option depending on integrity of the inner ret-
ina, Bruch’s membrane, and choriocapillaris, and provided
that problems associated with the synaptic integration between
transplanted photoreceptors and the host retina can be
overcome.

Various sources of cells and methods of transplantation
have been used in the attempt to replenish the retina with
functional photoreceptors or healthy RPE following the
degeneration of host cells in assorted animal models of retinal
degeneration with various degrees of success [152—-157]. In
the best case, subretinal transplantation of embryonic and
postnatal day 1 (P1) mouse retinal cells into murine models
of retinal degeneration showed greatest integration, differen-
tiation, and synaptic connectivity within host tissue when
already committed to a photoreceptor fate while still morpho-
logically immature. Increases in pupil sensitivity in this study
correlated with the number of incorporated Nrl™ donor cells,
a result that was not achieved with transplanted proliferating
or stem cells [157].

Recent reports describe the successful generation of pho-
toreceptor precursors from ESCs using defined protocols
incorporating factors that are known to promote forebrain
development, retinal progenitor specification and photorecep-
tor induction [158-161]. Similarly, protocols for RPE produc-
tion from ESCs are being refined, and functional studies on
human ESC-derived RPE demonstrate their physiological via-
bility [162]. Small numbers of opsin- and rhodopsin-positive
cells can be observed after subretinal transplantation of spon-
taneously differentiated human ESCs (hESCs) into neonatal
and adult rat eyes with no tumor formation observed up to 18
weeks post-transplant [163]. More recently, retinal progenitors
derived from hESC were subretinally transplanted into Crx ™/~
mice, a model of Leber congenital amaurosis (LCA) [164].
Grafted cells integrated within the outer nuclear layer; dis-
played layer-specific expression of opsin, rhodopsin, and
recoverin; and restored the light response in previously



2838

unresponsive recipients, even though grafted cells expressing
photoreceptor-specific markers did not develop OSs. These
results highlight the value of hESC as a potentially unlimited
source of specialized cell types for transplantation; however,
issues do remain regarding their use, including efficient direc-
tion of differentiation towards a required lineage and elimina-
tion of undifferentiated ESCs from the cell population
intended for transplantation in order to minimize the risk of
tumorigenesis.

The ETDRS chart, originally used in the Early Treatment
of Diabetic Retinopathy Study, has become the standard dis-
tance visual acuity as measurement in clinical research [165].
More recently, modest improvements in visual acuity as mea-
sured using the ETDRS chart was reported after transplantation
of fetal neural retina with its RPE in a patient with dominant
RP [166]. These authors recently published their results from
an additional fetal retina-RPE transplant clinical trial conducted
on six RP and four AMD patients [167]. In this latest trial,
70% of transplant recipients showed improvements in visual
acuity, and postoperative loss of RPE pigmentation was not
associated with changes in visual outcome [167]. In one
patient, improvement in visual acuity and light sensitivity was
maintained for 6 years. It is difficult to discern, however,
whether observed improvements are due to graft functionality,
graft-derived factors, or surgical manipulation eliciting
improvements in visual function [168, 169]. The development
of an artificial Bruch’s membrane substitute or the use of scaf-
folds to maximize the adhesion and safe surgical delivery of
the RPE sheets or tissue under the retina may enhance cell-
replacement strategies [158, 170] provided there is access to
functional choriocapillaris. The absence of just one of these
vital elements will cause a sequence of events affecting retinal
viability and hinder graft integration and function.

In summary, although cell transplantation results are
encouraging, only a small proportion of grafted cells (in the
best case 0.4% of sorted P1 Nrl™ photoreceptor precursors)
integrated within the correct lamina and differentiated appro-
priately in a model of retinal degeneration [158]; therefore,
the efficiency of retinal reconstitution via cell replacement
remains a challenge. Encouraging incorporation of grafted
photoreceptor precursors is ineffective without a functional
RPE/Bruch’s membrane/choriocapillaris complex. Studies
over the past 10 years have shown that allogeneic RPE
largely resists attachment to aged Bruch’s membrane in vitro
and where successful attachment and proliferation has been
achieved, long-term survival is poor [171-173]. Early studies
in humans demonstrated that long-term survival of trans-
planted fetal retina with its RPE (up to 6 months) could be
achieved in RP patients, but with no improvement in visual
function [174]. Similar studies in AMD patients yielded
mixed results; transplantation of fetal or adult RPE [175-178]
implied that late-AMD is less conducive for graft survival
with patients showing signs of rejection within 3 months
[174]. RPE transplanted alongside aggregate retinal trans-
plants or photoreceptor sheets into RP and AMD patients
proved the long-term safety and survival of grafts but again
patients showed no improvement in visual function [179—
181].

