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Abstract

Magnetic resonance electrical properties tomography (MREPT) aims to visualize the inter-

nal high-frequency conductivity distribution at Larmor frequency using the B1 transceive

phase data. From the magnetic field perturbation by the electrical field associated with the

radiofrequency (RF) magnetic field, the high-frequency conductivity and permittivity distribu-

tions inside the human brain have been reconstructed based on the Maxwell’s equation.

Starting from the Maxwell’s equation, the complex permittivity can be described as a second

order elliptic partial differential equation. The established reconstruction algorithms have

focused on simplifying and/or regularizing the elliptic partial differential equation to reduce

the noise artifact. Using the nonlinear relationship between the Maxwell’s equation, mea-

sured magnetic field, and conductivity distribution, we design a deep learning model to visu-

alize the high-frequency conductivity in the brain, directly derived from measured magnetic

flux density. The designed moving local window multi-layer perceptron (MLW-MLP) neural

network by sliding local window consisting of neighboring voxels around each voxel predicts

the high-frequency conductivity distribution in each local window. The designed MLW-MLP

uses a family of multiple groups, consisting of the gradients and Laplacian of measured B1

phase data, as the input layer in a local window. The output layer of MLW-MLP returns the

conductivity values in each local window. By taking a non-local mean filtering approach in

the local window, we reconstruct a noise suppressed conductivity image while maintaining

spatial resolution. To verify the proposed method, we used B1 phase datasets acquired

from eight human subjects (five subjects for training procedure and three subjects for pre-

dicting the conductivity in the brain).

Introduction

Various techniques to measure and analyze the electrical properties of biological tissues using

a magnetic resonance imaging (MRI) scanner have been developed and experimented [1–7].

Using a conventional MRI scanner without any external electrical stimulation, magnetic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251417 May 20, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lee MB, Jahng G-H, Kim HJ, Kwon O-I

(2021) High-frequency conductivity at Larmor-

frequency in human brain using moving local

window multilayer perceptron neural network.

PLoS ONE 16(5): e0251417. https://doi.org/

10.1371/journal.pone.0251417

Editor: Viktor Vegh, University of Queensland,

AUSTRALIA

Received: August 13, 2020

Accepted: April 26, 2021

Published: May 20, 2021

Copyright: © 2021 Lee et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This work was supported by the National

Research Foundation of Korea (NRF), grants

funded by the Korean government(MEST) (No.

2019R1A2C1004660, 2020R1F1A1A01074353,

2020R1A2C1004749). This paper was written as

part of Konkuk University’s research support

program for its faculty on sabbatical leave in 2020.

https://orcid.org/0000-0002-4200-6860
https://doi.org/10.1371/journal.pone.0251417
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251417&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251417&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251417&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251417&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251417&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251417&domain=pdf&date_stamp=2021-05-20
https://doi.org/10.1371/journal.pone.0251417
https://doi.org/10.1371/journal.pone.0251417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


resonance electrical properties tomography (MREPT) technique successfully recovers the con-

ductivity distribution at Larmor-frequency (about 128 MHz at 3 T) [7–9]. Since the electrical

conductivity of biological tissues is primarily determined by the concentration and mobility of

ions, a non-invasive and in-vivo high-frequency conductivity imaging has the potential to be

sensitive to physiological and pathological conditions of tissues [8]. Using B1 mapping tech-

nique with the eddy currents induced by RF pulse, numerous clinical studies using MREPT

have been conducted [10–13]. A recent work using MREPT technique shows that the recov-

ered high-frequency electrical conductivity provides sufficient contrast to microstructural

changes of tissues due to irradiation [14].

For the high-frequency conductivity, by assuming a local homogeneity, a direct algebraic

inversion method has been introduced [7]. Although the algebraic inversion method is easy

and recovers the conductivity values in each voxel, the assumption of local homogeneity pro-

duces artifacts around regions of complex conductivity structures even with noiseless data.

There have been efforts to avoid assuming local homogeneity [6, 15, 16]. A phase-based con-

ductivity imaging method including the conductivity gradient terms has been formulated by

solving a convection-reaction partial differential equation [6]. The contrast-source inversion

method applied to EPT (CSI-EPT) has been proposed to retrieve the conductivity and permit-

tivity maps within a domain of interest even for strongly inhomogeneous tissue profiles [15,

17]. MREPT reconstruction methods have still suffered from interfering noise and undesired

artifacts in the reconstructed conductivity map due to weak phase signals and defective

regions.

