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Abstract

The unsteady natural convection flow of an incompressible viscous fluid near a vertical plate that applies an arbitrary shear
stress to the fluid is studied using the Laplace transform technique. The fluid flow is due to both the shear and the heating
of the plate. Closed-form expressions for velocity and temperature are established under the usual Boussinesq
approximation. For illustration purposes, two special cases are considered and the influence of pertinent parameters on the
fluid motion is graphically underlined. The required time to reach the steady state in the case of oscillating shear stresses on
the boundary is also determined.
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Introduction

Free convection flow past a vertical plate has been extensively

studied and continues to receive much attention due to its

industrial and technological applications. It is encountered, for

instance, in the cooling of nuclear reactors or in the study of

environmental heat transfer processes. Soundalgekar and Gupta

[1] and Singh and Kumar [2] studied the free convection flow

over an accelerated, respectively exponentially accelerated, infinite

vertical plate, while Merkin [3] presented a discussion on the

similarity solutions. Transient free convection flow past an infinite

vertical plate has been studied, for instance, by Ingham [4] and

Das et al. [5]. Many other unsteady free convection flows over an

infinite plate, taking into account radiative, porous or magnetic

effects, have also been investigated under different sets of

boundary conditions. Some of the most recent and interesting

results seem to be those obtained by Toki and Tokis [6], Toki [7],

Rajesh [8], Narahari and Ishak [9], Narahari and Nayan [10],

Samiulhaq et al. [11,12] and Narahari and Debnath [13]. In their

work, Narahari and Debnath, for instance, consider the unsteady

magnetohydrodynamic free convection flow with constant heat

flux and heat generation or absorption, and obtain exact solutions

when the plate is exponentially or uniformly accelerated. Free

convective boundary layer flows with Newtonian heating or

thermal slip conditions have been numerically investigated by

Uddin et al. [14], respectively Khan et al. [15]. However, in all

these works, boundary conditions for velocity are imposed,

although in some problems, the force applied on the boundary

is specified. In this case, unlike the usual ‘‘no slip’’ condition, a

boundary condition on the shear stress has to be used.

It is also important to specify that the ‘‘no slip’’ boundary

condition may not be necessarily applicable to flows of some

polymeric fluids that can slip or slide on the boundary. Thus, the

shear stress boundary condition is particularly meaningful (see also

Renardy [16]) and the first exact solutions for fluid motions with

shear-stress on the boundary seem to be those of Waters and King

[17] and Bandelli et al. [18]. Over time, many other papers studied

motion problems in which the shear stress is given on the

boundary, but they did not take into consideration thermal effects.

In a recent paper [19], the unsteady free convection flow near a

vertical plate that applies an arbitrary shear stress to the fluid is

studied. Porous and radiative effects are taken into consideration,

but the plate is kept at a constant temperature.

In the present study, closed-form solutions corresponding to the

unsteady free convection flow of an incompressible viscous fluid

near an infinite vertical plate with exponential heating are derived

using Laplace transforms. The thermal boundary condition is

chosen so that the temperature variations in the flow field would

be sufficiently large or small and some possible situations would

appear as limiting cases. The plate is initially at rest and then

suddenly it applies an arbitrary shear stress to the fluid. The

convective effects and viscous dissipation are neglected, and exact

solutions for dimensionless temperature, Nusselt number and

velocity are presented in simple forms. Such solutions are

uncommon in the literature. They can generate a wide range of

exact solutions for different motions with technical relevance. In

order to illustrate their importance, two special cases are

considered, and the effects of pertinent parameters on the

temperature and velocity distributions are graphically underlined.

The required time to reach the steady state for oscillating shears

on the boundary is also determined.

Statement of the Problem

Let us consider the unsteady free convection flow of an

incompressible viscous fluid near an infinite vertical plate with

exponential heating. The x-axis is taken along the plate in the

vertical direction and the y-axis is normal to the plate. Initially, the
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plate and the fluid are at rest at the constant temperature T?.