Revolutionary Developments in the Stem Cell Field:
Induced Pluripotency

As highlighted in the above section, hESCs have been shown
to differentiate along photoreceptor and RPE lineages using
growth factors that have roles in forebrain development and
early and late retinal fate specification. In one very recent
study, hESC-derived photoreceptor cells were shown to settle
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into the appropriate layers and express markers of differenti-
ated rod and cone cells upon intraocular injection into animal
models of retinal disease [164]. These are undoubtedly prom-
ising results, but many substantial shortcomings of hESC dif-
ferentiation still await resolution. Among these are the ethical
issues associated with the use of embryonic tissue, the appa-
rently embryonic/fetal phenotype of the cells derived during
hESC differentiation [183], and the potential of tumorigenesis
arising from the presence of undifferentiated progenitors
remaining in culture; however, the principal problem is one
of immune rejection of differentiated cells after transplanta-
tion into the patient. Pioneering work carried out in the last 3
years suggests that immune rejection issues may be overcome
by creating embryonic-like stem cells from somatic cells of
adult individuals through a process called induced pluripo-
tency [184-186]. This process, which is held as one of the
most seminal discoveries in the stem cell field, was first
reported by Yamanaka’s group [187] and involves overexpres-
sion of four key genes (Oct4, Sox2, Kif4, and c-Myc) in mu-
rine fibroblasts, resulting in their conversion into cells that
resemble ESCs in terms of morphology, gene expression,
growth, and differentiation capabilities and are now named
induced pluripotent stem cells (iPSCs). This work was soon
supplemented by the generation of human iPSCs by two
groups, one of whom [186] showed that adult human dermal
fibroblasts can also be reprogrammed by overexpression of
OCT4, SOX2, KLF4, and c-MYC, while another [188] made
use of a slightly different set of factors (OCT4, SOX2, LIN28,
and NANOG) to reprogram both fetal and adult human fibro-
blasts. Since these initial papers there has been remarkable
progress in the field, aimed largely at increasing the efficiency
of the iPSC generation protocol and replacing the initial retro-
viral vectors that were used to transfect fibroblasts with
OCT4, SOX2, KLF4, and c-MYC. Two approaches to this lat-
ter problem have been used with varying degrees of success.
The use of nonintegrating retroviruses that maintain transient
expression of the reprogramming factor genes from episomes
that do not integrate into the host cell genome has shown
some potential to generate iPSCs, albeit with lower efficiency
than is achievable with integrating retroviruses [189]. Very
recently, a protocol using recombinant proteins for induction
of pluripotency has been published, which suggests that future
methods for the production of iPSCs may be much simpler
than those of the initial publications in this area [190].

Together these developments suggest that it is now possi-
ble to derive iPSCs free of transgenes and with perhaps
reduced risk of tumorigenesis, which was observed in the ini-
tial animal-based studies (20-30%) associated with reactiva-
tion of ¢-MYC in adult tissues [191]. Caution is required,
however, for the small molecules and chemicals that are
required for reprogramming because they may promote global
epigenetic and genetic modifications, which may compromise
the safety aspect of these cells.

The ability to generate iPSCs readily allows us to progress
to one of the principal applications envisaged for this technol-
ogy, which is the generation of human disease models and
potential correction of genetic disease. For example, iPSC
technology was combined with gene therapy to correct the
mutant human sickle cell anemia allele [192]. The corrected
iPSC generated in this study were induced to differentiate to
hematopoietic progenitors that were subsequently transplanted
into the murine model of sickle cell anemia, leading to func-
tional recovery and providing a “proof of principle” demon-
stration for future human therapeutic application. Similarly,
transplantation of murine iPSC-derived neural progenitors into
animal models of Parkinson’s disease led to improved behav-
ior 4 weeks after transplantation [193]. Furthermore, iPSCs
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have been generated from other species, including the rhesus
macaque, which is by far one of the most relevant primate
models for human disease [194].

To date, a large number of iPSC lines from various dis-
eases such as amyotrophic lateral sclerosis [195]; Parkinson’s
disease [196]; type I diabetes [197]; spinal muscular atrophy
[198]; adenosine deaminase deficiency-related severe com-
bined immunodeficiency (ADA-SCID); Shwachman-Bodian-
Diamond syndrome; Gaucher disease; and type III, Duchenne,
and Becker muscular dystrophy [199] have been reported.

