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Summary Reactive oxygen species (ROS) are generated by many different cells. Singlet oxygen (1O2) and
a reaction product of it, excited carbonyls (C@O�), are important ROS. 1O2 and C@O� are nonradicalic and emit
light (one photon/molecule) when returning to ground state oxygen. Especially activated polymorphonuclear
neutrophil granulocytes (PMN) produce large amounts of 1O2. Via activation of the respiratory burst (NADPH
oxidase and myeloperoxidase) they synthesize hypochlorite (NaOCl) and chloramines (in particular
N-chlorotaurine). Chloramines are selective and stable chemical generators of 1O2. In the human organism,
1O2 is both a signal and a weapon with therapeutic potency against very different pathogens, such as microbes,
virus, cancer cells and thrombi. Chloramines at blood concentrations between 1 and 2 mmol/L inactivate lipid
enveloped virus and chloramines at blood concentrations below 0.5 mmol/L, i.e. at oxidant concentrations that
do not affect thrombocytes or hemostasis factors, act antithrombotically by activation of the physiologic PMN
mediated fibrinolysis; this thrombolysis is of selective nature, i.e. it does not impair the hemostasis system of
the patient allowing the antithrombotic treatment in patients where the current risky thrombolytic treatment is
contraindicated. The action of 1O2 might be compared to the signaling and destroying gunfire of soldiers
directed against bandits at night, resulting in an autorecruitment of the physiological inflammatory response.
Chloramines (such as the mild and untoxic oxidant chloramine T� (N-chloro-p-toluene-sulfonamide)) and their
signaling and destroying reaction product 1O2 might be promising new therapeutic agents against a multitude
of up to now refractory diseases.
ª 2003 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The human redox state is a balanced system of pro- and
anti-oxidants. The main cellular reactive oxygen species
(ROS) are hydrogen peroxide ðH2O2Þ, superoxide anion
ðO��

2 Þ, hydroxyl radical ðHO�Þ, and singlet oxygen ð1O2Þ.
Singlet oxygen – in contrast to the other oxidants – is
nonradicalic and excited, i.e. 1O2 or the reaction product
of 1O2 with a C@C group, i.e. an excited carbonyl, emits
1 photon when returning to ground state oxygen (1).
Whereas the radicalic oxygen species are harmful for the

organism, nonradicalic 1O2 is rather mild and untoxic for
mammalian tissue. This mild oxidative character has
been used for diagnostic purposes, such as the radio-
halogenation of proteins (2–4).

GENERATION OF 1O2

ROS are generated by pro-oxidative enzyme systems or
by redox-cycling of pro-oxidative compounds. Pro-oxi-
dative enzymes are the NADPH-oxidase (5), myeloper-
oxidase (6), NO-synthase (7,8), or the cytochrome P-450
chain (9–11). Physiologic activation of these pro-oxida-
tive enzymes results into the normal oxidative state.
NADPH-oxidase is mainly found in polymorphonuclear
leukocytes (PMN). The membranous NADPH-oxidase
generates superoxide anions that dismute to hydrogen
peroxide. H2O2 can react with superoxide anions or with
HOCl or chloramines to form the nonradicalic 1O2

(10,11). Since NADPH-oxidase is present in many
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different cells (5), diverse cells seem to generate the
signal/messenger 1O2 for inter- or intra-cellular signaling.

1O2 AS A CELL SIGNAL/MESSENGER

1O2 is a cell signal and messenger (12–14): redox active
agents regulate ion channel activity in animals and
plants (15). 1O2 activates large-conductance, Ca2þ-acti-
vated (maxi) Kþ channels (16): monochloramine
ðNH2ClÞ – in contrast to Tau–Cl – is membrane perme-
ating and at 3–30lmol=L it increases outward currents
more than 8-fold (17,18). 1O2, generated by chloramine-
T� (N-chloro-p-toluene-sulfonamide), also inactivates
the Naþ currents from skeletal or heart muscle fibers,
presumably by oxidation of methionine residues (19–
21). Chloramine-T� has also been shown to modulate
dose dependently outward currents in rabbit atrial cells
(22,23) or potassium channels (24–27). Chloramine-T� is
known to abolish inactivation of Naþ and Kþ channels
(28–33). Potential receptors for excited oxygen species/
light are cryptochromes (34), that consist of flavin- and
pteridine- prosthetic groups. Pteridines seem to interact
with excited oxygen (35–37).

1O2 AS A WEAPON

Important armatory functions of 1O2 are:

(a) antiinfectious (antibacterial, antiviral);
(b) cytostatic (anticancer);
(c) antiatherothrombotic (selective thrombolysis).

Ad (a)

Chloramine-T� is bactericidal (38,39). N-chloramines
exhibit low toxicity and skin irritation and are superior
to chlorhexidine in preventing the expansion of the
normal skin flora in vivo (40). Chloramine-T� is better
than HOCl in inactivation of Staphylococcus aureus (41)
and monochloramine is superior to N-chlorotaurine in
inactivation of Mycobacterium terrae (42). NaOCl shows
higher activity than chloramine-T� against Bacillus
subtilis spores, coat and cortex material was degraded by
chloramine-T� (43).

Because of their untoxicity and antimicrobial power
(44), chloramines – especially chloramine-T� – is used
for disinfection of drinking water, dialysate, or ice cream
machines (45–48). Chloramine T� is also a therapeutic
drug for treating bacterial gill disease, a predominant
disease of a variety of fish species (49). However,
chloramine-T� at 10 g/L (35mM) has been shown to be
ineffective as fungicide (50).

Chloramines are virucidal, too (51–56). Even such
dangerous viruses as the Marburg virus (57), or the
Ebola virus (58,59) are inactivated by chloramines.

