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Abstract

Background: The fungal genus Phlebia consists of a number of species that are significant in wood decay.
Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has
been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider
study on biochemistry and systematics of Phlebia species.

Methods: Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify
their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid
Polyporales. rRNA-encoding (5.8, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted
for the evolutionary analysis, and ITS sequences (ITS1 + 5.8S + [TS2) were aligned for in-depth species-level phylogeny.
The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their
production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes.

Results: Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level
subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic
grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for
Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on
lignocellulosic substrates.

Conclusions: Our study implies that there is a species-level connection of molecular systematics (genotype) to
the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases
(enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of
lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied
isolates of the wood-decay Polyporales.
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Background

Fungi of the phylum Basidiomycota have an important
role in the global carbon cycle due to their ability to de-
compose plant biomass that is the richest carbon source
on earth. Basidiomycota class Agaricomycetes, in par-
ticular the order Polyporales, includes species which are
efficient decomposers of wood and other plant biomass,
and are able to activate and degrade lignin [1, 2]. The
ability to decompose polymeric wood components, that
is cellulose, hemicellulose and lignin, requires sets of
carbohydrate active enzymes (CAZymes), and oxidore-
ductases such as peroxidases and laccases [3-5].

The fungal genus Phlebia includes several lignin-
modifying white rot species which have a high potential
for forest-based biotechnology, biopulping, production
of lignocellulose-active enzymes and conversion of
lignin-derived compounds and xenobiotics [6—15]. Taxo-
nomically, the genus Phlebia is positioned to the Poly-
porales phlebioid clade and to the family Meruliaceae
[16—20]. The phlebioid clade includes mainly corticioid
basidiocarp-forming species, and the clade consists of
seven family names including Phlebiaceae originally
given by Jiilich in 1981 [21]. The genus Phlebia has a
multitude of species [20, 21] with 203 and 220 taxons
recorded in MycoBank (http://www.mycobank.org/) and
Index Fungorum (http://www.indexfungorum.org), re-
spectively (August 2015). Phlebia has several synonym
genera - Merulius, Mycoaciella and Mycoacia [22, 23].

The type species Phlebia radiata Fr. [24] is widely dis-
tributed in North America and Europe [25] and has been
a subject of genetic and biochemical studies [26—30]. P.
radiata is a white rot fungus which efficiently degrades
lignin in softwood and hardwood [31, 32], depolymerizes
milled pine wood [33], mineralizes *C-labelled synthetic
lignin (DHP) to carbon dioxide [34, 35], and efficiently
produces a versatile set of lignin-modifying oxidoreduc-
tases (class II peroxidases and laccase) [26, 28, 30, 35-38].
In addition to P. radiata, research has focussed on a few
other species of the genus, e.g. P. tremellosa, P. brevispora,
P. ochraceofulva and P. lindtneri, in regard to physiology
and potential for bioconversion of plant biomass [39-45].
According to genome sequencing of the species P. brevis-
pora (2,4, 21] and P. radiata (ongoing) [29], there is a ver-
satile repertoire of genes encoding lignin-modifying and
other lignocellulose-converting oxidoreductases, and mul-
tiple CAZymes. However, while genomic data may predict
the number of genes and potential functions of the extra-
cellular lignocellulose-converting enzymes in fungal spe-
cies, protein secretion and biochemical enzyme activities
need to be verified by proteomics and activity assays, re-
spectively. This is particularly important on natural
growth substrates such as wood. Therefore, we performed
lignocellulose-converting enzyme activity profiling of 49
Phlebia species on wood cultures. The production of
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lignocellulose-converting enzyme activities were com-
pared with the molecular taxonomy, in order to find out if
the enzyme phenotypes of the species groups were deter-
mined by their evolutionary proximity and genotype
characters.

Our second aim was to deepen the taxonomic know-
ledge of the phlebioid clade in Polyporales and study the
genetic diversity of Phlebia by adopting rRNA-encoding
(SSU and LSU) and two cellular core protein-encoding
genes - glyceraldehyde phosphate dehydrogenase (gapdh)
and nuclear RNA polymerase II (rpb2). The internal tran-
scribed spacer (ITS) sequence has been selected for fungal
barcoding and identification [46], giving adequate infor-
mation for fungal isolate level molecular taxonomy and
definition of species. Recently, extensive ITS sequence
analysis of phanerochaetoid taxa in the phlebioid clade en-
lightened the complex phylogeny of this clade [20] and by
focusing on the Phlebia clade, our study even deepens the
understanding of this clade. In our study, statistical and
clustering analyses of the Phlebia genotype groups with
their enzyme activity production profiles demonstrated
that the enzyme phenotypes correlated with the species
group genotypes. Thus, for the diverse Phlebia species,
there is a strong connection between the genotype and
their CAZyme and lignin-modifying oxidoreductase activ-
ity profiles on a natural-like, wood-supplemented growth
medium.

Results

Molecular identification of Phlebia isolates

Results obtained from ITS1-5.8S-ITS2 PCR and sequen-
cing of the Phlebia isolates confirmed their earlier iden-
tification results, which were mostly based on their
basidiocarp morphological features, with a few excep-
tions (Additional file 1: Table S1). Most of the FBCC
(University of Helsinki Fungal Biotechnology Culture
Collection) isolates previously identified to the species P.
radiata were correctly confirmed including 14 isolates
which were 100 % identical according to their complete
ITS sequences (Fig. 1). The only exceptions were the iso-
lates FBCC4 and FBCC345, which were over 99 % iden-
tical to the species P. acerina (Additional file 1: Table
S1). In addition, the phylogenetic maximum likelihood
analysis strongly supported positioning of the two iso-
lates in the P. acerina branch (bootstrap value 97, Fig. 1)
and thereby, these isolates were re-named P. acerina at
the species level in this study.