Recently, electrical properties tomography based on deep learning approaches, have been

introduced [18, 19]. However, deep learning techniques need exhaustive data sets in training

to increase accuracy of reconstructed conductivity image. For directly matching from the B1

phase map to the high-frequency conductivity map, a typical deep learning technique is neces-

sary to get data sets from a large number of human experiments. For these reasons, the pro-

posed methods depend on realistic simulated data sets using the head models [18, 19].

In this paper, we propose a moving local window multilayer perceptron (MLW-MLP) neu-

ral network method to reconstruct the high-frequency conductivity, which is robust to the

noise artifacts and prevents propagation artifacts due to defective regions. The high-frequency

conductivity based on the electro-magnetic system is deeply related to the first and second dif-

ferentiation of measured B1 transceive phase signals using an MRI scanner [20]. The proposed

MLW-MLP uses the gradients and Laplacian of measured B1 phase data as the input layer in a

local window consisting of neighboring voxels around a voxel in a region of interest (ROI).

The input layer consists of the gradient and Laplacian of measured B1 phase data and the out-

put of MLW-MLP is the conductivity values in the local window. We use rectifier linear unit

(ReLU), batch normalization, L2-regularization, and mean absolute error (MAE) to summarize

and assess the quality of the MLW-MLP machine learning model. After the training process,

the output of MLW-MLP is the high-frequency conductivity distribution in the local window.

By moving the local window with the stride 1, we recover the high-frequency conductivity

image in ROI. Since the designed MLW-MLP recover the conductivity values in the local win-

dow, we determine a representative predicted conductivity value at a voxel included in the

local window. To suppress the noise artifact and to increase the accuracy of predicted conduc-

tivity, a representative conductivity value is estimated as a weighted combination of conductiv-

ity values in each local window.

The proposed MLW-MLP method is proposed based on the following observations:

• The designed MLW-MLP included the measured phase map, φ, the gradients of φ, and the

Laplacian of φ based on the physical electromagnetic system.

PLOS ONE High-frequency conductivity at Larmor-frequency in human brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0251417 May 20, 2021 2 / 15

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0251417


• The locally predicted conductivity image can avoid the deteriorated region affected by defec-

tive phase data by solving the direct global matrix system using the convection-diffusion

equation ([6]).

• The multiple recovered conductivity images by moving a local window voxel-by-voxel can

determine the noise level of conductivity at a voxel. It is possible to use the noise level at a

voxel for suppress the noise artifacts without loss of the resolution of the conductivity.

To verify the proposed method, we generate the high-frequency conductivity using the con-

vection-reaction partial differential equation with a small regularization parameter as the

ground truth data [6]. The B1 phase signals are collected at 3 T MRI scanner from 8 subjects,

using 5 subjects for training procedures and 3 subjects to predict the high-frequency conduc-

tivity distribution. The number of local windows for training datasets were 76992. To quantita-

tively verify the proposed deep learning method, we artificially destroyed the measured phase

signals by adding random noise artifacts and generate defective regions. The accuracy and pre-

cision of the reconstructed conductivity distributions were evaluated, and the impact of differ-

ent noise level and defect datasets were also investigated.

Materials and methods

High-frequency conductivity using B1-map

The high-frequency electrical tissue properties of conductivity σH and permittivity �H satisfy

the following at Larmor frequency ω

r2B1 ¼ iom0gHB1 �
rgH
gH
� ðr � B1Þ ð1Þ

where γH = σH + iω�H, B1 denotes the B1 field, and μ0 = 4π × 10−7 N/A2 is the magnetic permit-

tivity of free space [7]. By assuming a local homogeneity (rγH� 0), the Eq (1) leads to a simple

algebraic conventional MREPT algorithm:

gH ¼
r2B1

iom0B1

ð2Þ

For the positive (negative) rotating component of the transmit B1 field Bþ
1
¼ jBþ

1
jeiφþ

(B�
1
¼ jB�

1
jeiφ� ), by assuming σH� ω�H, a phase-based convection reaction equation-based

MREPT formula was derived as

rφtr � rtH þ tHr2φtr � 2om0 ¼ 0 ð3Þ

where τH denotes 1

sH
and φtr = φ+ + φ− is the measurable transceive phase using MRI [6].

