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Abstract 

Background:  With the accelerated global integration and the impact of climatic, ecological and social environmental 
changes, China will continue to face the challenge of the outbreak and spread of emerging infectious diseases and 
traditional ones. This study aims to explore the spatial and temporal evolutionary characteristics of the incidence of 
Class B notifiable infectious diseases in China from 2007 to 2020, and to forecast the trend of it as well. Hopefully, it will 
provide a reference for the formulation of infectious disease prevention and control strategies.

Methods:  Data on the incidence rates of Class B notifiable infectious diseases in 31 provinces, municipalities and 
autonomous regions of China from 2007 to 2020 were collected for the prediction of the spatio-temporal evolution 
and spatial correlation as well as the incidence of Class B notifiable infectious diseases in China based on global spatial 
autocorrelation and Autoregressive Integrated Moving Average (ARIMA).

Results:  From 2007 to 2020, the national incidence rate of Class B notifiable infectious diseases (from 272.37 per 
100,000 in 2007 to 190.35 per 100,000 in 2020) decreases year by year, and the spatial distribution shows an “east-
central-west” stepwise increase. From 2007 to 2020, the spatial clustering of the incidence of Class B notifiable infec‑
tious diseases is significant and increasing year by year (Moran’s I index values range from 0.189 to 0.332, p < 0.05). 
The forecasted incidence rates of Class B notifiable infectious diseases nationwide from 2021 to 2024 (205.26/100,000, 
199.95/100,000, 194.74/100,000 and 189.62/100,000) as well as the forecasted values for most regions show a down‑
ward trend, with only some regions (Guangdong, Hunan, Hainan, Tibet, Guangxi and Guizhou) showing an increasing 
trend year by year.

Conclusions:  The current study found that since there were significant regional disparities in the prevention and 
control of infectious diseases in China between 2007 and 2020, the reduction of the incidence of Class B notifi‑
able infectious diseases requires the joint efforts of the surrounding provinces. Besides, special attention should be 
paid to provinces with an increasing trend in the incidence of Class B notifiable infectious diseases to prevent the 
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Background
The occurrence and transmission patterns of infectious 
diseases are changing with the accelerated global inte-
gration and the impact of climatic, ecological and social 
environmental changes [1, 2]. Recent outbreaks of infec-
tious diseases such as Ebola, Zika and Corona Virus Dis-
ease 2019 (COVID-19) demonstrate that emerging and 
traditional infectious diseases are posing and will con-
tinue to pose a threat to human life and health, which 
brings new challenges for the emergency response capac-
ity of the whole world, especially developing countries 
with limited available resources [3–5]. Since the out-
break of the Severe acute respiratory syndrome (SARS) 
in 2003, China, as the world’s largest developing country, 
has made many efforts to build a response system for 
public health emergencies, promulgating a number of 
emergency plans, overhauling the national information 
system for disease prevention and control, and launching 
National Major Scientific and Technological Special Pro-
ject for Prevention and Control. Yet the latest epidemic 
profile of notifiable infectious diseases released by the 
Chinese Centre for Disease Control and Prevention show 
that the number of reported cases of notifiable infectious 
diseases in mainland China remained as many as 699,466, 
and that 1531 people died between 00:00 on 1 May 2021 
and 24:00 on 31 May 2021 [6]. Thus China still remains 
under serious threat from infectious diseases.

The primary task for controlling infectious diseases is 
to understand the distribution characteristics of epidemi-
ology. According to the existing research, about 80% of 
epidemiological data are spatial in nature [7]. Therefore, 
the exact analysis of the spatial distribution characteris-
tics of infectious diseases is a must for the effective study 
of the causes and other influencing factors of diseases 
and also for the formulation of effective prevention and 
control strategies. In recent years, with a mature statis-
tical method, spatio-temporal statistics, researchers can 
not only conduct a dynamic analysis of the temporal and 
spatial distribution characteristics of infectious diseases, 
but also summarize the spatio-temporal transmission 
patterns by considering the three-dimensional environ-
ment in which they occur and are prevalent [8, 9]. So far, 
extensive studies of the epidemiological characteristics of 
infectious diseases have been conducted by many schol-
ars employing spatial statistical methods based on geo-
graphic information system (GIS) [10–14].