Also, the isolates FBCC421 and FBCC426 were re-
named P. centrifuga and P. subserialis, respectively, ac-
cording to their ITS-sequence identity (99.0 % and
99.8 %) in comparison to taxon reference sequences
(Additional file 1: Table S1) and support from high node
bootstrap values (100 and 100) (Fig. 1 and Additional
file 2: Figure Sla). Considering P. subserialis, our isolate
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Fig. 1 Maximum likelihood trees of the phlebioid clade and Phlebia clade of Polyporales based on [TS1-5.85-ITS2 sequences. (@) Maximum likelihood
tree illustrating the separation of four clades (Phlebia, Byssomerulius, Phlebiopsis and Phanerochaete) in the phlebioid clade. For the tree, 481 ITS
sequences were aligned and phylogenetical analysis was performed using RAXML v. 7.2.8. and 100x bootstrapping. (b) Maximum likelihood analysis of
[TS1-5.85-TS2 sequences from the Phlebia clade. Fungi of this study (shaded in green, ITS accession numbers are presented in Table 1) are compared
with related taxons with sequences retrieved from NCBI (http://www.ncbinlm.nih.gov/) database. Bootstrap values (100 replications) higher than 50 %
are indicated for the nodes. Quotation marks represent uncertain identification or provisional names suggested [20]. An [TS sequence of Byssomerulius
corium was used as an outgroup. Scale bar represents 0.01 nucleotide substitutions per position

FBCC426 and one reference sequence were positioned
far away from Phlebia species into the Phanerochaete
clade. Our ITS-sequencing and phylogenetic analyses
were unable to confirm the previous identification for
three isolates of the 54 studied. Isolate FBCC427 (ini-
tially P. subserialis) was positioned in the Phlebiopsis
clade but distant from Phlebiopsis, Rhizochaete and
Phaeophlebiopsis (Additional file 2: Figure S1b). Isolate
FBCC296 (initially P. albida) was distantly related to the
Phlebia clade and was situated in the Phanerochaete
clade. However, more information is apparently needed
to confirm the species level taxonomy, and therefore,
these isolates were not yet given definite identities or
taxon names, and are thus depicted Phlebia sp. isolates
(Additional file 1: Table S1).

ITS phylogeny

An ITS sequence dataset was generated for phylogenetic
analyses of the Polyporales phlebioid clade by including
reference sequences retrieved from NCBI GenBank and
the sequences of this study. Altogether 481 ITS se-
quences were included in the maximum likelihood (ML)
phylogram (Fig. 1a), and 156 sequences were positioned
in the Phlebia clade (Fig. 1b). The phylogenetic analyses
resulted in three major clades in the phlebioid clade,
which were named according to Floudas and Hibbet [20]
as Phlebia, Byssomerulius and Phanerochaete clades.
Similarly as in the recent study [20], the Phanerochaete
clade was divided into Phlebiopsis and Phanerochaete
clades.

According to the ITS phylogeny, genus Phlebia pro-
duced no single taxonomic cluster (Fig. 1). While Phle-
bia species are widely distributed in the ITS tree, the
Phlebia sensu stricto species form one uniform core
group, which includes the type species P. radiata
(Fig. 1b). The three species P. radiata, P. acerina and P.
rufa are very closely related forming a distinct branch
(bootstrap value 100) in the Phlebia clade. In addition,
Phlebia sensu stricto includes the species P. floridensis,
P. brevispora, P. lindtneri, P. setulosa, P. serialis, P. lep-
tospermi and P. tremellosa. It is noteworthy that the
Phlebia clade includes a number of isolates that were
identified to the genera Ceriporiopsis, Scopuloides, Cli-
macodon, Phlebiopsis, Ceriporia and Hydnophlebia
(Fig. 1b).

Furthermore, the species P. unica, P. firma, and two
isolates of P. subserialis were clearly separated from the
Phlebia clade and were positioned in Phanerochaete or
Phlebiopsis clades (Additional file 2: Figure S1). Three
isolates without a previous species-level identity and
thus named Phlebia sp. were similarly positioned outside
the Phlebia clade.

Four-gene phylogeny

According to the four-gene multilocus phylogeny ana-
lysis, Phlebia isolates were divided into ten phylogroups
(Fig. 2a, Table 1). Statistical analyses of the enzyme activ-
ity data were based on this grouping except for P. brevis-
pora due to only one isolate cultivated for enzyme
profiling. The first phylogroup included isolates of the
species P. radiata and P. rufa (Fig. 2a). The well-
supported sister lineage to this phylogroup was the P.
acerina branch consisting of three isolates. According to
the four-gene phylogeny, P. tremellosa clearly deviated
from the P. radiata and P. acerina species groups with
100 % branching support (Fig. 2a). The species P. brevis-
pora and P. livida, as well as P. hydnoides, P. chrysocreas
and P. ochraceofulva all branched as sister lineages form-
ing distinct species clusters or clades, and were therefore
treated as separate phylogroups in the statistical
enzyme-phenotype analyses.

Isolates of P. radiata, P. tremellosa, P. centrifuga and
P. subserialis also diverged at the species level (Fig. 2a).
However, the P. subserialis group was formed by only
two isolates, and more noteworthy, the isolate FBCC426
is the nearest related to species of Phanerochaete (P.
chrysosporium and P. carnosa, bootstrap value 100 %).
Moreover, the two Phanerochaete species, Phlebia sub-
serialis, and the isolates Phlebia sp. FBCC296 and
FBCC427 were positioned far out from the Phlebia sensu
stricto, and in fact, these isolates were the most related
to the species Phlebiopsis gigantea and Bjerkandera adu-
sta (Fig. 2a).

Presence or absence of introns, intron positioning and
intron length varied in Phlebia gapdh genes with respect
to the species grouping (Fig. 2b). The P. radiata and P.
acerina phylogroups had similar gapdh exon-intron
structures and length of the sequenced region. P. tremel-
losa and P. hydnoides phylogroups were similarly uni-
form. Other phylogroups showed variable sizes of gapdh
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Fig. 2 Maximum likelihood phylogeny and exon-intron structure of partial gapdh nucleotide sequences of the Phlebia isolates. (a) Maximum
likelihood phylogeny of the Phlebia isolates showing the phylogroups formed. 5.8S, partial LSU, and partial sequences from two protein-encoding
genes (gapdh, rpb2) were concatenated for an alignment, and the phylogenetic analysis was performed using RAXML v. 7.2.8. and 100x bootstrapping.
Sequences of related Agaricomycetes species (taxons without FBCC-identifier) were retrieved from JGI MycoCosm database [76] and NCBI
(http://www.ncbi.nlm.nih.gov/). Species names are followed by isolate culture collection identifiers. The sequences from species Heterobasidion
irregulare (Russulales, Basidiomycota) were used as an outgroup. Bootstrap values higher than 50 % are indicated for the nodes. Scale bar represents
0.01 nucleotide substitutions per position. (b) Exon-intron structure of partial gapdh nucleotide sequences from the Phlebia phylogroups studied. Black
and white areas indicate exons and introns, respectively