Creation of iPSC lines on its own is not sufficient and
needs to be combined with techniques that have and will be
developed in human ESC/iPSC for efficient and directed dif-
ferentiation towards the desired functional cell type. In view
of this, it is important to determine whether iPSCs differenti-
ate into various phenotypes in a manner similar to ESCs, and,
although a couple of studies have suggested that this may be
the case under in vitro conditions [200-202], in vivo func-
tional studies in animal models need to be performed to fully
investigate the potential of iPSC lines for both disease model-
ing and cell transplantation.

Potential Applications and Limitations of iPSCs for
Understanding and Treatment of Retinal Disease

Derivation of iPSCs from patients with diseases causing outer
retinal degeneration, alongside in vitro gene correction with a
robust differentiation method for producing photoreceptor and
RPE cells from these cells, could provide a source of autolo-
gous cells for transplantation. A very recent report has shown
that human iPSC can be differentiated to photoreceptor cells
with efficiency similar to that of human ESCs [203], suggest-
ing that already established protocols for human ESCs can be
transferred directly to iPSCs. Of equal importance is the deri-
vation of iPSCs from patients with retinal disease for creation
of disease models, which provides an invaluable opportunity
to investigate disease pathogenesis and treatment that has not
been possible before. Although there are successful animal
models of retinal degeneration, most of these models mimic
modulation of one or at most two genes [204]. Using iPSCs
isolated from affected patients provides new opportunities to
complete the current gaps in our understanding [205], espe-
cially for disorders such as AMD where multiple genes are
likely to play a role in disease initiation and progression as
highlighted above (see Age-Related Macular Degeneration)
and where animal models that mimic the disease perfectly are
difficult to create due the polygenic nature of the disease.
Such cells can be used to devise genetic tests for risk predic-
tion and diagnosis as well as testing and design of new drugs
that may have an impact on photoreceptor and RPE cell
degeneration.

Generation of photoreceptor and RPE cells from patient-
specific iPSC lines overcomes the need for immunosuppres-
sion and will likely reduce the risk of rejection of grafted tis-
sue within the neurally depleted region. However, in diseases
where a single underlying genetic mutation is causing cellular
dysfunction or death, one caveat in generating iPSCs from
such patients will be the generation of populations of cells
that carry the same mutation. Targeting host photoreceptors
with gene therapy to supply growth factors or antiapoptotic
genes has already been tested in animal models of degenera-
tive retinal disease in addition to antiangiogenic factors in
animal models of neovascular retinal disease, with no adverse
morphological, inflammatory, or vascular effects [11]. It is
therefore possible that the experience gained from gene ther-
apy trials in adult host photoreceptors can be applied to iPSC-
derived photoreceptor or RPE cells. Another possibility is the
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correction of the gene defect at the iPSC stage prior to differ-
entiation to photoreceptors or RPE, although the polygenic
nature of many HMD cases means that such an approach cur-
rently remains a challenge. Nonetheless, although homologous
recombination is still very difficult in hESCs and presumably
in iPSCs, inducing the expression of the wild-type gene in
mutant iPSCs prior to their differentiation is likely to be
achieved using viral vectors, which fits with recent reports of
gene correction [148-150]. For example, a recent report has
shown that subretinal lentiviral vector delivery of the human
ABCA4 gene in a mouse model of STGD was shown to trans-
duce up to 20% of photoreceptors in the injected region and
substantially reduce disease-associated lipofuscin accumula-
tion [206]. It can be therefore envisaged that expression of
wild-type ABCA4 in iPSCs derived from well-characterized
STGD patients with ABCA4 mutations and their further differ-
entiation to RPE and photoreceptor cells could potentially
elicit some clinical improvement. Conversely, in cases where
differing clinical manifestations of HRD arise from the same
gene mutation (for example, adult vitelliform, central areolar
choroidal, and butterfly-shaped dystrophies all arise from a
mutation in the RDS gene on the short arm of chromosome
six (Table 1)), the same corrective gene therapy might be
applied to patients spanning more than one dystrophy, elicit-
ing wider clinical impact. Care should be exercised with this
approach, however, because overexpression of particular
genes may carry the additional risk of unwanted and unpre-
dicted physiological effects. In addition, applications of this
approach for other single-gene disorders will depend very
much on the size of the gene of interest because vectors have
limited packing capacity, which may convey limitations in
terms of the size of the defect that could be fixed. This
approach will not work in genetic diseases associated with
dominant negative effect such as STGD patients with ELOVLA4
mutations or SFD patients with TIMP3 [207, 208]. In these
cases, gene correction at the iPSC stage is likely to be the
only means of gene correction. There are already develop-
ments in this field mainly applied to hESCs using zinc finger
nucleases [209]; however, this method has to be established
and tested in human iPSCs and in multiple loci with high effi-
ciency before this approach can be envisaged as a tool in cell
and gene therapy.