Modelling spatio-temporal trends in infectious diseases 
is of great importance, because real-time epidemiological 
forecasting can help to predict the geographic expansion 
of diseases as well as the number of cases. What’s more, 
the exact prediction of the epidemic outbreak helps 
policy makers to prepare early so that they can better 
implement public health interventions. As the infectiv-
ity of pathogens and the availability of drugs and vaccines 
change over time, the application of updated shared data 
is much necessary for the evaluation and prediction of 
disease hazard. In China, the National Health Commis-
sion of the People’s Republic of China regularly releases 
on its official website the annual incidence of Class A, 
Class B and Class C notifiable infectious diseases, pro-
viding a platform for further study of the epidemiological 
characteristics of notifiable infectious diseases in China. 
In the Law of the PRC on the Prevention and Treatment 
of Infectious Diseases enacted in 1989, infectious dis-
eases are classified into three categories, Class A, Class 
B and Class C, among which the former two can both 
cause large-scale severe epidemics within a short period 
of time, while the third is less infectious and causes only 
minor outbreaks. The number of notifiable infectious 
diseases in the three categories is ever-changing with the 
outbreak of emerging ones. For example, on October 2, 
2020, the National Health Commission issued a draft of 
the revised Law on Prevention and Control of Infectious 
Diseases for consultation, which clearly states that two 
new types of infectious diseases, namely human H7N9 
avian influenza and novel coronavirus, have been added 
to Class B. Currently, the three categories contain alto-
gether 41 notifiable infectious diseases, as shown in Addi-
tional file 1: Annex 1. Epidemic incidence data have been 
shown to be valuable epidemiological tools for real-time 
assessment and prediction of trends and transmission 
potential [15–18]. By means of the data, predictive mod-
els can be used to help provide timely forecasts of disease 
incidence and geographic spread of emerging epidemics. 
Auto Regressive Integrated Moving Average (ARIMA) is 
a time-domain tool for time series analysis that has been 
widely used for infectious disease prediction [19, 20]. 
For example, many scholars have recently used ARIMA 
models to predict the incidence of COVID-19 [21–23], 
as it was used to predict the incidence of other infectious 
diseases such as viral hepatitis [24], malaria [25, 26] and 
measles [27].

re-emergence of certain traditional infectious diseases in a particular province or even the whole country, as well as 
the outbreak and spread of emerging infectious diseases.
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Despite the accumulated findings, there are still limi-
tations in the existing research. In general, most of the 
current researches on infectious diseases are the study 
of one specific disease, and the hotspots of research have 
been focused on a single study of the current epidemio-
logical status, prediction of incidence trends and spatial 
attributes of the disease, lacking systematic research on 
the epidemiological characteristics and trend predic-
tion of multi-species combinations. Since there is grow-
ing evidence of the complexity of disease interactions 
and disease etiology, a multi-species analysis to capture 
the overall trends of infectious diseases may be a worth-
while approach. Therefore, by using the method of spa-
tial econometric analysis and time series forecasting 
combined and taking 31 Chinese provinces (Hong Kong, 
Macao and Taiwan are excluded) as the study unit, this 
study aims to focus on the current spatial and temporal 
distribution of the incidence of highly infectious Class B 
notifiable infectious diseases, and to predict the future 
development trend of the incidence of Class B notifiable 
infectious diseases. Hopefully, it will help Chinese public 
policy makers to formulate better health policy interven-
tion measures, build better response of China’s public 
health epidemic prevention system to disease outbreaks, 
and provide for other countries valuable information 
to develop better intervention strategies to prevent and 
control the spread of emerging and re-emerging infec-
tious diseases.

Data and methods
Data sources
Firstly, with Class B notifiable infectious diseases as the 
research object, only data on the incidence of Class B 
were collected, because Class C require only appropri-
ate surveillance since they do not cause any serious con-
sequences, and Class A, which include only two types of 
infectious diseases, i.e. plague and cholera, are relatively 
few in number and have been almost eradicated in China. 
Secondly, given the availability of data, the data on the 
incidence of Class B notifiable infectious diseases used in 
this study were that of 31 provinces in mainland China 
(except Hong Kong, Macao and Taiwan) and that of the 
whole country for each year during the period 2007–
2020. The data used in this study were obtained from 
public sources: (1) Data on the incidence of Class B noti-
fiable infectious diseases were obtained from the China 
Health Statistical Yearbook 2008–2012 and the China 
Health and Family Planning Statistical Yearbook 2013–
2021 published by the National Health Commission of 
the People’s Republic of China (http://​www.​nhc.​gov.​cn). 
(2) Geographic information based data were obtained 
from the standard map service website of the National 

Bureau of Surveying, Mapping and Geographic Informa-
tion (http://​bzdt.​ch.​mnr.​gov.​cn).

Research methodology
Global spatial autocorrelation [28]
Global spatial autocorrelation analysis is performed at 
the national macro level by comparing the mean values 
of attributes aggregated over the overall region with the 
values of attributes on each spatial unit to derive the 
average degree of association between the incidence of 
Class B notifiable infectious diseases in each province 
and region at the national level, i.e. to determine whether 
there is any clustering of the incidence of Class B notifia-
ble infectious diseases at the national level. Global spatial 
autocorrelation analysis usually uses the Moran’s I index 
to determine whether the spatial distribution of regional 
variables is statistically clustered or dispersed, and is cal-
culated using the formula:

In the formula: n is the number of provincial adminis-
trative districts; xi is the incidence of Class B notifiable 
infectious diseases in the ith provincial administrative 
district; Wij is the spatial weight matrix, which is deter-
mined here by means of spatial geographical adjacency, 
i.e. if two places are adjacent, the corresponding element 
in the matrix takes 1, otherwise it takes 0; x is the mean 
incidence rate of Class B notifiable infectious diseases 
aggregated across all n provincial administrative districts.