PCR products due to differences in intron length and  subserialis group as well as Phlebia sp. FBCC296 and all
positioning. All P. centrifuga gapdh sequences had a  Phlebiopsis gigantea isolates lacked both introns A and
unique intron B, whereas isolate FBCC427 from the P.  B. With the gapdh primers used, no PCR-product was
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Group name® Fungal Biotechnological  Identity® Site of origin Natural ITS Accession  Isolate number
Culture Collection substrate® number used in Figs. 4
identifier and 5
P. radiata group 43 Phlebia radiata Finland; Vantaa D LN611085 1
297 Phlebia rufa Sweden LN611092 2
125 Phlebia radiata Finland; Lieksa D LN611086 3
149 Phlebia radiata Finland; Ruovesi D LN611087 4
179 Phlebia radiata Finland; Lammi D LN611088 5
194 Phlebia radiata Finland; Sodankyla D LN611089 6
226 Phlebia radiata Finland; Kolari D LN611090 7
279 Phlebia radiata Sweden LN611091 8
443 Phlebia radiata UK D LN611093 9
444 Phlebia radiata France LN611094 10
750 Phlebia radiata Finland; Lammi LN611095 1
790 Phlebia radiata Finland; Ruovesi D LN611096 12
791 Phlebia radiata Finland; Ruovesi D LN611097 13
792 Phlebia radiata Finland; Ruovesi D LN611098 14
794 Phlebia radiata Finland; Ruovesi D LN611099 15
1374 Phlebia radiata Finland; Lammi D LN611100 16
1375 Phlebia radiata Finland; Ruovesi D LN611101 17
1376 Phlebia radiata unknown LN611102 18
1377 Phlebia radiata unknown LN611103 19
P. acerina group 4 Phlebia acerina unknown LN611082 20
345 Phlebia acerina Russia LN611083 21
464 Phlebia sp. Argentina; Bariloche D LN611084 22
P. brevispora group 1463 Phlebia brevispora USA; Florida LN611135 23
P. tremellosa group 82 Phlebia tremellosa Finland; Salo D LN611124 24
91 Phlebia tremellosa Finland; Pernio D LN611125 25
294 Phlebia tremellosa Canada D LN611127 26
362 Phlebia tremellosa Russia; Kavalerovo D LN611128 27
446 Phlebia tremellosa Netherlands LN611129 28
278 Phlebia tremellosa Sweden LN611126 29
P. livida group 937 Phlebia livida Finland; Lammi LN611122 30
1283 Phlebia livida Norway; Telemark LN611123 31
P. hydnoides group 423 Phlebia (Scopuloides)  Belgium; Bois de LN611119 32
hydnoides Matignolle
422 Phlebia (Scopuloides)  France; Haute Savoie LN611118 33
hydnoides
P. chrysocreas group 307 Phlebia chrysocreas unknown LN611114 34
309 Phlebia chrysocreas unknown LN611115 35
P. ochraceofulva group 295 Phlebia ochraceofulva  Sweden LN611116 36
360 Phlebia ochraceofulva  Sweden LN611117 37
P. centrifuga group 207 Phlebia centrifuga Finland; Kolari LN611105 38
213 Phlebia centrifuga Finland; Aakenus LN611106 39
195 Phlebia centrifuga Finland; Sodankyla LN611104 40
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359 Phlebia centrifuga
692 Phlebia centrifuga
947 Phlebia centrifuga
1252 Phlebia centrifuga
1253 Phlebia centrifuga
1264 Phlebia centrifuga
421 Phlebia centrifuga

P. subserialis group 426 Phlebia subserialis
427 Phlebia sp.

Species included in 296 Phlebia sp.

phylogenetic study 315 Phlebiopsis gigantea
316 Phlebiopsis gigantea
318 Phlebiopsis gigantea
986 Phlebiopsis gigantea

Sweden LN611107 41
Finland; Sodankyla C LN611109 42
Finland; Kolari LN611110 43
Bulgaria; Rila LN611111 44
mountains

Bulgaria; Rila LN611112 45
mountains

Bulgaria; Rila LN611113 46
mountains

USA; Idaho C LN611108 47
France LN611120 48
France; Rhone LN611121 49
Sweden LN611130

Sweden LN611131

Sweden LN611132

Sweden LN611133

Finland; Kolari C LN611134

“Confirmed by ITS1-5.85-ITS2 and LSU sequence similarity using nBLAST search. See details in Methods
PThe isolates were grouped based on ITS sequence similarity and phylogrouping based on phylogenetic analyses of concatenated SSU, partial LSU sequences, and

partial sequences from two protein-encoding genes (gapdh, rpb2)
C = Coniferous wood, D = Deciduous wood

obtained for the P. livida isolates, which leaves the ques-
tion open whether this species group has a more variable
gapdh gene structure than the other studied species. In
general, exon-intron structure of the gapdh gene (Fig. 2b)
was coherent with the multilocus sequence phylogeny
and phylogrouping of Phlebia species.

Phylogenetic analyses conducted with either individual
or contiguous ITS and partial LSU sequences, and re-
spectively with individual or concatenated gapdh and
rpb2 sequences, resulted in evolutionary trees with
slightly different topologies than was obtained with the
four-gene phylogeny (Additional file 3: Figure S2,
Additional file 4: Figure S3). Phylogenetic analyses based
on ITS and gapdh sequences positioned P. brevispora
near to P. radiata - P.acerina sister species, when the
LSU and rpb2 sequences were not able to confirm its
evolutionary placement (Additional file 4: Figure S3).
Our four-gene phylogeny also positioned P. brevispora
closer to P. livida than to P. radiata. Positioning of P.
livida as well as P. hydnoides was not supported by
the protein-encoding sequences (Additional file 3:
Figure S2b). Taken together, similar fungal species-
based phylogroupings were observed in all evolution-
ary analyses.