After t~0z the plate, whose temperature is raised or lowered to

T?zTw(1{ae{bt), applies a shear stress Vf0(t)=m to the fluid

where m is the coefficient of viscosity and f0 0ð Þ~0. The fluid is

gradually moved and its flow is considered to be laminar without

any pressure gradient in the flow direction. Assuming that the

convective effects and viscous dissipation are negligible and

bearing in mind the boundary layer and Boussinesq approxima-

tions, the governing equations for such a flow are [20–22]

Lu(y,t)

Lt
~n

L2u(y,t)

Ly2
zgb T(y,t){T?½ �; y,tw0, ð1Þ

LT(y,t)

Lt
~

k

rcp

L2T(y,t)

Ly2
; y,tw0, ð2Þ

where u(y,t) is the fluid velocity along the x-axis, T(y,t) the

temperature, n the kinematic viscosity, g the acceleration due to

the gravity, b the volumetric coefficient of thermal expansion, k the

thermal conductivity, r the density and cp is the specific heat of the

fluid at constant pressure.

The appropriate initial and boundary conditions are

u(y,0)~0, T(y,0)~T?; y§0, ð3Þ

Lu(y,t)

Ly

����
y~0

~Vf0(t); tw0, ð4Þ

T(0,t)~T?zTw(1{ae{bt); tw0, ð5Þ

u(y,t)?0, T(y,t)?T? as y??, ð6Þ

where V, a§0 and bw0 are constants. The dimensions of V and

b are s{1.

Introducing the next non-dimensional variables and functions

t�~
t

t0
, y�~

yffiffiffiffiffiffi
nt0

p , u�~
uffiffiffiffiffiffiffiffiffi
n=t0

p , T�~
T{T?

Tw

,

V�~Vt0, b�~bt0, f (t�)~f0(t0t�),

ð7Þ

where t0w0 is a characteristic time and dropping the star

notation, we obtain the next dimensionless initial and boundary-

value problem

L2u(y,t)

Ly2
~

Lu(y,t)

Lt
{GrT(y,t); y,tw0, ð8Þ

L2T(y,t)

Ly2
~Pr

LT(y,t)

Lt
; y,tw0, ð9Þ

u(y,0)~0, T(y,0)~0; y§0, ð10Þ

Lu(y,t)

Ly

����
y~0

~Vf (t), T(0,t)~1{ae{bt; tw0, ð11Þ

u(y,t)?0, T(y,t)?0 as y??, ð12Þ

where Pr~mcp=k is the Prandtl number and Gr~(gbTwt
3=2
0 )=

ffiffiffi
n
p

is the Grashof number. The function f (:) is assumed to be

piecewise continuous and of exponential order for t?? [23].

Method of Solution and Analytic Results

In order to determine the solution of the initial and boundary-

value problem (8)–(12) we use the Laplace transform technique to

eliminate the variable t. Exact analytical expressions for dimen-

sionless temperature and velocity fields will be separately

established for Pr=1 and Pr~1. Nusselt number is also

determined.

The case Pr=1
Applying the Laplace transform to (9) and using the

corresponding initial and boundary conditions for temperature,

we find the next problem in the transform domain

L2 �TT(y,q)

Ly2
~Pr q �TT(y,q), ð13Þ

�TT(0,q)~
1

q
{

a

qzb
, �TT(y,q)?0 as y??, ð14Þ

where �TT(y,q) is the Laplace transform of T(y,t) and q is the

transform parameter.

Figure 1. Temperature profiles for different values of t.
doi:10.1371/journal.pone.0078352.g001
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The solution of the problem (13) and (14) is given by

�TT(y,q)~
1

q
e{y

ffiffiffiffiffiffi
Pr q
p

{
a

qzb
e{y

ffiffiffiffiffiffi
Pr q
p

: ð15Þ

Now, applying the inverse Laplace transform to this last

equality, we find for the dimensionless temperature T(y,t) the

expression (see also [24])

T(y,t)~erfc
y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p

 !
{

ay
ffiffiffiffiffi
Pr
p

2
ffiffiffi
p
p e{bt

ðt
0

1

s
ffiffi
s
p exp {

y2Pr

4s
zbs

� �
ds,

ð16Þ

which clearly satisfies the initial condition (10)2 and the natural

condition (12)2 at infinity. However, in this form, the boundary

condition (11)2 seems not to be satisfied. In order to eliminate this

drawback, we present for T(y,t) the equivalent but elegant form

(see also [25])

T(y,t)~erfc
y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p

 !
{

a

2
e{bt eiy

ffiffiffiffiffiffi
bPr
p

erfc
y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p zi

ffiffiffiffiffi
bt
p

 !
ze{iy

ffiffiffiffiffiffi
bPr
p

erfc
y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p {i

ffiffiffiffiffi
bt
p

 !" #
,

ð17Þ

in terms of the complementary error function erfc(:).