Moran’s I index values generally range from [− 1,1]. 
At a given level of significance, I > 0 indicates a positive 
spatial correlation, with larger values indicating more 
pronounced spatial aggregation; I < 0 indicates a negative 
spatial correlation, with smaller values indicating more 
pronounced spatial dispersion; and I =  0 indicates that 
the observations are randomly distributed in space.

ARIMA model [29]
The ARIMA model is one of the most commonly used 
methods for infectious disease time series forecasting and 
has been shown to be highly accurate [30]. In ARIMA (p, 
d, q), AR(p) is an autoregressive model and MA(q) is a 
moving average model, with p, d and q being the number 
of autoregressive terms, the number of differences and 
the number of moving average terms respectively. The 
ARIMA (p, d, q) model is an autoregressive moving aver-
age process with smoothness obtained after d differences 
of the AR(p) process and the MA(q) process.
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ARIMA modelling includes smooth constructive simu-
lation fitting, parameter estimation and model diagnosis. 
The modelling process in this study consists of three 
main steps. Firstly, as the annual data used in this study 
did not show seasonal variation and were non-stationary, 
the series were differenced at the non-seasonal level, and 
the autocorrelation and partial autocorrelation plots were 
plotted to determine whether the differenced time series 
were stationary. Secondly, the best model was screened 
using the Bayesian Information Criterion Error (BIC) 
(the smaller the value, the better the model) based on the 
Box-Ljung test that the residual series were white noise. 
Finally, the accuracy of the model was evaluated in two 
ways. On the one hand, the fit of the ARIMA model 
between the actual and predicted values was determined 
by observing whether the actual values were within the 
95% confidence interval of the predicted values. On the 
other hand, the accuracy of the ARIMA model was eval-
uated by calculating the relative error (RE) and the mean 
absolute percentage error (MAPE). The prediction accu-
racy of the model is generally considered to be high when 
the MAPE is < 10%. RE and MAPE are calculated as 
RE =

∣

∣

∣

ŷt
yt
− 1

∣

∣

∣
× 100% and MAPE =

100%

n

n
∑
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where the equations yt and ŷt denote the actual and pre-
dicted values at time point respectively.

As COVID-19 epidemic broke out in China in 2020, 
the 2020 data for Class B notifiable infectious diseases 
may affect the selection of the best model and in turn, 
the accuracy of the prediction results. Therefore, we first 
used 2007–2019 data for the above model construction 
for accurate forecast, followed by verifying the reliability 
of the best model selected in the above modelling process 
with 2020 data. If the relative error between the fore-
casted and actual incidence of Class B notifiable infec-
tious diseases in 2020 is still less than 10%, it proves the 
reliability of the best model selected, which will continue 
to be used for short-term forecasting of the incidence of 
Class B notifiable infectious diseases.

Spatial correlation analysis in this study was performed 
using Stata 14.0 software; ARIMA model prediction 
using SPSS 26.0 software and mapping using ArcGIS 10.2 
software. α = 0.05 was used as the significance criterion.

Results
Analysis of the spatial and temporal evolution 
of the incidence of Class B notifiable infectious diseases 
in China
Temporal evolutionary characteristics
In order to study the trends in the incidence rates of 
Class B notifiable infectious diseases in different regions 
of China, this study divided the 31 provinces of China 
into three regions (east, central and west) in the light of 

economic development level and geographical location, 
with the east the highest in the economic development 
level while the west the lowest [31]. Figure  1 shows the 
trend of the incidence rate of Class B notifiable infec-
tious diseases in this study in order to analyse regional 
differences in the incidence rate of infectious diseases in 
China. From 2007 to 2020, China’s national incidence of 
Class B notifiable infectious diseases shows a decreas-
ing trend year by year (from 272.37/100,000 in 2007 to 
190.35/100,000 in 2020), with the east dropping from 
249.93/100,000 in 2007 to 165.45/100,000 in 2020, the 
central from 262.18/100,000 in 2007 to 191.63/100,000 
in 2020 and the west from 360.07/100,000 in 2007 to 
232.18/100,000 in 2020. The national incidence of Class 
B notifiable infectious diseases is on a gradual increase 
from the east to the central and then to the west, with the 
east the lowest incidence of Class B notifiable infectious 
diseases, while the west the highest. As for the decreasing 
range, the biggest is in the west (35.52%), followed by the 
east (33.80%) and the central (26.91%).