To stabilize the formula (3), after adding an artificial diffusion term, the Eq (3) leads to

� cr2tH þrφtr � rtH þ tHr2φtr ¼ 2om0 ð4Þ

where c is a constant diffusion coefficient.
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For the two dimensional case, a numerical differentiation of the Eq (4) for τH at a grid point

(xi, yj) is written as

� c
tiþ1;j � 2ti;j þ ti� 1;j

ðDxÞ2
þ
ti;jþ1 � 2ti;j þ ti;j� 1

ðDyÞ2

 !

þ
tiþ1;j � ti� 1;j

2Dx
�
@φtr

@x
þ
ti;jþ1 � ti;j� 1

2Dy
�
@φtr

@y

þti;j
@

2φtr

@x2
þ
@

2φtr

@y2

� �

¼ 2om0

ð5Þ

Three dimension case is similar to the two dimension case in (5).

The discretized Eq (5) leads to the following global matrix system using the known bound-

ary information:

Ax ¼ b ð6Þ

where A is a staff matrix, x = (τ1, . . ., τN)T, and b = (2ωμ0, . . ., 2ωμ0)T, respectively.

We note that the measured phase signal φ+ is continuous because its differentiations gener-

ate the edge information of the conductivity. The induced relations, (1) and (3), between the

conductivity and the measured phase signal show that the contrast of conductivity is related to

the differentiation of the phase signals. Measured phase signal φtr often includes local defects

suffering from poor signal-to-noise-ratio (SNR) due to the low intensity of MR magnitude,

especially when animals and humans are imaged. Since the global matrix system (6) includes

twice differentiation of measured phase signal, the conductivity σH obtained by solving (6)

propagates the severe noise artifact from the defective regions to the neighboring imaging

area.

Voxel-based moving local window deep learning for high-frequency

conductivity

In MREPT, the B1 phase signals include the internal currents information induced by the sec-

ondary magnetic fields. The absolute conductivity value in a local homogeneous region and

the edge variation of the conductivity are directly related to Laplacian and the gradient of mea-

sured phase signal φ, respectively. By taking into account the relationship between the conduc-

tivity and the measured B1 phase signals, the MLW-MLP model accepts multiple feature

values consisting of the derivatives of B1 phase signals. To design voxel-based deep learning

for high-frequency conductivity, a group of feature values in a local window surrounding a

given voxel is used as input of MLW-MLP. The output of the MLW-MLP is the reconstructed

conductivity values in the local window. Hidden layers use an activation function called recti-

fied linear unit (ReLU), which simply truncates negative values.

At each r = (x, y), we will denote F r by the group of phases, φ, gradients,
@φ
@x and

@φ
@y, and

Laplacian values,r2φ, in a local window wr = [x − p, x + p] × [y − p, y + p]. More precisely,

F r ¼ fG
wr
1 ;G

wr
2 ;G

wr
3 ;G

wr
2 g, where Gwr

1 ¼ fφðsÞ j s 2 wrg, G
wr
2 ¼

@φ
@x ðsÞ j s 2 wr

� �
,

Gwr
3 ¼

@φ
@y ðsÞ j s 2 wr

n o
, and Gwr

4 ¼ fr
2φðsÞ j s 2 wrg. We represent MLW-MLP map as

swr
p ¼ FF r ð7Þ

swr
p denote the reconstructed conductivity values in the local window wr. To train MLW-MLP

map F, we use the ground truth conductivity σH obtained by solving the discretized matrix

PLOS ONE High-frequency conductivity at Larmor-frequency in human brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0251417 May 20, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0251417


system (6). We choose a small regularization parameter c in (4) to increase the accuracy of con-

ductivity. To minimize the output errors on the feature set F r, MLW-MLP consists of 4 hid-

den layers of nonlinearly-activating nodes. The number of neurons comprising the layer was

1024, 512, 256, and 128, respectively. The MLP network weights iteratively updates the thre-

sholded ReLU. The window size of output layer was same to the size of moving local window

of input layer. The designed method using the mixed data F r is processed by changing con-

nection weights, based on the amount of error in the output compared to the expected conduc-

tivity values in the local window wr. The MLW-MLP is suitable for the proposed voxel-by-

voxel recovery procedure and allows approximate solutions for the complex nonlinear con-

ductivity recovery problem. Batch normalization (BN) was executed after each hidden layer to

increase the stability of a neural network and improve the training accuracy. BN normalizes

the output of a previous activation layer by subtracting the batch mean and dividing by the

batch standard deviation within a batch of training images.