The Nusselt number Nu, which measures the heat transfer rate

at the plate, can be obtained using any of the above expressions for

temperature. However, we must be very careful because the

immediate results can be misleading. If we use (16), for instance,

the correct result

Nu~{
LT(y,t)

Ly

����
y~0

~(1{a)

ffiffiffiffiffi
Pr
pffiffiffiffiffi

pt
p z2ab

ffiffiffiffiffi
Pr
p ffiffiffi

p
p e{bt

ðffiffitp
0

ebs2
ds, ð18Þ

is obtained taking into account the fact that

ðt
0

1

s
ffiffi
s
p exp {

y2Pr

4s
zbs

� �
ds~{

2ffiffi
t
p exp {

y2Pr

4t
zbt

� �
z

ðffiffitp
0

y2Pr

s4
z4b

� �
exp {

y2Pr

4s2
zbs2

� �
ds:

For velocity, we apply the Laplace transform to (8) and use both

the corresponding initial and boundary conditions and (15) for
�TT(y,q). The problem in the transform domain is given by

Figure 2. Temperature profiles for different values of Pr.
doi:10.1371/journal.pone.0078352.g002

Figure 3. Variation of Nusselt number for different values of Pr.
doi:10.1371/journal.pone.0078352.g003

Figure 4. Velocity profiles for different values of Pr.
doi:10.1371/journal.pone.0078352.g004

(17)
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L2�uu(y,q)

Ly2
~q�uu(y,q){Gr

1

q
{

a

qzb

� �
e{y

ffiffiffiffiffiffi
Pr q
p

, ð19Þ

L�uu(y,q)

Ly

����
y~0

~V�ff (q), �uu(y,q)?0 as y??, ð20Þ

where �uu(y,q) and �ff (q) are the Laplace transforms of u(y,t) and

f (t), respectively. The solution of the boundary value problem (19)

and (20) is given by

�uu(y,q)~{V�ff (q)
e{y

ffiffi
q
p

ffiffiffi
q
p z

Gr

Pr{1

1

q

1

q
{

a

qzb

� � ffiffiffiffiffi
Pr
p

e{y
ffiffi
q
p

{e{y
ffiffiffiffiffiffi
Pr q
p� �

:

ð21Þ

Inverting this result, we get for u(y,t) the simple form

u(y,t)~{
Vffiffiffi

p
p
ðt
0

f (t{s)ffiffi
s
p exp {

y2

4s

� �
dszu1(y,t){u2(y,t), ð22Þ

where

u1(y,t)~
Gr

ffiffiffiffiffi
Pr
p

Pr{1

tz
y2

2
{

a

b

� �
erfc

y

2
ffiffi
t
p

� �
{

y
ffiffi
t
pffiffiffi
p
p e{y2=(4t)z

2ae{bt

b
ffiffiffi
p
p

ð?
y=(2

ffiffi
t
p

)

exp
by2

4s2
{s2

� �
ds

2
64

3
75,

ð23Þ

u2(y,t)~
Gr

Pr{1
tz

y2Pr

2
{

a

b

� �
erfc

y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p

 !
{

y
ffiffiffiffiffiffiffiffi
Pr t
p ffiffiffi

p
p e{y2Pr=(4t)

"

z
2ae{bt

b
ffiffiffi
p
p

ð?
y
ffiffiffiffi
Pr
p

=(2
ffiffi
t
p

)

exp
by2Pr

4s2
{s2

� �
ds

3
75:

ð24Þ

It is worth pointing out that the two integrals from (23) and (24)

can be further processed (see also [6]) in order to provide for

u1(y,t) and u2(y,t) the explicit and elegant forms

u1(y,t)~
Gr

ffiffiffiffiffi
Pr
p

Pr{1
tz

y2

2
{

a

b

� �
erfc

y

2
ffiffi
t
p

� �
{

y
ffiffi
t
pffiffiffi
p
p e{y2=(4t)

�

z
ae{bt

2b
eiy
ffiffi
b
p

erfc
y

2
ffiffi
t
p zi

ffiffiffiffi
bt
p� �

ze{iy
ffiffi
b
p

erfc
y

2
ffiffi
t
p {i

ffiffiffiffi
bt
p� �	 
�

,

ð25Þ

u2(y,t)~
Gr

Pr{1
tz

y2Pr

2
{

a

b

� �
erfc

y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p

 !
{

y
ffiffiffiffiffiffiffiffi
Pr t
p ffiffiffi

p
p e{y2Pr=(4t)