Bhanja virus (60), lymphocytic choriomeningitis virus
(61), simian rotavirus (62), or poliovirus (63–65) are
sensible to NaOCl/chloramines. Even replicating agents
of the Creutzfeldt–Jakob disease show some sensibility
to NaOCl (74,75).

Poliovirus on whole hands is inactivated (reduction
factor >100) by 35mM chloramine T� (63,67). Coxsac-
kievirus B3, adenovirus type 5, parainfluenza virus type
3 and coronavirus 229E are inactivated (reduction factor
>1000) by a 100mM chloramine-T� solution (68).
NaOCl inactivates HIV-1 (66,69–72). The 1.5mM NaOCl
inactivated more than 10 000 fold HIV in serum and
7.5mM more than 10 fold in blood (73). Own experi-
ments show that chloramine-T� at blood concentrations
that are tolerable for normal hemostasis function inac-
tivate the lipid enveloped model virus VSV (vesicular
stomatitis virus): 1mmol/L chloramine-T� inactivates
90% of added VSV, 2mmol/L chloramine-T� inactivate
99% of added VSV, i.e. there seems to exist a narrow
therapeutical window for 1O2 treatment of human in-
fections by enveloped viruses. Intravenous infusions of
1–1.5mmol/L (blood concentration) chloramine (chlor-
amine-T� or the physiologic N-chlorotaurine) once a
week for several weeks might be a potent treatment
modality for infections with lipid enveloped viruses,
such as human immunodeficiency virus (HIV) (74).

Ad (b)

Singlet oxygen is tumoricidal (75). In photodynamic
therapy (PDT) high concentrations of singlet oxygen are
generated by illumination of a photosensitizer, resulting
in a cytostatic action of PDT (76,77). However, excessive
oxidant concentrations are carcinogenic (78–82).

Ad (c)

1O2 mediates PMN adherence to the endothelium
(12,83,84) and subsequently selective thrombolysis
(10,11). 1O2 activates the complement cascade, trans-
forming C5 into a C5b-like molecule (85); activation of
the complement cascade results in increased PMN ad-
hesion to endothelial cells (86,87). Since cholesterol is an
inhibitor of 1O2, the atherogenic action of cholesterol
might be explained by insufficient thrombolytic capacity
of a hypercholesterolemic individuum (10,11,88).

TOXICOLOGY OF 1O2

However, and according to Paracelsus (dosis sola vene-
num facit (only the dosage makes the poison)), high
concentrations of chloramines can act toxic to normal
tissue (89). 3mM monochloramine induced DNA break-
age (90). PMNare themain cells that use singlet oxygen as
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a weapon. They also dispose of an enzyme that reverses
methionine oxidation – themethionine sulfoxide-peptide
reductase (91). Taurine–chloramine is the major chlor-
amine generated in activated PMN as a result of the re-
action between HOCl (92) and taurine, an abundant free
amino acid in their cytosol (93–96). Also other plasma
proteins react with hypochlorite to chloramines (97).
HOCl ð25lMÞ or NH2Cl ð10lMÞ – but not Tau–Cl
ð100lMÞ – increase endothelial permeability (98) or epi-
thelial cell injury (99). NH2Cl, the reaction product of
hypochloritewithammonia (NH3), seems tobemore toxic
thanTau–Cl (100,101). The60mMNH2Cl (about10 times
the concentration generated by activated PMN!) is ul-
cerogenic in rat stomachs, taurine application (1ml
200mM)attenuates thedeleterious actionofNH2Cl (102),
NH2Cl induces apoptosis in gastric mucosa (103). Tau–Cl
selectively modulates the ability of dendritic cells to in-
duce the release of IL-2 and IL-10 from T cells (104). Tau–
Cl inhibits monocyte chemoattractant protein-1 and
macrophage inflammatory protein-2 production in gli-
oma cells (105). Tau–Cl inhibits the production of NO and
superoxide anions (106–109), prostaglandin E2 (110,
111), interleukin 6, and tumor necrosis factor-a and it has
been suggested that Tau–Cl may regulate the balance
between protective, microbicidal and toxic effect of PMN,
Tau–Cl at 0.1–0.3mM inhibits interleukin-2 release of
purified T cells (112).

Chloramines – in contrast to sodium chlorite – do not
induce detectable hematologic (! methemogloblin) or
hepatic (! elevation of serum alanine-amino-transferase)
in African Green monkeys (113). However, a chloramine-
induced haemolysis and erythropoietin resistance oc-
curred when the dialysate chloramine levels rose from
<0.1 to 0.3 p.p.m. (about 1mM) resulting in an increase in
mean methaemoglobin of 23% and a 21% fall in mean
haptoglobin during haemodialysis; only one patient with
glucose-6-phosphate-dehydrogenase deficiency had
Heinz bodies (114,115). Dogs treated with 1mmol/L
blood concentration of chloramine T� 3 times a week for
several months did not show toxic side effects (116).

CONCLUSION

Singlet oxygen is a major agent generated by many dif-
ferent cell types, especially by neutrophil granulocytes.
1O2 is nonradicalic and emits light when returning to
ground state oxygen. Like the gunfire of soldiers di-
rected against bandits, 1O2 is both a signal and a weap-
on, directed against multiple pathogens – including
microbes, virus, cancer cells, thrombi – and resulting in
an autorecruitment of the physiological inflammatory
response. Chloramines are stable chemical generators of
1O2. N-chlorotaurine is an important physiological
chloramine, for therapeutic purposes chloramine-T�

seems to be a promising new therapeutic agent against a
multitude of up to now refractory diseases.
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