Correction of gene defects in other retinal disorders such
as AMD already associated with multiple genes, polymor-
phisms, and environmental factors, however, is unlikely using
the iPSC approach, and in this case the usefulness of iPSC
technology will mainly rely on the development of screening
tools that will enable identification of individuals with high-
risk of advanced AMD prior to retinal degeneration.

Translation: Challenges Ahead?

Efficient tissue delivery, graft integration, and synaptic con-
nection with host circuitry remain as issues for the successful
clinical translation of cell-based restorative therapies [210]. In
patient terms, those affected by severe macular degeneration
may be more willing to consider the option of translational
human surgery. There is rarely any HRD-associated cognitive
impairment, which means that informed consent could be per-
formed with the patients prior to any translational research.
Exploiting HMD with well characterized causal mutations is
an excellent starting point for the translation of gene therapy
combined with iPSC cell-replacement strategies from bench
to bedside. For example, STGD is relatively well character-
ized and quite common, making it important and clinically
relevant, and it primarily affects the macula, thus allowing
potentially simple surgical replacement of macular cells with
genetically-corrected iPSCs.
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Cell replacement requires the stable and appropriate non-
disruptive integration of functional cells within the correct
lamina, the formation of synapses with appropriate interneur-
ons, and the correct electrophysiological and transmitter
responses to light to enable the transmission of discernable
visual responses to the cortex. It also requires the long-term
survival and viability of grafted cells. Variables in the trans-
plantation procedure in humans include the source of cells,
age of the donor, transplantation method, and stage of host
disease progression [211, 212]. The presence of xenogeneic
molecules in protocols used to direct derivation and differen-
tiation in vitro will limit clinical use. Similar to the use of
hESCs, driving patient-specific stem cells towards a desired
lineage in appropriate numbers remains a challenge. Recent
advances in differentiating stem cells to photoreceptors have
been achieved, meaning there are already some methodologies
in place for generating the cells of interest [160, 161, 213],
and the results of the study by MacLaren et al. provides infor-
mation about the developmental time point to which we
should drive cellular differentiation to encourage graft integra-
tion [158]. Although much work needs to be done to enhance
the incorporation of grafted cells, it may be that in some
patients only a small number of integrated cells are needed
for functional restoration. In one study, the onset of obvious
visual symptoms in glaucoma patients was reported only after
loss of 25-35% of ganglion cells [214]. It should be noted
here that the possibility of correcting the underlying etiology
in the end stage of disease by iPSCs, gene correction, and
transplantation is attractive, but the comprehensiveness of this
approach is dependent on the viability of other vital support-
ive retinal components. Patients affected by perturbed retinal
cytoarchitecture will be less amenable to this therapy, making
clinical assessment of these parameters by in vivo imaging
and electrophysiology vital.

The continued identification of candidate genes and suita-
ble delivery vehicles is key. Research into the molecular
genetics of HRD is at an early stage, making disease classifi-
cation on the basis of molecular pathology difficult. Patients
previously have been divided by phenotype; however, the im-
portance of accurately genotyping individual cases must be
realized. This is likely currently complicated by expense or
the lack of a well identified gene defect with an available test
for exploitation.

Additionally, HRDs are inherited due to numerous types
of mutations (loss of function, gain of function) and are clini-
cally and genetically heterogeneous [215]. Mutation screening
in STGD patients has led to the identification of 400 sequence
variations in the ABCA4 gene [216-219]. In early-onset HRD,
genetic tests are able to be conducted more readily; however,
this becomes problematic in the case of AMD where, due to
the late onset, parents of affected individuals are often
deceased and their offspring yet to be affected [220]. In repre-
sentative animal models of HRD, the efficiency of gene cor-
rection techniques can be tested [53, 81], and this will be fur-
ther enhanced by the availability of patient-derived iPSCs.

