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Abstract: Approximate Entropy and especially Sample Entropy are recently frequently used
algorithms for calculating the measure of complexity of a time series. A lesser known fact is that
there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy
and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package
TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle
of their acceleration. Furthermore, the paper contains a description of the functions of this software
package and their parameters, as well as simple examples of using this software package to calculate
these measures of complexity of an artificial time series and the time series of a complex real-world
system represented by the course of supercomputer infrastructure power consumption. These time
series were also used to test the speed of this package and to compare its speed with another R
package pracma. The results show that TSEntropies is up to 100 times faster than pracma and
another important result is that the computational times of the new Fast Approximate Entropy and
Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their
original versions. At the very end of this paper, the possible use of this software package TSEntropies
is proposed.

Keywords: entropy; measure of complexity; approximate entropy; sample entropy;
fast approximate entropy; fast sample entropy; benchmarking; software comparison; supercomputer
power consumption

1. Introduction

Nowadays, it is necessary in many scientific fields to find out whether a certain time series is
chaotic and what is the degree of its chaotic behavior. There are several tests to detect chaotic dynamics
of time series such as a 0–1 test for chaos [1] or Shilnikov chaos condition [2]. However, these tests
can only be used to distinguish between regular and chaotic dynamics. However, if it is necessary
to determine the level of determinism in the analyzed time series, it would be most appropriate to
calculate its entropy.

In general, the entropy of a system determines the degree of its disorder [3]. This state variable is
the higher the more disordered the system is. This level of disorder then proportionally affects the
degree of predictability of such a system. The characteristics of this system are reflected in the time
series created by this system, so with some simplification it can be argued that the entropy of this time
series would be a measure of the unpredictability of this system and also a measure of its complexity.

In recent years, the often used algorithms for calculation of a measure of time series complexity
are Approximate Entropy (ApEn) [4] and Sample Entropy (SampEn) [5]. At this point, however, it is
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important to say that these algorithms do not calculate entropy in a mathematical sense, but essentially
determine the degree of complexity of the analyzed time series in various ways.

The Approximate Entropy was originally developed to analyze medical data, such as heart rate,
and later its application was extended in finance, psychology, etc. It is defined as follows:

ApEn(x, m, r) =

=
1

N −m + 1

[
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log
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)]
− 1
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[
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log
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)]
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where
ji = {ξ | ‖yi − yξ‖ ≤ r ∧ ξ ∈ 〈1, N −m + 1〉},

ki = {ξ | ‖zi − zξ‖ ≤ r ∧ ξ ∈ 〈1, N −m〉},

yi = [xi, xi+1, ..., xi+m−1], zi = [xi, xi+1, ..., xi+m], N = |x|.

This Equation (1) looks for similar sub-sequences yi resp. zi of lengths m resp. m + 1. If it
is assumed that the evaluation of ‖yi − yξ‖ ≤ r is one elementary operation, then N − m + 1
operations are required to calculate each |ji|. The total number of operations would then be
2N2 + N(6− 4m) + 2m2 − 6m + 7, so the time complexity of the Approximate Entropy is O(N2).

Another algorithm used for time series complexity analysis is the Sample Entropy, which is
slightly simpler than the Approximate Entropy algorithm. Although it requires fewer operations to
calculate, it will be shown below that it has the same time complexity. This algorithm was proposed in
2000 by Richman and Moorman to assess the complexity of physiological time series.

The definition of Sample Entropy is:

SampEn(x, m, r) = log

(
∑N−m+1

i=1 |bi|
∑N−m

i=1 |ai|

)
, (2)

where
bi = {ξ | ‖yi − yξ‖ ≤ r ∧ ξ ∈ 〈1, N −m + 1〉 \ i},

ai = {ξ | ‖zi − zξ‖ ≤ r ∧ ξ ∈ 〈1, N −m〉 \ i},

yi = [xi, xi+1, ..., xi+m−1], zi = [xi, xi+1, ..., xi+m], N = |x|.