(

z
ae{bt

2b
eiy
ffiffiffiffiffiffi
b Pr
p

erfc
y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p zi

ffiffiffiffi
bt
p

 !
ze{iy

ffiffiffiffiffiffi
b Pr
p

erfc
y
ffiffiffiffiffi
Pr
p

2
ffiffi
t
p {i

ffiffiffiffi
bt
p

 !" #)
:

ð26Þ

Figure 5. Velocity profiles for different values of Gr.
doi:10.1371/journal.pone.0078352.g005

Figure 6. Comparison between the velocity u(y,t) and its
thermal component ut(y,t) for different values of t.
doi:10.1371/journal.pone.0078352.g006

Figure 7. The required time to reach the steady-state for sine
oscillations of the boundary shear.
doi:10.1371/journal.pone.0078352.g007

(26)

(25)
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Direct computations show that u(y,t), given by (22), satisfies all

imposed initial and boundary conditions. In order to prove the

boundary condition (11)1, for instance, it is sufficient to show that

the derivative with respect to y of the first term from (22) can be

written in the equivalent form

Vy

2
ffiffiffi
p
p
ðt
0

f (t{s)

s
ffiffi
s
p exp {

y2

4s

� �
ds~

2Vffiffiffi
p
p

ð?
y=(2

ffiffi
t
p

)

f t{
y2

4s2

� �
e{s2

ds: ð27Þ

The case Pr~1
The temperature distribution corresponding to this case can be

directly obtained by making Pr~1 in any of equations (16) or (17).

The equality (17), for instance, becomes

T(y,t)~erfc
y

2
ffiffi
t
p

� �
{

a

2
e{bt eiy

ffiffi
b
p

erfc
y

2
ffiffi
t
p zi

ffiffiffiffi
bt
p� �

ze{iy
ffiffi
b
p

erfc
y

2
ffiffi
t
p {i

ffiffiffiffi
bt
p� �	 


:

ð28Þ

For velocity, by making Pr~1 into (19) and using the same

method as before, we find that

u(y,t)~{
Vffiffiffi

p
p
ðt
0

f (t{s)ffiffi
s
p exp {

y2

4s

� �
dsz

Gr

2

t{
y2

2
{

a

b

� �
erfc

y

2
ffiffi
t
p

� �
z

ae{bt

2b
eiy
ffiffi
b
p

erfc
y

2
ffiffi
t
p zi

ffiffiffiffi
bt
p� �

ze{iy
ffiffi
b
p

erfc
y

2
ffiffi
t
p {i

ffiffiffiffi
bt
p� �	 
� �

z
yGr

2

ffiffi
t
pffiffiffi

p
p exp {

y2

4t

� �
{

aie{btffiffiffi
b
p eiy

ffiffi
b
p

erfc
y

2
ffiffi
t
p zi

ffiffiffiffi
bt
p� �

{e{iy
ffiffi
b
p

erfc
y

2
ffiffi
t
p {i

ffiffiffiffi
bt
p� �	 
" #

:

Of course, if the plate is maintained at a constant temperature,

namely a~0, the above solutions are substantially simplified. In

the case Pr~1, for example, they take the simple forms (see [22]

for temperature and Nusselt number)

T(y,t)~erfc
y

2
ffiffi
t
p

� �
, Nu~

1ffiffiffiffiffi
pt
p , ð30Þ

u(y,t)~{
Vffiffiffi

p
p
ðt
0

f (t{s)ffiffi
s
p exp {

y2

4s

� �
dsz

Gr

2
t{

y2

2

� �
erfc

y

2
ffiffi
t
p

� �
z

yGr

2

ffiffiffi
t

p

r
exp {

y2

4t

� �
:

ð31Þ

In the absence of thermal effects, as expected, in all cases the

velocity is reduced to its mechanical component

um(y,t)~{
Vffiffiffi

p
p
ðt
0

f (t{s)ffiffi
s
p exp {

y2

4s

� �
ds, ð32Þ

which is equivalent to the similar result obtained from [19].

Consequently, the fluid velocity u(y,t) can be written as a sum of

its mechanical and thermal components um(y,t), respectively,

ut(y,t).

Applications

The previous solutions can be used to obtain the dimensionless

temperature, Nusselt number and velocity distributions corre-

sponding to any motion problem with physical relevance. For

illustration purposes, two special cases are considered, and the

corresponding solutions are graphically discussed.