Fungal growth rates and activity normalization

In order to test if the enzyme activities were influenced
by the differences in fungal growth rates, we tried to es-
timate production of mycelium biomass (as mycelium

dry weight) for each isolate and each culture flask in
the end of cultivation. However, deviation of the dry
weight values between the parallel cultures (three paral-
lel culture flasks) was too divergent. This was probably
due to wood sawdust particles that were attached to the
mycelia. Instead, we measured the hyphal growth rate
on malt agar plates for each isolate, and used these
values (cm d') (Additional file 5: Figure S4f) to adjust
the enzyme activity values (pkat 1™*) of day 14. This
normalization resulted in fairly similar differences be-
tween the isolates and species groups that was observed
with the non-normalized enzyme activities, except for a
few isolates of P. centrifuga (see below).

Production of enzyme activities

During the 21 days of cultivation on semi-solid liquid
medium with milled spruce as a carbon source, all the
49 Phlebia isolates produced lignocellulose-converting
enzyme activities periodically (Fig. 3). When the en-
zyme activity patterns were investigated on the 14™ day
of cultivation, differences between Phlebia phylogroups
became apparent (Fig. 4). The P. radiata group pro-
duced the highest levels of oxidoreductase activities,
that is laccase and manganese peroxidase (MnP) (up to
3.0 and 0.9 pkat I, respectively) (Fig. 4a, b). The high-
est laccase activity, 3.0 pkat 1", was observed in the
cultures of P. radiata FBCC149, whereas P. radiata
FBCC125 produced the highest MnP activity (0.9 pkat
I'Y). Relatively high laccase and MnP activites were
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Fig. 3 Fitted values of enzyme activities of each phylogenetic group. Fitted values (mean predicted value) of (a) laccase (b) MnP (c) CBH (d)
B-glucosidase and (e) endoglucanase activities of each phylogenetic group during 21 days of cultivation in semi-solid milled spruce cultures
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detected in the cultures of P. brevispora FBCC1463.
Even though the overall production of laccase in the P.
centrifuga phylogroup was moderate, one isolate
(FBCC421) in this group attained similar activity levels
(maximum 1.5 pkat 1) as obtained in the P. radiata —
P. acerina phylogroups. However, with normalized
laccase activities another isolate of P. centrifuga
(FBCC207) demonstrated the highest production value
on the day 14, which is due to its very slow hyphal

growth rate (Additional file 5: Figures S4a, S4f). In the
case of MnP activity, normalization of the data (on day
14) caused minor differences, with an exceptionally high
value for one slow-growing isolate of P. centrifuga
(FBCC947) (Additional file 5: Figures S4b, S4f).

In contrast to the lignin-modifying oxidoreductases,
the activity production profiles of the hydrolytic
CAZymes were more coherent within each phylogroup
(Fig. 3), and less evident differences were detected in the
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CAZyme activity levels between the fungal isolates of
each phylogroup (Fig. 4). Concerning cellulose-
degrading enzyme activities, the highest level of endo-
glucanase activity was detected after two weeks for the
isolates P. tremellosa, P. centrifuga and P. subserialis
(Fig. 4e), peaking up to 0.7 pkat 1" in the culture liquid
of P. centrifuga FBCC1264. Cellobiohydrolase (CBH)
activities in turn were marginal, and the highest
values (0.16 pkat I'Y) were observed for the P. centri-
fuga phylogroup (Fig. 4c), which was furthermore ob-
vious with the normalized activity values (Additional
file 5: Figure S4c). The highest B-glucosidase activity
(0.17 pkat 1'*) was also produced in the P. centrifuga
phylogroup (Fig. 4d). Activities of B-glucosidase in P.
radiata, P. acerina, P. brevispora, P. tremellosa and
P. ochraceofulva phylogroups were at similar levels
but isolate-level differences within each of the phy-
logroups were detected (Fig. 4d). When CBH activities
were studied, the P. radiata species group shared similar
production patterns as P. acerina, P. tremellosa and P.
hydnoides groups (Fig. 4c), and endoglucanase activities
(Fig. 4e) were at the same levels in P. radiata, P. tremel-
losa and P. subserialis phylogroup cultures. Isolate-level
differences among the species groups were also observed
in hyphal growth rates on ME agar (Additional file 5:
Figure S4f).

This study utilized generalized estimating equations
(GEE) method to analyze differences resulting from en-
zyme activity values of the samples taken and measured
at sequential time points. When the complete cultivation
period (21 d) was studied, statistically significant differ-
ences in production of lignocellulose-converting oxido-
reductases and cellulolytic enzyme activities were
detected between the phylogroups (Additional file 6:
Table S2). In the statistical calculations, time and species
group were the explanatory variables, and also their
interaction was statistically significant. When fitted
values of enzyme activities of each phylogroup were
plotted, the high variation of laccase activity production
levels between the phylogroups was observed (Fig. 3).
P. radiata group produced the highest activities of
laccase and MnP during the cultivation period. The
second best producer of laccase activity were the P. tre-
mellosa and P. hydnoides phylogroups which produced
increasing amounts of laccase activity within the
course of the cultivation. Together with the P. radiata
phylogroup, the P. acerina and P. tremellosa groups
produced higher amounts of MnP activity compared to
the other phylogroups. Fitted values of enzyme activ-
ities of each phylogroup showed moderate production
of cellulolytic activities. The phylogenetically most dis-
tant and incoherent group, the P. subserialis group,
produced the highest CBH and B-glucosidase activities
when compared to the other Phlebia phylogroups.
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pH values and culture acidity

The pH values of the culture fluids remained stable dur-
ing the 21 d cultivation period for most of the fungal
isolates (Fig. 4f). However, a few of the P. radiata iso-
lates (FBCC43, FBCC149, and FBCC194) and P. acerina
isolate FBCC4 apparently acidified their cultures leading
to final pH values below 4.0, which suggests active pro-
duction of organic acids. On the contrary, final pH
values in the cultures of P. tremellosa isolates FBCC446
and FBCCS82, P. ochraceofulva isolates FBCC360 and
FBCC295, P. centrifuga isolate FBCC359, and P. subser-
ialis isolate FBCC426 increased to pH values over 6
(pH 6.3-6.9).

Enzyme phenotype clusters

To further visualize and compare the plant-biomass de-
grading enzyme production profiles as combinations of
the periodical enzyme activity values of the fungal iso-
lates, a double hierarchical clustering calculation method
was adopted. Similarities of enzyme activities in the
semi-solid milled spruce cultures for each sampling day
were calculated to create the data matrix. The normal-
ized enzyme activity values on cultivation day 14 were
selected for presentation (Fig. 5).