Reconstruction of a representative conductivity value in a local window

The output of MLW-MLP predicts the conductivity values in the local window wr correspond-

ing to each voxel r. A natural way to determine a representative conductivity is to select the

conductivity value at the center of local window:

scpðrÞ≔swr
p ðrÞ ð8Þ

where r is the center voxe of wr.

To suppress the noise amplification, the conductivity value can be estimated as a weighted

combination of conductivity values in the local window:

sw
p ðrÞ ¼

X

s2wr

wðr; sÞswr
p ðsÞ ð9Þ

To determine an appropriate weighting factor w(r, s) such that w(r, s)� 0 and
P

s2wr
wðr; sÞ ¼ 1, we shall define a non-spatial data-dependent distance, DN(r, s), and deter-

mine

wðr; sÞ ¼
1

zr
e� DN ðr;sÞ for s 2 wr ð10Þ

where zr ¼
P

s2wr
e� DN ðr;sÞ is a normalization constant ensuring that

P
s2wr

wðr; sÞ ¼ 1.

We define a data-dependent distance DN(r, s) as

DNðr; sÞ≔
j swr

p ðrÞ � s
wr
p ðsÞ j

ZðrÞ
; ð11Þ

where η(r) is a denominator at the voxel r. Since the weighting factor w(r, s) depends only on

the data-dependent distance DN(r, s), w(r, s) is calculated in the local window wr consisting of

neighboring voxels around the voxel r.

The parameter η quantifies how fast the weights decay depending on the similarity of

respective patches. The filtering parameter η is selected by taking into account the noise vari-

ance of measured image. The predicted conductivity values at r are multiply determined due

to the overlapped regions by moving the local windows. Let S = {s | r 2 ws}. Then all predicted

conductivity values in gw
s
ðrÞ ¼ fsws

p ðrÞ j s 2 Sg are theoretically same without noise artifact.

By estimating the noise standard deviation of the multiply determined conductivity values at r,
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we determine the denominator η(r) in (11) as

ZðrÞ / sdðgw
s
ðrÞÞ ð12Þ

where sdðgw
s
ðrÞÞ is the standard deviation of gw

s
ðrÞ.

In summary, the contributions are two-fold:

1. Voxelwise MLW-MLP neural network at r with a family of groups:

F r ¼ fG
wr
1 ;G

wr
2 ;G

wr
3 ;G

wr
4 g.

a. Prepare the family of gradient and Laplacian of B1 phase signals for the input layer:

φ; @φ
@x ;

@φ
@y ;r

2φ
� �

in the local window wr.

b. Training MLW-MLP neural network: the input is Gwr
1 ¼ fφðsÞ j s 2 wrg,

Gwr
2 ¼

@φ
@x ðsÞ j s 2 wr

� �
, Gwr

3 ¼
@φ
@y ðsÞ j s 2 wr

n o
, and Gwr

4 ¼ fr
2φðsÞ j s 2 wrg in the

local window, the output of MLW-MLP is σH in the local window.

2. Determination a representative conductivity value in the local window.

a. Predict conductivity values in each local window using the trained model FF r.

b. Rearrange the overlapped conductivity values and estimate the noise level of conductiv-

ity value at r.

c. Determine the weighted averaged conductivity sw
p ðrÞ as in (9).

Fig 1 shows a schematic of MLW-MLP neural network to predict the conductivity using the

measured B1 phase signals.

Experimental setup

MRI measurements were performed with eight healthy volunteers without a documented his-

tory of any disease were recruited. The participants were located inside the bore of a 3T MRI

Fig 1. A graphical visualization of MLW-MLP neural network for high-frequency conductivity prediction.

https://doi.org/10.1371/journal.pone.0251417.g001
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scanner with the head coil in transmit and a 32-channel RF head coil (Achieva TX, Philips

Medical Systems, the Netherlands). All experimental protocols were approved by the institu-

tional review board of Kyung Hee University (KHSIRB-16–033). All methods were carried out

in accordance with the relevant guidelines and regulations and all participants provided writ-

ten informed consent.