Flow induced by a plate that applies a constant shear to
the fluid

Suppose that the vertical plate suddenly applies a constant shear

stress V=m to the fluid. In this case the function f (:) is identical to

the Heaviside unit step function H(:) and

um(y,t)~{
Vffiffiffi

p
p
ðt
0

1ffiffi
s
p exp {

y2

4s

� �
ds, ð33Þ

can be written in the simple but equivalent form

um(y,t)~{2V

ffiffiffi
t

p

r
exp {

y2

4t

� �
zVy erfc

y

2
ffiffi
t
p

� �
: ð34Þ

The temperature distribution is given by any of equations (16), (17)

or (28), while the corresponding velocity is obtained introducing

(34) into (22) or (29).

Flow due to a plate that applies oscillating shears to the
fluid

Let us now assume that the vertical plate applies an oscillatory

shear Vsin(vt)=m or Vcos(vt)=m to the fluid. The function f (t)
corresponding to these motions is H(t)sin(vt), respectively

H(t)cos(vt) and the associated mechanical components of velocity

are

Figure 8. The required time to reach the steady-state for cosine
oscillations of the boundary shear.
doi:10.1371/journal.pone.0078352.g008

(29)
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ums(y,t)~{
Vffiffiffi

p
p
ðt
0

sin½v(t{s)�ffiffi
s
p exp {

y2

4s

� �
ds,

umc(y,t)~{
Vffiffiffi

p
p
ðt
0

cos½v(t{s)�ffiffi
s
p exp {

y2

4s

� �
ds:

ð35Þ

The temperature distribution is the same as before, but the

corresponding velocities are obtained by introducing (35) in (22) or

(29). The starting solutions (35) are important for those who want

to eliminate the transients from their experiments. They can be

written as a sum of steady-state and transient solutions. In order to

determine the required time to reach the steady-state, namely the

time after which the fluid flows according to the steady-state

solutions, we present here the steady-state solutions only, namely

(see also [19])

umss(y,t)~{
Vffiffiffi

p
p

ð?
0

sin½v(t{s)�ffiffi
s
p exp {

y2

4s

� �
ds

~
Vffiffiffiffi
v
p exp {y

ffiffiffiffi
v

2

r� �
cos vt{y

ffiffiffiffi
v

2

r
z

p

4

� �
,

ð36Þ

umcs (y,t)~{
Vffiffiffi

p
p

ð?
0

cos½v(t{s)�ffiffi
s
p exp {

y2

4s

� �
ds

~{
Vffiffiffiffi
v
p exp {y

ffiffiffiffi
v

2

r� �
sin vt{y

ffiffiffiffi
v

2

r
z

p

4

� �
:

The steady-state components (36) and (37), unlike the starting

solutions (35), differ by a phase shift. This is the reason why we

presented the solutions separately, corresponding to the sine or

cosine shear stresses on the boundary.

Numerical Results and Discussion

The unsteady natural convection flow of an incompressible

viscous fluid near an infinite vertical plate with exponential heating

is analytically studied. Initially, the plate is at rest and then it

suddenly applies an arbitrary time-dependent shear stress to the

fluid. Exact solutions are established for dimensionless tempera-

ture, Nusselt number and velocity without any restriction.

Equivalent forms are presented for the temperature, while the

fluid velocity u(y,t) is presented as a sum of mechanical um(y,t)
and thermal ut(y,t) components. In order to illustrate the

theoretical and practical value of general solutions, two special

cases corresponding to constant or oscillating shears on the

boundary are considered. Such solutions, in addition to serving as

approximations to some specific initial-boundary value problems,

can also be used as tests to verify numerical schemes that are

developed to study more complex unsteady flow problems.

In order to get some physical insight of the results corresponding

to a constant shear on the boundary, some numerical calculations

have been carried out for different values of pertinent parameters

that describe the flow characteristics. Fig. 1 presents the

temperature profiles against y at different times and fixed values

of the constants a,b and Prandtl number Pr. The fluid temperature

is an increasing function with respect to time and tends to a steady-

state as the time increases. It is also found that the thermal

boundary layer thickens over time. The influence of Prandtl

number Pr on the temperature is shown in Fig. 2 for t~2. It is

clearly seen that an increase of Pr implies a significant decrease of

the temperature. The temperature of the fluid, as before, smoothly

decreases from a maximum value at the boundary to a minimum

value for large values of y. Its values at any distance y are always

higher for Pr~7 than for Pr~10 or 15. Furthermore, an increase

of Prandtl number implies a decreasing of the thermal boundary

layer thickness. This is possible because greater values of Pr are

equivalent to decreasing thermal conductivity. The variation of

Nusselt number over time is shown in Fig. 3 for three values of Pr.