According to the normalized enzyme activity profiles
at this time point, isolates of Phlebia demonstrated three
enzyme phenotype clusters (Fig. 5). Cluster C contained
most of the isolates, including isolates of P. radiata and
P. acerina, and this cluster demonstrated production of
both laccase and MnP activities. Cluster B showed high
endoglucanase activities and contained sixteen isolates.
In Cluster A, enzyme activity production was more scat-
tered but included the highest production of cellulose-
degrading CBH activities. Overall, clustering analysis
pinpointed two enzyme production patterns: Phlebia
isolates producing high oxidoreductase (laccase and
MnP) activities, and isolates showing high activities of
cellulose-degrading enzymes (CBH, endoglucanase, p-
glucosidase).

Discussion

In this study, we report on the interdependence of fun-
gal molecular systematics (genotyping) and extracellular
enzyme activity profiles (enzyme phenotyping) for iso-
lates of ten species of the largely unknown genus Phlebia
and other representatives of the phlebioid clade of Poly-
porales. The 49 fungal isolates were subjected to multi-
locus gene phylogeny, and cultivated on semi-solid
spruce wood medium to follow wood-decay enzyme
activities for a three-week period.

Besides enzyme production profiling, our second
attempt was to examine molecular systematics of the
taxonomically incoherent genus Phlebia, and to more
accurately position the type species (P. radiata) in the
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genus and phlebioid clade. The genus Phlebia has been
proposed to be a set of unrelated taxa that have some
shared morphological traits [47]. Our sequence-based
phylogenetic study was also conducted in order to con-
firm taxonomic species-level identity of phlebioid and
Phlebia isolates with previous history of principally
morphology-based identification.

Several studies — both traditional and modern molecu-
lar systematics applying - have tried to resolve the tax-
onomy of the multiple genera positioned in the
phlebioid clade of Polyporales, but so far without
complete success [21, 22, 48—52]. The recent study on
phanerochaetoid fungi increased this knowledge but
showed the need for reference sequences for some of the
species. Our study provided 152 new sequences, and the
phylogenetic analyses, both multilocus alignment and
single-gene phylogenetic analysis, produced phylograms
which point out that fungi with taxon species name
Phlebia are found in most of the currently recognized
lineages of the phlebioid clade (order Polyporales, class
Agaricomycetes) [21].

In our study, the barcode marker sequence [46] dem-
onstrated its usefulness for concluding phylogenetic po-
sitioning of evolutionarily closely and more distantly
related species of Phlebia. Although the ITS region is
useful to resolve fungal phylogenetic relationships to cer-
tain extent, the importance of using other non-protein
and protein-encoding genes to resolve the phylogenetic
position of certain Phlebia species has been demon-
strated [47, 49, 50]. For these reasons, we included three
genes - rRNA LSU, and protein-encoding gapdh and
rpb2 - to improve the outcome of our molecular system-
atic and evolutionary analyses.

Species named as Phlebia can be found in other clades
of Polyporales, for example the species P. bresadolae
and P. queletii belong to the ‘residual polyporoid clade’
[21]. It has been described earlier that the Phlebia clade
is not uniformly composed of only Phlebia species [20].
This study confirmed that the Phlebia clade includes
also fungal isolates identified to the genera Ceriporiopsis,
Scopuloides, Climacodon, Phlebiopsis, Ceriporia and
Hydnophlebia. This demonstrates the difficulty to obtain
a uniform phylogenetic analysis on Phlebia species. For
that reason, extensive ITS phylogeny was used as a start-
ing point for generating Phlebia, Phanerochaete and
Phlebiopsis clades, wherein our isolates were positioned.
After analyzing the Phlebia clade, our study confirmed
the existence of the Phlebia sensu stricto [20]. According
to our ITS analysis we propose that at least P. lindtneri,
P. serialis and P. leptospermi should be added to this
core group. It remains unclear, if P. centrifuga belongs to
the core group since other phylogenetic analyses of this
study and other studies on P. centrifuga [20, 49] are not
supporting this positioning.
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Species-level identity of most of our fungal isolates
was confirmed by the four-gene and ITS sequence phyl-
ogeny analyses, and taxonomic re-positioning occurred
only for a few Phlebia-named isolates. Two isolates
(FBCC4, FBCC345) previously identified as P. radiata
were re-classified to P. acerina due to their high ITS se-
quence identity (99.4-99.5 %) to P. acerina isolates. Sam-
pling of the reference ITS sequences of P. radiata, P.
acerina and P. rufa taxons obtained from NCBI showed
that some of these isolates were incorrectly named. Diffi-
culty to identify and discriminate these three species by
using traditional methods is not a surprise since P. rufa,
P. acerina and P. radiata are very similar in their basi-
diocarp (basidiomal) and hymenial macro-structure and
micro-morphology [25], thus also supporting their gen-
etic similarity and evolutionary close speciation.

P. chrysocreas isolates of this study (FBCC307,
FBCC309) were separated from the four reference P.
chrysocreas isolates according to ITS sequence phyl-
ogeny. Four reference sequence isolates without species-
level identity (named as Phlebia sp.) fall in between this
rather scattered branch. P. ochraceofulva isolates (FBCC
295 and FBCC 360) produced a separated lineage with-
out reference sequences. Their identity is problematic to
confirm without more reference taxons.

Another peculiarity is the positioning of the isolate P.
subserialis FBCC426 in our phylogenetic analyses, which
supported clustering of the isolate far from the Phlebia
clade to the Phanerochaete clade. Different taxonomic
positioning of isolates of P. subserialis has been observed
in earlier studies [21, 47, 49-51, 53]. According to our
ITS phylogeny, there is a Phlebia subserialis lineage
(number 1) in the Phlebia clade and a second lineage in
the Phanerochaete clade (number 2). Recently, a third P.
subserialis lineage has been demonstrated in the Phlebia
clade [20]. Six P. subserialis ITS sequences were posi-
tioned in the Phanerochaete clade, but they were sepa-
rated into two lineages (Additional file 2: Figures Sla,
S1b). The first lineage includes our isolate FBCC426. A
provisional species name of Phanerochaete krikophora
was given to the second lineage [20].