For MREPT imaging experiments, the multi-spin-echo pulse sequence with multiple refo-

cusing pulses was adopted to minimize the measured noise. Before the data acquisition, we

applied a volume shimming method with the volume defined to cover the brain region. Imag-

ing parameters were as follows: repetition time TR = 1500 ms, echo time TE = 15 ms, number

of echoes (NE) = 6, number of excitation (NEX) = 1, slice thickness = 4 mm, number of

slices = 5, acquisition matrix = 128 × 128, field-of-view (FOV) = 240 × 240 mm2, and scan

time = 16 min.

To reduce the noise artifacts, we used odd echoes of six measured complex MREPT signals

to avoid the background phase signal due to the consecutive 180˚ RF pulses. Since the accumu-

lated noise artifacts in the phase signal is inversely proportional to MR magnitude intensity,

~S k; k ¼ 1; 3; 5, the measured phase signal was optimized as a weighted averaging using the

weight of [21]

wk ¼
j~S kj

2

j~S 1j
2
þ j~S2j

2
þ j~S3j

2
; k ¼ 1; 3; 5

Results

We compared the predicted conductivity using MLW-MLP method to those by solving the

convection-reaction partial differential equation in (4) with the diffusion term c = 0.02. The

prepared data sets, including 76992 local windows with the five healthy volunteers, were

trained with Adam which is an adaptive learning rate optimization algorithm for training deep

neural networks [22]. Total epoch and batch size were 150 and 300, respectively. We designed

4 hidden layers, 1024, 512, 256, and 128 weights, batch normalization, and ReLU activation

functions were applied. To stabilize the multilayer procedure, L2-regularization was applied to

the MLP model. The used local window size was 9 × 9 and total training time was 3.25 min.

This network was implemented in Keras and training was performed on a GPU (NVIDIA

GeForce RTX 2070 super, 8GB RAM).

Performance of the proposed method was compared with the reconstructed conductivity

image by solving PDE in (4) in terms of peak signal-to-noise ratio (PSNR) and relative L2-

error:

PSNRðX;YÞ ¼ 10 log 10

M2
ax

MSE

� �

ð13Þ

where MSE ¼ 1

mn

Pm
i¼1

Pn
j¼1
ðXði; jÞ � Yði; jÞÞ2 and Max is the maximum possible voxel value

of the image of X. The relative L2-error is defined as

L2
errðX;YÞ ¼

k X � Y k2

k X k2

ð15Þ

Fig 2 shows the prepared data sets for the inputs of MLW-MLP neural network: (a) and (b)

are MR magnitude images and weighted B1 phase maps at the third imaging slice, respectively.

Fig 2(c) shows the reconstructed conductivity distributions. To recover the conductivity map

with the acquired transceiver phases of B1 maps (Fig 2(b)), we solved the convection-reaction
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partial differential equation (PDE) in (4) with the diffusion term c = 0.02. We used the recon-

structed conductivity images in Fig 2(c) as the ground truth data sets for training procedures.

The weights for five deep layers were adjusted to find patterns to make better predictions. We

used the MLW-MLP model for predicting the conductivity map in the brain.

Fig 3 shows the predicted results with three healthy volunteers data sets. Fig 3(a) shows the

MR magnitude images at the third imaging slice. The reconstructed conductivity images by

solving the convection-reaction PDE in (4) with the diffusion term c = 0.02 were displayed in

Fig 3(b). Fig 3(c) shows the predicted conductivity images using the predicted conductivity

value, scp, at the center of each local window.

To stabilize the training procedure, we used the L2-regularization, 0.01, as the kernel regu-

larizer to apply penalties on layer parameters. Since the proposed method reconstructs the

conductivity depending on the local characteristics of the measured B1 phase signal, compared

to the reconstruction results using the global system that affects the local defects in the sur-

rounding regions, the imaging quality of the predicted conductivity was improved in the local

regions (designated by the yellow arrows in Fig 3).