Up to a critical value of time (&0:4), the Nusselt number profiles

decrease with respect to Pr and then increase. Furthermore, as

time advances, the Nusselt number increases and becomes

constant in time.

The effects of Pr and Gr numbers on the fluid motion are

presented in Figs. 4 and 5. Especially, they are significant in the

vicinity of the plate and the fluid velocity smoothly decreases from

maximum values at the wall to the zero value for increasing y. The

velocity of the fluid, as it results from Fig. 4, is a decreasing

function with respect to Pr. This is consistent with the fact that the

fluids with high Prandtl number have greater viscosity and move

slowly. Velocity profiles against y are also presented for different

positive and negative values of Gr in Fig. 5. Physically, Grw0
corresponds to an externally cooled plate [8] and Grv0
corresponds to an externally heated plate. It is clearly seen that

the velocity is an increasing function with respect to Gr in case of

the cooling of the plate. This is because an increase in Gr leads to

an increase in the buoyancy force which causes the increase in the

fluid velocity. But a reverse effect is found in case of the heating of

the plate. For comparison purposes, profiles of velocity u(y,t) and

of its thermal component ut(y,t) against y are shown in Fig. 6 for

different values of t. It is clearly seen that the free convection

effects are significant and the boundary layer thickness increases in

both cases.

Finally, the required time to reach the steady-state for motions

due to a plate that applies oscillatory shear stresses to the fluid is

determined by Figs. 7 and 8. At small values of time, the difference

between starting and steady-state solutions is rather large. This

difference, which is more significant for the sine oscillations of the

shear, rapidly decreases for cosine oscillations of the shear on the

boundary and the required time to reach the steady-state in this

case (namely, t~8s) is much smaller in comparison with that

corresponding to sine oscillations of the boundary shear stress. Of

course, this time also depends on the constants V and v, but we

did not include the corresponding graphics here.

Conclusions

The purpose of this work is to provide exact solutions for the

unsteady natural convection flow of an incompressible viscous

fluid near an infinite plate with shear stress boundary conditions

and exponential heating. More exactly, after time t~0z, the

exponentially heated plate applies an arbitrary shear stress to the

fluid. The governing coupled linear partial differential equations

are solved using Laplace transforms and closed-form solutions are

obtained for velocity and temperature without any restriction. As it

results from (2), the radiative effects are not taken into

consideration in our work. However, in view of the reference

[19] (see also the work of Magyari and Pantokratoras [26]), it is

clearly seen that the solutions of the same problem with radiative

effects are immediately obtained from our solutions by substituting
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Pr by Preff ~Pr=(1zNr) where Nr is the radiation-conduction

parameter. Consequently, the study of a natural convection flow

with or without radiative effects is practically the same problem.

The temperature of the fluid, as well as its velocity, is the same for

an infinite set of values of parameters Pr and Nr which correspond

to the same effective Prandtl number Preff .

Finally, in order to emphasize the influence of pertinent

parameters on the temperature, Nusselt number and velocity

distributions, and to get some physical insight of the obtained

results, two special cases are considered and some numerical

calculations and graphs have been carried out. The main findings

are:

– Exact solutions for temperature and velocity are obtained in

terms of the complementary error function. They satisfy all

imposed initial and boundary conditions.

– The velocity of the fluid u(y,t) can be written as a sum of its

mechanical and thermal components um(y,t), respectively

ut(y,t).

– The thermal boundary layer, as well as the temperature of the

fluid, increases in time and decreases with respect to the

Prandtl number Pr.

– Nusselt number profiles decrease with respect to Pr near the

surface of the plate and then increase. Nusselt number values

tend to a steady value as the time increases.

– The effects of Pr and Gr numbers on the fluid motion are

significant and fluids with higher Prandtl number or smaller

positive Grashof number move slowly.

– The fluid velocity, as expected, is an increasing function with

respect to Gr in the case of the cooling of the plate. A reverse

effect is observed in case of the heating of the plate.

– The required time to reach the steady-state is much smaller in

the case of cosine oscillations in comparison to sine oscillations

of the shear stress on the boundary. This is obvious, because at

time t~0 the shear stress on the boundary is zero for the sine

oscillations of the shear.
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