We cultivated the phlebioid isolates on semi-solid
medium containing milled Norway spruce wood, which
is a natural lignocellulose substrate for a multitude of
Polyporales wood-decay species in the northern temper-
ate and boreal forests. Most of the Phlebia species prefer
angiosperm wood for growth but may also colonize dead
gymnosperm wood [25, 48]. For instance P. centrifuga is
usually observed as a saprotroph of Norway spruce [54].
So far, production and activities of wood-decay enzymes
has been reported only for a few species of the phlebioid
clade. In our study, the wood-containing medium sup-
ported production of lignin-modifying oxidoreductase
and CAZyme activities in species of Phlebia.
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In general, moderate levels of cellulolytic endogluca-
nase activity were produced by all phlebioid isolates, and
the highest activities were measured after two weeks of
growth. Production of low endoglucanase activities on
wood cultures by P. radiata and P. tremellosa isolates
was demonstrated earlier [55], and negligible amounts of
other cellulolytic activities have been observed for P.
radiata cultures on lignocellulose substrates [26]. The
type species P. radiata produces several cellulolytic en-
zymes, including p-1,4-endoglucanase, exo-p-1,4-gluca-
nase, aryl-p-1,4-glucosidase, and [-1,4-glucosidase [56],
hemicellulolytic enzymes, including [-xylosidase and
endo-1,4-B-xylanase [57], and debranching enzymes,
such as a-glucuronidase and a-galactosidase, which may
cleave the glucosyl side-chains of hemicelluloses and
pectin [58, 59]. In this respect, it was expected that pro-
duction of a wide array of CAZymes acting on wood
polysaccharides would be as general as in P. radiata at
least among the Phlebia sensu stricto species. The mea-
sured CAZyme activities were reasonably coherent
within the species phylogroups, and the few observed
differences between fungal isolates (intraspecies vari-
ation) may be a consequence of differences in the hyphal
growth rates of the isolates.

According to enzyme activity production profiling, P.
subserialis isolate (FBCC426) and most of the isolates of
P. acerina and P. radiata clustered differently in the
double hierarchical clustering calculation analysis. Also
statistical analyses showed that the P. subserialis phy-
logroup produced higher cellulolytic enzyme (CBH and
B-glucosidase) activities during the cultivation period
compared to species that were included in the Phlebia
sensu stricto. Phenotype similarity of P. subserialis to the
genus Phanerochaete is well supported in this context,
since Phanerochaete species (P. chrysosporium, P. car-
nosa, P. sordida) are well known producers of cellulo-
lytic enzymes, with several CAZymes and respective
genes characterized [60—62].

Considering the lignin-modifying oxidoreductases,
our study reveals that there are significant differences
in production of laccase activities among the Phlebia
species groups. Production of laccase activity was one
of the features clearly distinguishing between the en-
zyme phenotype groups. This is rather surprising since
production of laccase has classically categorised wood-
decay fungi as white rot and lignin-modifying species
[63]. However, in line with the accumulating genomic
data and comparative genomics on Basidiomycota and
Polyporales species, the role of laccase in decompos-
ition of wood lignin has been questioned [3, 64]. In-
stead, it is more evident that secreted class II heme
peroxidases and in particular, various MnPs are neces-
sary for lignin degradation and white rot type of wood
decay [1, 2].
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In this respect, it was assumed that all phlebioid iso-
lates studied could actively produce MnP when growing
on spruce wood. Convincingly, MnP activities were ei-
ther at moderate steady levels throughout the cultivation
period, or a pattern of cyclic production (MnP activity
peaking on 10th and 17th cultivation day) was observed
for closely related P. radiata, P. acerina and P. tremel-
losa strains. Cyclic production of MnP has been reported
for P. radiata isolate FBCC43 on milled alder wood
under similar cultivation conditions [28]. Furthermore,
high MnP activities as well as protein properties for
MnP enzymes (long- and short-MnPs) and isoenzymes
have been reported for several Phlebia species (P.
radiata, P. tremellosa, P. brevispora, P. floridensis, P.
subserialis, Phlebia sp. MG60, and Phlebia sp. b19)
[8, 42, 43, 65-67], and divergent mnp genes have
been cloned from e.g. P. radiata [27].

Surprisingly, no lignin peroxidase (LiP) activity was de-
tected in the spruce wood cultures of any of the phle-
bioid isolates studied, although isolates of P. radiata, P.
tremellosa, P. floridensis, P. brevispora and P. ochraceo-
fulva produced LiP enzymes under variant culture con-
ditions and in cultures including solid lignocellulose
supplements [8, 28, 41, 42, 67]. For P. radiata, LiP activ-
ity has been reported even on similar semi-solid cultures
but supplemented with alder sawdust [28, 30], and three
LiP-encoding genes have been cloned and characterized
in this species [37]. Partial /ip gene sequences were amp-
lified from isolates of P. tremellosa and P. chrysocreas
[68]. In several previous studies [38, 66, 69] the authors
have discussed that LiP activities may not be detectable
due to the presence of coloured, apparently phenolic
compounds, which are dissolved in the fungal cultures
from the wood and plant biomass substrates. These type
of compounds may have masked LiP activities also in
our study.

Our ITS sequence phylogeny analysis was in agree-
ment with the recent extensive ITS phylogeny study on
taxa of Phanerochaete and related genera [20]. The
protein-encoding gene (gapdh and rpb2) regions, how-
ever, were somewhat less successful in supporting evolu-
tionary positioning of our set of Phlebia isolates. The
gapdh primers designed and applied in this study re-
sulted in a higher frequency of PCR amplification than
obtained with rpb2 primers. Accordingly, gapdh intron
positioning was one of the genotyping features most
conserved among the Phlebia sensu stricto species. Pres-
ence of a unique second intron in gapdh genes of P. cen-
trifuga isolates differentiated this species from Phlebia
sensu stricto. One challenge in using the gapdh region
for molecular systematics and phylogenetic analyses is
yet the lack of reference sequences in nucleotide se-
quence databases. For this reason, current use of primers
targeted to ITS sequences and rRNA encoding genes
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together with carefully selected conserved protein-
encoding genes promotes coherency for taxonomic com-
parison and fungal systematics.