One concern might be whether inheritance of HRD will
affect gene therapy potential; for example, STGD is recessive
and the mutations give variable penetration and expressivity.
However, recessive models have been more amenable to gene
therapy by restoration of the wild-type form of mutant genes.
Photoreceptor rescue was achieved in 1996 by Bennett and
colleagues who used adenovirus to introduce wild-type
PDEGp in the rd mouse [221], an effect that was improved by
the use of second-generation adenovirus and then lentivirus
[222, 223]. The results of three independent human retinal
RPEG65-replacement trials, published recently, demonstrate the
safety of subretinal vector delivery in humans and show that

Restorative therapy for macular dystrophy

gene therapy in advanced cases of human LCA could induce
modest improvements in vision [148—-150, 224]. Two of the
studies [148, 149] used the ETDRS chart and an obstacle
course combined with various other tests; however, only one
reported electroretinography results [149]. Each study utilized
recombinant AAV-2 vector delivered subretinally. In the
study by Maguire et al. in Philadelphia [148], human RPE65
carrying a chicken ff-actin promoter was introduced into three
patients, two with homozygous missense and one with null
mutation in RPE6S. Patients reported improvements in vision
at 2 weeks and measured improvements in pupillometry and
nystagmus frequency over several weeks, concomitant with
improvements in confidence and time taken to complete an
obstacle course in all subjects [148]. The London study
reported by Bainbridge et al., [149] delivered the human
RPEG65 gene under a human RPE65 promoter in three LCA
patients with RPE65 missense mutations. Unlike the first
study, only one patient showed visual improvement as meas-
ured by ETDRS alongside significantly improved retinal sen-
sitivity, dark-adapted perimetry, and dramatic improvements
in mobility through an obstacle course (from 77 to 14 sec-
onds). Electroretinography results however, were not
improved [149]. The third study reported treatment of three
young patients with LCA. All three patients showed signifi-
cantly increased visual sensitivity in vector treated retinal
regions, yet the kinetics of the newly restored retinoid cycle
in rod and cone photoreceptors was slow [150]. In all studies
there were no adverse systemic effects. The safety of the
technique has thus been demonstrated, though visual improve-
ments were modest, which suggests that perhaps treatment
needs to occur at an earlier stage in the disease course or in
combination with cell-replacement therapy.

It is important to show that iPSCs can be generated from
older patients and whether patients at later stages of disease
are amenable to combinatorial therapy. Bainbridge et al. pro-
posed that the patient who benefited from gene therapy did so
due to being treated while at a less advanced stage than
their counterparts [149], highlighting the importance of under-
standing the optimal window of opportunity for genetic
intervention. It cannot be ruled out, however, that observed
differences between the studies may have occurred due to the
use of different promoters, the subretinal delivery of varying
amounts (150 gl vs. 1,000 wul), or slight variations in
methodology.

Furthermore, although the eye and subretinal space in par-
ticular is relatively immunologically privileged, the immune
response may be exacerbated and affect graft survival in
HRD cases where the blood retinal barrier is compromised
[11, 211]. There is evidence that AMD has an inflammatory
element, and avoiding any element of immune rejection
would be vital in terms of disease recurrence. Use of iPSCs
would avoid an immune response to the donor cells them-
selves, but genetically engineered modifications are being
made to viral vectors to limit the immune response using this
approach [225].

Questions and Future Directions

Whilst developing the potential of iPSCs as a therapeutic
strategy overcomes many of the issues associated with the use
of hESCs (ethics, immunorejection), there are some very im-
portant control experiments that must be performed before
translation of iPSC-based cell therapies to the clinic can
become a reality. Fundamental questions include: Are these
cells identical to hESCs? Do they have a normal karyotype?
Can we efficiently differentiate iPSCs to photoreceptors and
RPE? Given recent successes in generating photoreceptor pre-
cursors and functional RPE from hESCs, one would imagine
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similar results could be achieved with iPSCs. There is already
evidence that iPSCs can differentiate into derivatives of the
three germ layers [186]; however, it remains unknown
whether retroviral transduction has any long lasting effects or
whether cells might be reactivated under stress or with a lack
in instructive cues, leading to the presence of potentially on-
cogenic cells. In light of this last comment, virus-free, nonin-
tegrating plasmid reprogramming has been demonstrated in
embryonic mouse fibroblasts [226], albeit at low efficiency
compared with retroviral methods. These nonviral iPSCs were
free from transgene integration in host chromosomes, demon-
strated a capacity to differentiate towards all three germ
layers, and could produce chimeric mice when injected into
blastocysts. It is clear that while HMD with clearly identified
etiology and a common causal mutation are the best candi-
dates for combinatorial iPSC/gene/transplantation therapy,
much work remains to be done to transform the current
course of action after diagnosis of HMD for such therapy to
become a reality in the near future. Improved knowledge of
the mechanisms and molecular basis of HMD alongside con-
tinued safety evaluation of the long-term action and conse-
quences of gene therapy and cell restoration will allow us to
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move towards tailoring safe, more specific and efficient re-
storative therapies for patients affected by this heterogeneous
group of currently incurable diseases.
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