Spatial distribution characteristics
The incidence data of Class B notifiable infectious dis-
eases in 2007 and 2020 in China were selected and visu-
alized. Besides, in order to show the differences between 
regions more clearly, the same interval method in ArcGIS 
10.2 software was used to classify the incidence into five 
classes: low (0/100,000~), slightly low (115/100,000~), 
medium (230/100,000~), slightly high (345/100,000~) 
and high (460/100,000~), see Fig.  2. In terms of spa-
tial distribution, the incidence rate of Class B notifiable 
infectious diseases in each province has obvious spatial 
variation, with an overall increasing distribution of “east-
central-west”, showing a clear correlation with the level of 
economic development. In the economically developed 
eastern region, with the exception of a few provinces, 
the incidence rates of Class B notifiable infectious dis-
eases are all at or below the lower end of the provincial 
incidence rankings. For example, the incidence rates of 
Class B notifiable infectious diseases in Jiangsu Province 
in 2007 and 2020 were 172.3 per 100,000 and 98.23 per 
100,000 respectively, ranking 30th and 29th among all the 
provinces. Compared with the east and central regions, 
the incidence rates of Class B notifiable infectious dis-
eases in the less developed western regions are relatively 
high. For example, the levels of Class B notifiable infec-
tious diseases in Xinjiang (657.52/100,000) and Qinghai 
(463.63/100,000) in 2007 and Qinghai (376.80/100,000) 
and Xinjiang (324.99/100,000) in 2020 are all at the 
higher and above, ranking in the top four among prov-
inces. Compared with 2007, the incidence rates of Class 
B notifiable infectious diseases decreased in all provinces 
in 2020, except Guangdong, Hainan, Hunan and Tibet, 
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Fig. 1  Regional incidence rates of Class B notifiable infectious diseases, China, 2007–2020

Fig. 2  Provincial distribution of the incidence of Class B notifiable infectious diseases, 2007 and 2020
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where the incidence rates of Class B notifiable infectious 
diseases increased.

Spatial autocorrelation analysis of the incidence of Class B 
notifiable infectious diseases in China
Figure 3 shows the trend of Moran’s I index for the inci-
dence of Class B notifiable infectious diseases in China 
during the period 2007–2020, derived from the global 
spatial autocorrelation analysis of this study. The Moran’s 
I index values for the incidence of Class B notifiable 
infectious diseases in China during the period 2007–
2020 ranged from 0.189 to 0.332, with an overall increas-
ing trend and reaching significance levels in all years 
(P < 0.05) (see Fig. 3).

Predicting the incidence of Class B notifiable infectious 
diseases in China
The national incidence rate of Class B notifiable infec-
tious diseases was differenced 1 time (d=1) to obtain an 
autocorrelation function (ACF) plot and a partial auto-
correlation function (PACF) plot (see Fig. 4). The results 
show that the confidence intervals are within the range 
of [− 0.5,0.5], so the series after the first-order difference 
tends to be smooth.

The ARIMA model was fitted with the national inci-
dence rate of Class B notifiable infectious diseases as 
the dependent variable, and the model was screened by 
Box-Ljung test and BIC index. Considering that p and 
q values generally did not exceed 2, a trial subscription 

from 0 to 2 was executed. Only five models passed the 
Box-Ljung test (P > 0.05): ARIMA (0, 1, 1), ARIMA (0, 
1, 2), ARIMA (1, 1, 1), ARIMA (1, 1, 0), and ARIMA (2, 
1, 1). Table  1 shows the statistics, BIC and parameter 
estimation results for the five models. The ARIMA (1, 1, 
1) model was finally chosen as the optimal model with 
BIC = 4.631, standard R2 = 0.543 and MAPE = 2.169%.

Table 2 shows the results of the fit using the ARIMA 
(1,1,1) model, which shows that the RE values of the 
data for each period is less than 10%, indicating that the 
model fits well.

Figure 5 shows the backgeneration and prediction of 
the national incidence of Class B notifiable infectious 
diseases using the ARIMA (1,1,1) model. According 
to Fig.  5, the actual values are within the 95% confi-
dence interval of the predicted values, a further indi-
cation that the model fits well. The reliability of the 
ARIMA (1,1,1) model was verified using the data for 
2020, and the RE value between the predicted value 
(207.67/100,000) and the actual value (190.35/100,000) 
for 2020 was 8.34% (RE < 10%), which indicates that 
the model has a good prediction effect. By compar-
ing the predicted value with the actual value in 2020, 
we can find that the predicted value is larger than the 
actual value. The predicted incidence rates of Class 
B notifiable infectious diseases for 2021–2024 are 
205.26/100,000, 199.95/100,000, 194.74/100,000 and 
189.62/100,000 respectively, showing a decreasing 
trend year by year, as shown in Fig. 5.