Table 1 shows the estimated conductivity values in CSF, gray matter, and white matter

regions (CSF: red spots, white matter: blue spots, gray matter: yellow spots in Fig 3(a)). The

known reference values of high-frequency conductivity are 1.65*1.92 (CSF), 0.59*0.63 (gray

matter) and 0.30*0.43 S/m (white matter) at 128 MHz [23–25]. The predicted conductivity

values, scp, in CSF regions were slightly lower than σH, while the conductivity values of scp in

Fig 2. Training data sets with five healthy volunteers without a documented history of any disease. (a) MR magnitude images

and (b) B1 phase images at the third imaging slice using the spin MR pulse sequence. (c) Reconstructed conductivity images by

solving the convection-reaction partial differential equation in (4) with the diffusion term c = 0.02.

https://doi.org/10.1371/journal.pone.0251417.g002

PLOS ONE High-frequency conductivity at Larmor-frequency in human brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0251417 May 20, 2021 8 / 15

https://doi.org/10.1371/journal.pone.0251417.g002
https://doi.org/10.1371/journal.pone.0251417


white matter regions were higher than σH due to the adopted L2-regularization parameter to

prevent overfitting in the deep learning process.

Table 2 show the evaluated PSNR values and relative L2-errors between the recovered con-

ductivity image, σH, by solving the elliptic partial differential equation in (4) and the predicted

conductivity images scp.

To verify the proposed deep learning method, we tested two cases. We artificially destroyed

the measured phase signals by adding random noise artifacts and generate defective regions.

To investigate the effect of defective regions, we included the whole head region, where the

conductivity reconstruction often failed in scalp and skull regions due to the boundary artifacts

Fig 3. Test data sets with three healthy volunteers without a documented history of any disease and predicted conductivity

images. (a) MR magnitude images. (b) Reconstructed conductivity images by solving the convection-reaction partial differential

equation in (4) with the diffusion term c = 0.02. (c) Predicted conductivity image, scp, using MLW-MLP neural network.

https://doi.org/10.1371/journal.pone.0251417.g003
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and low conductivity values. Fig 4(a) shows the reconstructed conductivity map in the whole

head region by solving the global matrix system induced from the PDE in (4) with the diffu-

sion parameter c = 0.005. Since the noise characteristics are different at each region due to the

magnitude intensity, tissue properties, motion, imaging parameters, etc, it is difficult to deter-

mine an appropriate diffusion parameter c in (4). Fig 4(a) shows the propagated noise artifact

from the defective regions to the surrounded region by solving the global matrix system in (6).

Since the proposed voxel-based deep learning method included sufficient training data sets,

conductivity maps can be locally predicted regardless of the condition of the boundary and

partially severe noise artifacts. The predicted conductivity maps using the trained NLW-MLP

model were displayed in Fig 4(b) and 4(c), respectively. Fig 4(b) shows the predicted

Table 1. Estimated conductivity values, σH, by solving the global matrix system in (4). Predicted conductivity val-

ues, scp, at the center of local window.

σH sc
p

case1 CSF 1.73±0.37 1.43±0.35

gray matter 0.63±0.07 0.66±0.17

white matter 0.24±0.04 0.28±0.06

case2 CSF 1.57±0.15 1.26±0.13

gray matter 0.69±0.11 0.65±0.14

white matter 0.31±0.04 0.32±0.06

case3 CSF 1.82±0.25 1.62±0.24

gray matter 0.58±0.07 0.61±0.05

white matter 0.30±0.02 0.33±0.03

https://doi.org/10.1371/journal.pone.0251417.t001

Table 2. Estimated PSNR and relative L2-errors for the three test data sets.

case1 case2 case3

PSNRðsH ; scpÞ 13.02 12.42 10.62

L2
errðsH ; s

c
pÞ 0.17 0.17 0.22

https://doi.org/10.1371/journal.pone.0251417.t002

Fig 4. Predicted conductivity images using defective data. (a) Reconstructed conductivity images using the defective

B1 phase signals. The reconstructed conductivity image including defective regions by solving the PDE in (4) with the

diffusion term c = 0.005. (b) Predicted conductivity image, scp, using MLW-MLP neural network. (c) Predicted

weighted combination, sw
p , of conductivity values in each local window.

https://doi.org/10.1371/journal.pone.0251417.g004
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conductivity map, scp, using the predicted conductivity value at the center of each local win-

dow. By taking a weighted combination of predicted conductivity values in the local window,

Fig 4(c) shows the weighted conductivity images sw
p .