Conclusions

Our study on the polyphyletic genus Phlebia infers that
the fungal phylogroups showed significant differences in
lignocellulose-converting enzyme phenotypes according
to generalized estimation statistical analysis. These re-
sults may reflect different efficiencies of the enzyme-
production profiles of Phlebia species in their natural
habitats, and predict their life-style differences on strat-
egies to degrade various types of wood and lignocellu-
lose. Knowledge of the taxonomy and physiological
versatility of genus Phlebia has a great importance for
more applicative studies on fungal enzyme production
and bioconversion abilities. Our study is the first using
such approach of combined molecular genotyping and
enzyme activity profiling, and may thus be an example
for similar research for systematically unknown or bio-
chemically less studied wood-decay fungi, and aid in
characterizing new fungal species and isolates.

Methods

Fungal isolates

The fungal isolates (Table 1) were living pure cultures
deposited in the University of Helsinki Fungal Biotechnol-
ogy Culture Collection (FBCC, fbcc@helsinkifi), of the
Division of Microbiology and Biotechnology, Department
of Food and Environmental Sciences.

Cultivation of the fungal isolates

Fungal isolates (Table 1) were maintained on 2 % (w/v)
malt-extract (Biokar Diagnostics, France) agar (2 % w/v
agar-agar, Biokar Diagnostics, France) (MEA) plates at
room temperature. For extraction of DNA, fungal iso-
lates were cultivated on 2 % MEA plates for 14 days at
28 °C. For the determination of hyphal growth rates, one
mycelium agar plug (7 mm in diameter) was inoculated
in the center of each 2 % MEA plate and cultivated for
14 days at 28 °C - except in the case of the fungal
isolates FBCC297, FBCC464, FBCC1283, FBCC422,
FBCC423, FBCC359 and FBCC421, which were culti-
vated at 22 °C. For enzyme activity production, Phlebia
spp. strains were cultivated as semi-solid liquid cultures
in three parallel flasks containing 100 ml of low-
nitrogen asparagine-succinate medium, pH 4.5 [31, 35],
without glucose but supplemented with 1 g (dry weight)
of milled Norway spruce (Picea abies) wood as the sole
carbon source. The semi-solid cultures were inoculated
with four mycelial agar plugs (7 mm in diameter) from
7-14 days grown MEA plates, and incubated for 21 days
at 28 °C in the dark as stationary cultures.
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DNA extraction

Pieces of mycelia were disrupted with acid-washed and
sterilized glass beads (1-2 mm) in sterile plastic cryo-
tubes using FastPrep®-24 Instrument (M.P. Biomedicals,
USA). DNA was extracted by using CTAB buffer and
purified as previously described [27]. Amount and qual-
ity of total DNA was determined with NanoDrop 1000
Spectrophotometer (Thermo Scientific, Germany).

PCR amplification

Complete nuclear rDNA ITS region (ITS1+5.8S+
ITS2), part (1361-1419 bp) of the large rRNA subunit
(LSU) coding region, partial (505-636 bp) sequence of
the glyceraldehyde phosphate dehydrogenase encoding
gene (gapdh), and a ca. 1097 bp region of the 140 kDa
size subunit of the nuclear RNA polymerase II encod-
ing gene (rpb2) were PCR amplified by using genomic
DNA as template. The complete ITS region was ampli-
fied with ITS1 and ITS4 primers [70], the 5" region of
the LSU with 5.8sr and LR7 primers [71], and the par-
tial rpb2 region with 7cf and 11bR primers [72].
Primers were designed to amplify the partial gapdh re-
gion from Phlebia isolates (fw: 5'-ATG GTC TAC ATG
TTC AAG TAC GAC-3'; rev: 5'-TCG ACG AGG GGA
TGA TGT T -3’). PCR reactions were conducted with
Dynazyme II or Phusion Hot Start DNA polymerase
(Finnzymes, Finland). PCR was performed as previously
described [27, 73].

Sequencing

The amplified PCR products were either directly used as
templates or cut out of the agarose gels and purified
with GeneJET™ Gel Extraction Kit (Fermentas, Lithuania),
and used for sequencing (Institute of Biotechnology, Uni-
versity of Helsinki, Finland, and Macrogen Ltd, Republic
of Korea) with the initial PCR primer pairs.

Sequence analyses

Nucleotide sequences were edited and assembled with
BioEdit software [74]. Regions of ITS1, 5.8S and ITS2
were identified with the ITS extractor software [75]. In-
trons were excluded manually from the protein-
encoding gapdh sequences in all analyses. They were
confirmed by recognizing the consensus exon/intron
splice junction sequences present in reference genes.
Reference sequences were obtained from NCBI GenBank
(http://www.ncbi.nlm.nih.gov), especially the ITS se-
quences produced by Floudas and Hibbet [20], and JGI
MycoCosm genome portal (http://genome.jgi.doe.gov/
programs/fungi/index.jsf, [76], Additional file 7: Table
S3). All sequences were aligned using PRANK (http://
www.ebi.ac.uk/goldman-srv/webprank/) with the default
settings [77]. The alignments were manually trimmed
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(overhangs were removed and gaps were corrected) prior
to phylogenetic analyses.

After multiple alignment of each trimmed gene, ITS
alignment comprising the regions ITS1, 5.8S and ITS2
of 481 DNA sequences from taxa of the phlebioid clade
was created and subjected to maximum likelihood (ML)
inference by using RAXxML v. 7.2.8 (http://phylobench.
vital-it.ch/raxml-bb/, [78]). The best-scoring ML tree
was searched and the bootstrap analysis was run under
the GTRCAT model, using 100 rapid bootstrap repli-
cates. Trees were visualized with the Interactive Tree Of
Life (iTOL) online tool [79] and CoreDRAW X3 soft-
ware (Corel Corporation, Canada). The resulted ML tree
helped to divide ITS sequences into four subsets. The
ITS sequences of each subset were realigned separately
using PRANK and the ML analyses were performed with
the same parameters in each case. Multilocus phylogen-
etic analysis based on 5.8S (SSU) (158 nucleotides), and
LSU (1421 nucleotides), gapdh (413 nucleotides) and
rpb2 (913 nucleotides) gene coding regions were con-
ducted from the aligned dataset of 62 combined nucleo-
tide sequences containing 2905 positions, of which 810
were variable (including missing data). ITS1 and ITS2
sequences were omitted from the four-gene phylogeny
since these were poorly aligned. ML analysis was per-
formed for this alignment with RAXML with GTRCAT
model of evolution. Node support was assessed with 100
rapid bootstrap replicates. Individual runs were also
performed for each target sequence and for combined
ribosomal (ITS + LSU) sequences and combined protein-
encoding sequences (gapdh +rpb2). The ML analyses
were performed with the same parameters in each case.