Fig. 3  Moran’s I index chart of the incidence of Class B notifiable infectious diseases, 2007–2020
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The ARIMA model was used to fit the incidence rates 
of Class B notifiable infectious diseases in 31 provinces, 
municipalities and autonomous regions of China from 

2007 to 2019, and the MAPE values for all provinces 
were less than 10%. Meanwhile, the results of the back-
generation validation using 2020 data showed that the 
RE values between the predicted and actual values in 
2020 were also less than 10% for all the provinces except 
Hubei, indicating good fitting results for each province. 
See Table 3. It is worth mentioning that Hubei Province, 
as the initial outbreak place of the epidemic in China, 
may have been hit so hard by the epidemic that the best 
model selected did not pass the backgeneration valida-
tion in 2020, and if the selected model continues to be 
used for forecasting it will possibly result in a large bias, 
so we counducted prediction by using the best model 
selected for each province excluding Hubei, and the 
incidence data for 2021–2024 were obtained for each 

Fig. 4  ACF and PACF plots of the national incidence of Class B notifiable infectious diseases after first-order differencing

Table 1  Parameter estimation and model validation of the 
ARIMA model

Models Fitted Model Statistics Ljung-Box Q(18)

Stationary R2 MAPE BIC Statistics Sig.

ARIMA(0,1,1) 0.47 2.358 4.831 14.469 0.481

ARIMA(0,1,2) 0.219 3.427 5.983 21.53 0.198

ARIMA(1,1,1) 0.543 2.169 4.631 15.472 0.378

ARIMA(1,1,0) 0.453 2.523 4.934 17.571 0.329

ARIMA(2,1,1) 0.273 2.743 5.778 20.678 0.217
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province and city, as shown in Table  3. What’s more, 
the predicted incidence of Class B notifiable infectious 
diseases was visualised for each province and is shown 
in Fig.  6. The predicted incidence in most regions of 
China from 2021 to 2024 shows a decreasing trend year 
by year, while it shows the opposite in such regions as 
Guangdong, Hainan, Hunan, Guangxi, Guizhou and 
Tibet, whose predicted incidence rates of Class B noti-
fiable infectious diseases in 2021–2024 range from 
301.41/100,000 to 311.27/100,000, 375.67/100,000 to 
436.99/100,000, 306.55/100,000 to 326.71/100,000, 
303.16/100,000 to 307.43/100,000, 264.32/100,000 to 
280.62/100,000, and 389.49/100,000 to 476.63/100,000 

respectively. The overall incidence rate of Class B noti-
fiable infectious diseases in China still shows a distribu-
tion pattern of high in the west and low in the east, but 
the difference between the east and the west is decreas-
ing year by year.

Discussions
This study uses the incidence rates of Class B notifiable 
infectious diseases published on the official website of the 
National Health Commission of the People’s Republic of 
China from 2007 to 2020 as a data source to analyse the 
characteristics of the spatial and temporal distribution 
of the incidence rates of Class B notifiable infectious dis-
eases in China, and to forecast their development trends. 
The results of the study show that, in terms of spatial dis-
tribution, the overall incidence of Class B notifiable infec-
tious diseases in China during the period 2007–2020 
showed an increasing distribution of “East-Central-West”, 
indicating that the incidence of Class B notifiable infec-
tious diseases has a certain correlation with the level of 
economic development of the region. The incidence rate 
of Class B infectious diseases is correlated with the eco-
nomic development level of the region. Previous studies 
have confirmed that higher levels of economic develop-
ment can be beneficial to the reduction of likelihood of 
infectious disease outbreaks, as well as the disease haz-
ards associated with infectious disease outbreaks [32]. 
For example, Wu et  al. [33] explored the impact of cli-
mate change on human infectious diseases and found 
that developing countries face greater health risks from 
infectious disease outbreaks than developed countries 
because their public health systems lack the resources 
and capacity to respond effectively to the challenges. 
The present study confirms that the incidence of Class 

Table 2  National ARIMA model fitting results for the incidence 
of Class B notifiable infectious diseases

Year Actual value Forecast Relative 
error 
(%)