In Fig 5, the measured B1 phase signals were artificially destroyed by adding Gaussian ran-

dom noise. Using the noise added B1 phase signals, Fig 5(a) shows the reconstructed conduc-

tivity map, σH, in the brain region by solving the global matrix system in (6) induced from the

PDE in (4) with the diffusion parameter c = 0.02. The predicted conductivity maps, scp at the

center of each local window, and sw
p using the predicted conductivity values in each local win-

dow were displayed in Fig 5(b) and 5(c), respectively. To calculate a weighted combination,

sw
p , of predicted conductivity values in the local window, we determine the denominator η(r)

in (11) using the noise standard deviation of the multiply determined conductivity values at r.

Fig 5(d) shows the standard deviation of gw
s
ðrÞ ¼ fsws

p ðrÞ j s 2 Sg.
We compared σH, scp and sw

p to the reconstructed conductivity stH corresponding to the

noiseless B1 signals, which were obtained by solving the global matrix system in (6). The evalu-

ated PSNR values and relative L2-errors are given in Table 3. As expected, the image quality of

sw
p was better than the others.

We compared the proposed MLW-MLP method with two methods using only B1 phase

data. The first method, MLW-MLP(phase), was to use only B1 phase data in our proposed

MLW-MLP method. Except for the sliding window size, the depth and parameters of the net-

work were the same as the proposed MLW-MLP method.

Another method, MLW-CNN(phase), used 2D convolutional neural networks (CNNs)

instead of multi-layer perceptrons. The network architecture was a 5 layer CNNs. For the first

four layers, 128, 64, 64 and 32 filters of size 3 × 3 are used, and batch normalization was added

Fig 5. Predicted conductivity images using noisy B1 data. (a) Reconstructed conductivity images using the noisy B1 phase signals. The measured B1

phase map was artificially destroyed by adding Gaussian random noise. (b) Predicted conductivity image, scp, using MLW-MLP neural network. (c)

Predicted weighted combination, sw
p , of conductivity values in each local window. (d) The noise standard deviation of the multiply determined

conductivity values at r.

https://doi.org/10.1371/journal.pone.0251417.g005

Table 3. Estimated PSNR and relative L2-errors for the noisy data shown in Fig 5.

σH sc
p

sw
p

PSNR 8.69 9.60 10.11

L2
err 0.40 0.33 0.29

https://doi.org/10.1371/journal.pone.0251417.t003
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between convolution and ReLU. For the last layer, 1 filter of size 3 × 3 was used to reconstruct

the output. Total epoch and batch size were 150 and 300, respectively.

Tables 4 and 5 show the evaluated PSNR values and relative L2-errors between σH and the

predicted conductivity images scp, respectively, as the window size changes. It can be seen that

the effective window size used in MWL-MLP(phase) is 9 × 9. MLW-CNN(phase) can achieve

better PSNR and relative L2-errors as the window size increases, but the calculation time

increases. Our proposed MWL-MLP with the window size 9 × 9 can achieve the best PSNR

results and relative L2-errors than the other methods.

Discussion

Predicting the conductivity from measured B1 phase map needs careful understanding on the

relationship between the B1 phase signal and conductivity distribution to be imaged. Based on

the electromagnetic system, the noiseless B1 image is continuous and piece-wise smooth.

Since the measured B1 phase map has no conventional edge information, it is difficult to

design a deep learning model directly from the B1 phase map (input) to the conductivity distri-

bution (output). In this paper, we focused on the relationship between the differentiation of B1

phase map and the conductivity map based on Maxwell equation. In this paper, for training

the MLW-MLP deep learning, the recovered conductivity using the partial differential equa-

tion based on the Maxwell equation is used as the ground truth data. We used the regulariza-

tion parameter c of the convection reaction Eq (4) as small as possible. The reconstruction

method using the convection reaction equation has the advantage of being able to reconstruct

the conductivity without boundary artifact, but the diffusion term including the regularization

parameter c can disturb the absolute conductivity values and propagate severe artifacts from

defective regions to the enclosed regions. The developed reconstruction methods for high-fre-

quency conductivity using measured magnetic flux density is still insufficient to consider to be

considered the ground truth. The predicted conductivity values in the gray matter, white mat-

ter, and CSF regions were slightly lower than the known reference conductivity values, respec-

tively. One reason is to use the ground truth conductivity depending on the regularization

parameter c of the convection reaction Eq (4) and the other reason relates to the designed

MLW-MLP model which includes L2-regularization to stabilize the learning process.