Determination of enzyme activities

Enzyme activities from samples collected on days 3, 7,
10, 14, 17, 21 and 28 after inoculation from three semi-
solid culture flasks were measured by using 96-well
plates and Tecan Infinite M200 microplate reader spec-
trophotometer (Tecan, USA) for each fungal isolate. Re-
action volume was 250 pl, and three parallel reactions
were measured for each sample and each fungal culture
flask.

Laccase activity was determined by following the oxi-
dation of 1 mM 2,6-dimethoxyphenol (2,6-DMP, Al-
drich, Germany) at 476 nm in 50 mM Na-malonate
buffer (pH 4.5) at 25 °C [28, 80]. MnP activity was
assayed by detecting the formation of Mn**-malonate
complex at 270 nm in 50 mM Na-malonate buffer
(pH 4.5) at 25 °C [81].

Cellulase (cellobiohydrolase I, P-glucosidase and
endo-p-1,4-glucanase) reactions were performed in
50 mM Na-citrate buffer (pH 5) at 45 °C [82]. Cellobio-
hydrolase (CBHI) activity was measured by using 4-
methylumbelliferyl-p-D-lactoside (MULac, Biokemis,
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Russia) as substrate. B-glucosidase activity was assayed
by quantification of p-nitrophenol released from 1 mM
4-nitrophenyl pB-D-glucopyranoside (Applied Chemical
Laboratories, USA) at 400 nm. Endo-f-1,4-glucanase
activity was determined with 1 % (wt/vol) hydroxyethyl
cellulose (HEC, Sigma, USA) as a substrate. Reducing
sugars were measured with dinitrosalisylic acid (DNS)
at 540 nm [82].

For calculation of the hyphal growth rate, mean data
points (measured from three parallel MEA plates) were
selected from the linear growth phase. This was pre-
sented as cm d™'. Enzyme activity values on cultivation
day 14 were divided by this value to obtain the ‘normal-
ized’ enzyme activity values.

Statistical analyses

The linear models and the method of generalized esti-
mating equations (GEE) were used to analyze differences
in the set of enzyme activities between the Phlebia phy-
logroups. The phylogroups were determined by the mul-
tigene sequence similarity and evolutionary analysis. In
each generalized linear model, time and group were ex-
planatory variables and their interaction terms were also
included in all models. The enzyme activities were as-
sumed to follow the Tweedie distribution with link func-
tion chosen to be the log link. The working correlation
matrix of within-subject repeated measurements was as-
sumed to have a first-order autoregressive structure in
each model. In estimation, the index parameter of the
Tweedie distribution was first estimated by using the R
software 3.1.1 (R Core Team, 2014) with the tweedie
package. Then the GEE procedure was performed by
using IBM SPSS Statistics 22, release 22.0.0.0 (IBM Cor-
poration, USA). Significance level of 5 % was used in all
analyses.

To visualize normalized enzyme activity profiles of the
49 Phlebia isolates after 14 days of growth on semi-solid
milled spruce medium, hierarchical clustering of the en-
zyme activities was performed by generating a Pearson cor-
relation matrix with Multiexperiment Viewer (MeV) [83].

Availability of supporting data

The data sets supporting the results of this article are
included within the article and its additional files. All
nucleotide sequences were deposited in EMBL-EBI
European Nucleotide Archive (ENA) under accession
numbers presented in Additional file 1: Table S1 [EMBL:
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Additional file 2: Figure S1. Maximum likelihood analysis of TS
sequences of (a) Phanerochaete and (b) Phlebiopsis lineages of the
phlebioid clade. Description: Bootstrap values (100 replications) higher
than 50 % are indicated for the nodes. Fungi of this study (shaded in
blue) are compared with related taxons with sequences retrieved from
NCBI (http://www.ncbi.nlm.nih.gov/) database. Quotation marks represent
uncertain identification or provisional names [20]. Scale bar represents
0.01 nucleotide substitutions per position. (TIFF 4093 kb)

Additional file 3: Figure S2. Maximum likelihood tree of Phlebia isolates
and related species. Description: Partial nucleotide sequences from (a) rRNA-
encoding genes (ITS1-5.85-TS2, LSU) and (b) two protein-encoding genes
(gapdh, rpb2) were concatenated for alignment, and the phylogenetic ana-
lysis was performed using RAXML v. 7.2.8. and 100x bootstrapping for the
nodes. For comparison, sequences from JGI MycoCosm database [76] and
NCBI were retrieved. Species names are followed by isolate culture
collection identifiers or sequence accessions. Bootstrap values higher than
50 % are indicated for the nodes. Scale bar represents 0.01 nucleotide
substitutions per position. (TIFF 3310 kb)

Additional file 4: Figure S3. Phylogenetic trees of phlebioid isolates
from maximum likelihood analyses of individual gene datasets.
Description: Bootstrap values (100 replications) higher than 50 % are
indicated for the nodes. Species names are followed by culture collection
identifiers. For comparison, sequences from JGI MycoCosm database [76]
were retrieved. Scale bar represents 0.01 nucleotide substitutions per
position. (TIFF 6079 kb)

Additional file 5: Figure S4. Normalized enzyme activities of culture
liquids and hyphal growth rates of Phlebia isolates. Description:
Normalized extracellular (a) laccase (b) MnP (c) CBH (d) B-glucosidase and
(e) endoglucanase activities on day 14 in semi-solid milled spruce cul-
tures of Phlebia isolates. Error bars represent standard deviation of the
mean activity value from two parallel cultivations. (f) Hyphal growth rates
from three parallel MEA plates. Mean value for each isolate is presented.
Error bars represent variance of the growth rates. The isolates were
numbered as listed in Table 1. (TIFF 1427 kb)

Additional file 6: Table S2. Statistical tests of model effects and
estimates of index parameter in Tweedie distribution. (PDF 155 kb)

Additional file 7: Table S3. Accessions for nucleotide and
protein-encoding gene model sequences used for comparison in the
four-gene phylogenetic analyses. Description: All the sequences were
retrieved from JGI MycoCosm database [76] with minor exception:  from
NCBI http//www.ncbi.nlm.nih.gov/. (PDF 13 kb)
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