2007 272.37 272.47 0.04

2008 267.93 269.68 0.65

2009 263.29 264.69 0.53

2010 238.47 251.91 5.64

2011 241.44 237.75 1.53

2012 238.75 237.78 0.41

2013 225.8 232.02 2.75

2014 226.97 221.99 2.19

2015 223.6 223.24 0.16

2016 215.68 219.68 1.85

2017 222.06 208.09 6.29

2018 220.51 214.99 2.50

2019 219.98 211.92 3.66

Fig. 5  ARIMA model’s backgeneration and prediction of national incidence of Class B notifiable infectious diseases
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B notifiable infectious diseases is lower in the economi-
cally developed eastern region of China than the central 
and western regions, which is easily explained by the fact 
that the eastern region has more medical and educational 
resources and better infrastructure than the central and 
western regions, and will suffer less from the burden of 
disease caused by infectious diseases, especially vaccine-
accessible infectious diseases such as measles, whooping 
cough and tuberculosis [34]. However, the incidence of 
Class B notifiable infectious diseases decreased the most 
in the west, and the regional differences in incidence 
rates was on a decreasing trend. The analysis suggests 
that although the western region is relatively lagging 
behind in economic development, it has benefited from 
the Western Development Policy in recent years, making 

it possible to achieve significant results in the preven-
tion and treatment of infectious diseases in the western 
region. The identification of regional differences in the 
incidence of Class B notifiable infectious diseases is con-
ducive to the adoption of differentiated infectious dis-
ease prevention and control intervention strategies for 
different regions. Since effective prevention and control 
of infectious diseases in the central and western regions 
is crucial to reducing the overall incidence of infectious 
diseases nationwide, it is much necessary to continue to 
increase the investment and talent introduction policies 
for the central and western regions. Through the “policy 
dividend” [35], the economic development of the central 
and western regions and the level of health prevention 
and control can be improved. Meanwhile, the eastern 

Table 3  Fitting and prediction results of ARIMA model for the incidence of Class B notifiable infectious diseases by district

Region Best model MAPE(%) Actual value RE(%) Forecast value

2020 2020 2020 2021 2022 2023 2024

Anhui (0, 1, 1) 2.34 225.08 1.18 227.73 225.74 223.55 221.35 219.74

Beijing (1, 1, 1) 3.11 80.70 9.43 88.31 81.69 75.44 70.12 65.58

Fujian (1, 1, 1) 2.18 223.99 7.87 241.61 226.61 211.42 198.46 185.73

Gansu (2, 1, 1) 1.47 150.52 1.22 152.36 128.79 110.47 96.53 78.58

Guangdong (0, 1, 1) 2.98 272.49 1.72 277.19 301.41 305.21 308.19 311.27

Guangxi (0, 2, 1) 4.76 263.62 2.57 270.40 303.16 305.60 306.45 307.43

Guizhou (1, 1, 1) 3.90 248.35 4.01 258.32 264.32 269.17 275.41 280.62

Hainan (0, 1, 1) 3.54 339.12 4.29 353.68 375.67 397.33 415.97 436.99

Hebei (1, 2, 1) 2.18 134.26 8.49 145.66 138.68 134.28 129.73 125.71

Henan (1, 1, 1) 2.11 152.77 2.26 156.22 149.60 134.98 120.36 105.74

Heilongjiang (0, 1, 1) 5.34 105.84 7.35 113.62 110.54 106.46 101.37 96.29

Hubei (1, 2, 1) 2.18 290.81 19.55 233.95 – – – –

Hunan (1, 1, 1) 2.76 269.01 3.65 278.83 306.55 313.27 319.99 326.71

Jilin (1, 1, 0) 4.72 87.30 8.68 94.88 93.99 90.61 88.79 87.55

Jiangsu (0, 1, 1) 3.11 98.23 5.48 103.61 96.12 91.53 86.85 81.07

Jiangxi (0, 1, 1) 4.15 199.30 7.12 213.49 204.15 195.76 187.49 181.49

Liaoning (0, 2, 1) 3.13 155.22 6.94 165.99 152.99 139.21 131.87 123.72

Neimenggu (1, 1, 1) 6.11 225.64 7.78 243.19 232.16 221.12 211.09 195.05

Ningxia (0, 1, 1) 2.18 168.75 6.15 179.13 161.17 148.23 131.27 117.32

Qinghai (2, 1, 1) 4.81 376.80 6.84 402.58 398.67 388.58 382.72 377.18

Shandong (1, 1, 1) 2.31 131.73 8.77 143.28 132.21 125.17 119.81 112.05

Shanxi (0, 1, 1) 1.74 202.95 8.33 219.86 209.24 201.35 192.98 184.65

Shaanxi (0, 1, 1) 2.73 150.48 7.87 162.33 154.35 148.41 142.45 138.49

Shanghai (1, 1, 1) 2.28 128.63 7.04 137.69 131.03 124.27 118.52 112.77

Sichuan (1, 2, 0) 1.37 196.03 3.91 203.69 195.03 188.27 180.52 172.77

Tianjin (1, 1, 1) 2.43 109.28 9.18 119.31 105.11 92.04 83.48 72.01

Xizang (0, 1, 2) 5.69 337.10 8.79 366.74 389.49 419.56 441.91 476.63

Xinjiang (1, 1, 2) 4.82 324.99 8.75 353.42 341.57 329.14 313.63 294.12

Yunnan (0, 2, 1) 4.51 189.61 9.04 206.75 201.90 195.03 190.16 184.29

Zhejiang (1, 1, 1) 1.32 146.47 6.26 155.64 147.54 132.59 123.39 111.53

Chongqing (1, 2, 0) 3.18 202.07 5.47 213.13 210.60 209.49 207.61 204.85
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region, as the driving force in the improvement of infec-
tious disease prevention and control, should interact well 
with the central and western regions and play a leading 
role in order to reduce the health hazards of infectious 
diseases to the Chinese population.