Table 4. Estimated PSNRðsH ;s
c
po results for different methods with multiple window sizes.

MLW-MLP(phase) MLW-CNN(phase)

window size 5×5 9×9 13×13 17×17 21×21 13×13 17×17 21×21 25×25 29×29

case1 10.83 12.07 11.95 11.35 10.78 11.00 10.96 11.02 10.74 11.05

case2 10.54 12.06 11.93 11.07 10.38 11.31 11.47 11.66 12.00 11.96

case3 9.15 10.42 10.23 9.13 8.66 9.64 9.61 9.68 10.01 10.02

https://doi.org/10.1371/journal.pone.0251417.t004

Table 5. Estimated L2ðsH ; s
c
pÞ results for different methods with multiple window sizes.

MLW-MLP(phase) MLW-CNN(phase)

window size 5×5 9×9 13×13 17×17 21×21 13×13 17×17 21×21 25×25 29×29

case1 0.27 0.21 0.21 0.24 0.28 0.26 0.27 0.26 0.28 0.26

case2 0.26 0.18 0.19 0.23 0.27 0.22 0.21 0.20 0.19 0.19

case3 0.31 0.23 0.24 0.32 0.35 0.28 0.28 0.28 0.26 0.26

https://doi.org/10.1371/journal.pone.0251417.t005
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The proposed method reconstructs the contrast of conductivity voxel-by-voxel, which

blocks the propagation of severe accumulated noise from the defective region to the ROI. We

used 9×9 local window size to reflect the surrounded pattern at a voxel. Although we have no

exact formula to choose the optimal size of sliding window, the proposed MLW-MLP using a

local differential characteristic of B1 phase data shows the best performance with the window

size 9×9. The determined window size includes the surrounded voxels for computing the first

and second order numerical derivatives. On the other hand, CNN’s method increases training

time as the number of windows increases, although the error decreases slightly.

Since the absolute value and the edge information of conductivity are closely related to the

differential of measured B1 phase signal, the accurate conductivity recovery using the relation-

ship between conductivity and measured B1 phase signal mainly depends on whether the local

characteristics of the B1 phase signal are well included in a machine learning scheme. By these

observations, the proposed MLW-MLP successfully predicted the conductivity, and we com-

pared the proposed method with the conventional CNN. There are many deep learning meth-

ods including CNN, recurrent neural network (RNN), denoising autoencoder (DAE), and

long short-term memory (LSTM). Considering the physical properties of measurable magnetic

flux density and electrical conductivity, we plan to design a better clinically applicable deep

learning method.

Electrical brain stimulation (EBS) techniques, such as transcranial direct current stimula-

tion (tDCS) and deep brain stimulation (DBS), are promising treatments for human disorders

([26–30]). Since there is no clear explanation for the mechanism, EBS studies have relied on

computational modeling using reference conductivity values in the whole brain region. To

solve this problem, the proposed MLW-MLP deep learning method can reconstruct the whole

brain conductivity map by avoiding defect areas for visualizing internal current density and

electric field caused by the EBS.

Conclusion

We have proposed MLW-MLP neural network that is capable of visualizing the high-fre-

quency conductivity map in the human brain from measured B1 phase signals using a conven-

tional 3 T MRI scanner with significantly improved conductivity image quality. By taking into

account the relationship between the conductivity and the measured B1 phase signals, the

MLW-MLP model accepts multiple inputs consisting of Laplacian and the gradient of mea-

sured phase signal. The MLW-MLP method quickly and stably determine the high-frequency

conductivity using a trained model without solving the complex global matrix system. Con-

ventional MREPT techniques are difficult to apply to various organs in the human body,

including bones, fat, and muscles, because the quality of B1 phase map is very poor in some

defect regions. Since the MLW-MLP model locally recovers the conductivity values by observ-

ing the local characteristics of B1 phase signals, it can be applicable to other organs while

avoiding the artifact propagation due to defective data. The experimental results demonstrate

the effectiveness of MLW-MLP neural network suppresses noise artifacts and predicts the con-

ductivity without being affected by severe noise in defect regions.
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