A lot of studies have shown significant spatial cluster-
ing in the incidence of Class B notifiable infectious dis-
eases such as typhoid and paratyphoid fever, dengue 
fever and novel coronavirus [36–39]. According to the 
current stuy, the Moran’s I index for the incidence of 
Class B notifiable infectious diseases in China from 2007 
to 2020 was significantly positive, indicating that the inci-
dence of Class B notifiable infectious diseases showed 
a strong clustering in spatial distribution, which is con-
sistent with the results of previous studies. Besides, the 
Moran’s I index values show an increasing trend year by 
year, indicating a gradual increase in the degree of clus-
tering in the spatial distribution of the incidence of Class 
B notifiable infectious diseases. In other words, there is a 
spatial correlation between the incidence of Class B noti-
fiable infectious diseases in each province of China and 
that in neighbouring provinces, and the degree of cor-
relation is gradually increasing. This result confirms the 
fact that no provincial unit can control infectious dis-
eases without cooperating with other provinces in the 
fight against them, and no region can protect itself from 
an infectious disease crisis alone. Therefore, in order 
to reduce the incidence of Class B notifiable infectious 
diseases in a particular province, the level of economic 

development and the level of sanitary and epidemiologi-
cal protection in the province as well as in the surround-
ing provinces need to be taken into account as important 
factors affecting the effectiveness of infectious disease 
prevention and control [40–42]. What’s more, in order to 
reduce the overall incidence of Class B notifiable infec-
tious diseases in China, it is recommended that a regional 
community for improvement in infectious disease pre-
vention and control be formed by breaking down geo-
graphical and administrative barriers and delineating a 
multi-level regional framework, and that inter-provincial 
mechanisms for joint prevention and control of infec-
tious diseases be established so as to give full play to the 
positive spatial spillover effects of the positive prevention 
and control of infectious diseases across the region.

According to the incidence rates of Class B notifi-
able infectious diseases in China from 2007 to 2020, the 
national overall rates as well as the rates in each prov-
ince are decreasing except a certain rise in four provinces 
(Guangdong, Hainan, Hunan, and Tibet). This indicates 
that we have achieved notable results in the prevention 
and control of infectious diseases in China, which is con-
sistent with the results of previous studies [43]. According 
to the research analysis, the fact that the four provinces 
have not seen a decline in the incidence of Class B noti-
fiable infectious diseases may be mainly related to their 
special geographical location and climatic conditions 
[44–49]. In spite of a certain economic boost in Tibet, 
a border region in the southwest, the increasing trade 

Fig. 6  Spatial distribution of the predicted incidence of Class B notifiable infectious diseases, 2021–2024
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flows results in the bigger size of the mobile population, 
which leads to the problem of new and traditional infec-
tious diseases and their increasingly prominent cross-
border transmission. Guangdong, Hunan and Hainan all 
have tropical or subtropical monsoon climates, which is 
temperate and conducive to the prevalence of climate-
sensitive mosquito-borne viral diseases such as dengue, 
malaria and encephalitis B.

After verification and adoption of the selected best 
model using the data of 2020, the short-term forecast for 
5 years from 2020 to 2024 was carried out using the best 
model. The results show that, firstly, compared with the 
predicted 2020incidence assuming no COVID-19 epi-
demic broke out, the actual 2020 incidence of Class B 
infectious diseases are smaller for both China as a whole 
and all the provinces (except Hubei Province), suggest-
ing that the prevention and control measures taken in 
response to the COVID-19 epidemic are conducive to 
controlling the occurrence and development of other 
Class B notifiable infectious diseases, which is consist-
ent with the results of existing studies [50–52]. The study 
suggests that it is the government’s mandatory preven-
tion and control strategies as well as the public’s increas-
ing awareness of personal health that works. On the 
one hand, studies have shown that non-pharmaceutical 
interventions implemented by the government during 
the COVID-19 epidemic (e.g. school closures, move-
ment restrictions and social distancing) contributed to 
a decline in the incidence of infectious diseases such as 
pertussis, scarlet fever and hand, foot and mouth dis-
ease (HFMD) [53]. On the other hand, both the initial 
period of rigorous epidemic prevention and control and 
the subsequent period of normal practice of them saw 
an increase in public awareness of personal health. Such 
intervention measures as wearing masks, social distanc-
ing, hand washing and ventilation also effectively pre-
vent the spread of other infectious diseases transmitted 
through respiratory tract, intestinal tract or intimate 
contact, for example, whooping cough, scarlet fever, 
tuberculosis, and brucellosis, etc. Secondly, the forecast 
of the incidence of Class B notifiable infectious diseases 
in China from 2021 to 2024 shows that the incidence of 
infectious diseases is still on a downward trend nation-
wide and in most provinces, but the predicted incidence 
of Class B notifiable infectious diseases in such prov-
inces as Guangdong, Guizhou, Hunan, Hainan, Tibet 
and Guangxi is on an upward trend, which suggests that 
the government should focus more attention upon prov-
inces where the incidence of infectious diseases is on an 
upward trend, and tailor specific measures to the actual 
situation of each province to avoid the re-emergence of 
certain infectious diseases in a province or even nation-
wide and the outbreak of new infectious diseases due to 

relaxed vigilance. The ARIMA model is highly accurate 
(within 10%) in predicting the incidence of Class B notifi-
able infectious diseases, and can effectively compensate 
for the current lack of capacity to develop, evaluate, man-
ufacture, distribute and manage effective medical coun-
termeasures (e.g. vaccines, diagnostics, etc.), effectively 
address the unmet disease burden associated with out-
breaks or prevalence of traditional and emerging infec-
tious diseases, and effectively guide policy decisions such 
as rational allocation of health resources and pre-deploy-
ment of emergency supplies [54].

There are, of course, certain limitations in this study. 
The first limitation is about the prediction accuracy 
of the ARIMA model. On the one hand, the predic-
tion accuracy of the ARIMA model is easily affected by 
the sample size. The bigger the sample size, the higher 
the prediction accuracy of the model, with the num-
ber of variables unchanged. In this study, based on the 
principle of indicator data availability, 13 years of data 
(2007–2019) were finally selected for fitting the ARIMA 
model, using 2020 data for model validation and fore-
casting the incidence of Class B notifiable infectious 
diseases in China as well as in each province from 2021 
to 2024. Although the relative errors of the selected 
models were less than 10% for China as a whole and 
for each province (except Hubei Province), the predic-
tion accuracy could be further improved in the future 
by increasing the sample size. On the other hand, it is 
worth mentioning that while this study recognises that 
notifiable infectious diseases in Class B are more infec-
tious and may lead to outbreaks or epidemics with rela-
tively high sensitivity and specificity compared with 
notifiable infectious diseases in category C. The use of 
incidence data for Class B notifiable infectious diseases 
can effectively reduce the reduction in predictive accu-
racy of ARIMA models due to missing reports. How-
ever, it is worth mentioning that the prediction results 
may deviate from the actual values over time due to the 
changing external environment of the host, e.g. policy 
instability and vaccine availability [55]. Therefore, it is 
much necessary to update the forecast of the incidence 
of Class B notifiable infectious diseases in accordance 
with the availability of data. Secondly, this study uses 
the annual incidence of Class B notifiable infectious 
diseases, a multi-disease joint data, for the prediction 
study. While this is good for getting a full picture of 
infectious diseases, it also has shortcomings because 
even if problems can be identified, it still takes time to 
determine the specific situation. Future applications 
will need to be tailored to the specific characteristics of 
each disease. Finally, the study on the incidence of Class 
B notifiable infectious diseases is mainly an exploratory 
spatial data analysis. Future studies can be made on the 
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basis of the existing studies by combining other vari-
ables such as economic factors, transport factors and 
population mobility factors to conduct empirical spatial 
data analysis through the establishment of spatio-tem-
poral regression models and to explore the causes and 
driving mechanisms of the formation and changes in 
the spatio-temporal patterns of the incidence of Class B 
notifiable infectious diseases.

Conclusion
This study introduced GIS spatial statistics into the study 
of infectious diseases, and revealed the spatial associa-
tion patterns and spatio-temporal evolution characteris-
tics of Class B notifiable infectious diseases in China at 
a macro level. During the period 2007–2020, infectious 
disease prevention and control in China has been effec-
tive in a certain degree, but there is a clear “east-central-
west” decreasing geographical difference in prevention 
and control effectiveness. The spatial distribution of 
the incidence rate of Class B notifiable infectious dis-
eases in China is clustered and the degree of clustering 
is increasing year by year. This study also demonstrates 
that the ARIMA model can be used to predict the inci-
dence of Class B notifiable infectious diseases, a multi-
disease joint data. The results of this study will not only 
help to facilitate the application of geographic methods 
to health care, but assist in resource allocation and pre-
paredness planning by accurately predicting the potential 
geographic extent of disease incidence and transmission 
of infectious diseases, providing effective information for 
evidence-based scientific prevention and control of infec-
tious diseases.
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