Note that sets bi and ai are different from sets ji and ki of Approximate Entropy. They do not
contain index i, so calculating |bi| resp. |ai| takes only N −m resp. N −m− 1 operations. However,
it also brings with it the possibility that the sum of all |ai| can be zero. The total number of operations
is then 2N2 + N(2− 4m) + 2m2 − 2m + 1 and the time complexity is O(N2) again.

2. New Fast Algorithms

Quadratic time complexity of the Approximate and Sample Entropy algorithms was the main
reason why their accelerated modifications Fast Approximate Entropy and Fast Sample Entropy have
been proposed in [6]. The original Approximate Entropy algorithm looks for mutually similar
sub-sequences by comparing all possible sub-sequences with each other. This method is apparently an
extremely time-consuming and also the same pair of sub-sequences is unnecessarily compared twice.
The acceleration of the modified Fast Approximate Entropy algorithm is that, once it finds two similar
sub-sequences, all other sub-sequences in the same neighborhood will be marked as already included
in some neighborhood. An important fact is that these sub-sequences are no longer taken into account
when searching for other similar sub-sequences, thereby speeding up these further searches.

The formula of the Fast Approximate Entropy then reads as follows:
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FastApEn(x, m, r) =
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where
si,m = {ξ | (‖yi − yξ‖ ≤ r) ∧ (ξ /∈ sj,m, j < i)}, yi = [xi, xi+1, ..., xi+m−1],

si,m is a set of sub-sequences of length m belonging to the i-th neighborhood, and Nm is number of
these neighborhoods.

The same principle is used in the modified Fast Sample Entropy algorithm:

FastSampEn(x, m, r) = log

(
∑Nm

i=1 |si,m|

∑
Nm+1
i=1 |si,m+1|

)
, (4)

where
si,m = {ξ | (‖yi − yξ‖ ≤ r, ξ 6= i) ∧ (ξ /∈ sj,m, j < i)},

yi = [xi, xi+1, ..., xi+m−1],

si,m is a set of sub-sequences of length m belonging to the i-th neighborhood, and Nm is number of
these neighborhoods.

In this way, the search time for similar sub-sequences and thus the total calculation times can be
significantly reduced. The nature of this modification implies that the number of operations is different
for different time series of the same length, but the number of operations for the best case and for
the worst can be determined. For the best case, the number of operations required to calculate both
accelerated algorithms is equal to 2N − 2m + 7. In the worst case, the number of operations required
to compute Fast Approximate Entropy is equal to N2 + N(5− 2m) + m2− 5m + 7 and to compute Fast
Sample Entropy equals N2 + N(2− 2m) + m2 − 2m + 1.

Thus, it can be seen from the above that the time complexity of both accelerated algorithms ranges
from O(N) to O(N2). An interesting fact is that the above-mentioned best case corresponds to a time
series with a low degree of disorder, which also implies a low FastApEn or FastSampEn value of
analyzed time series. On the contrary, the worst case corresponds to a time series with a high degree of
disorder and hence a high FastApEn or FastSampEn value. The amount of computational operations
and the time complexity of these accelerated algorithms is thus interestingly dependent on the value
they calculate.

3. Supercomputer Power Consumption Time Series

For the purposes of this article, access to the time series representing the electrical consumption
of its infrastructures [7] was obtained. The power consumption of this supercomputer depends on
many facts that may depend nonlinearly on each other, and the number of such facts is so large that it
is intractable for modeling, so it can be said that this supercomputer infrastructure is so called complex
system in terms of its power consumption. Thus, the recorded time series of electrical consumption is a
time series with complex dynamics, or simply a complex time series.

For this reason, this time series is a good representative of real-world time series for testing and
comparing the performance of complexity degree analyzers. The results of these tests and performance
comparison are shown in Section 4.

At this point, it should be mentioned why an analysis of a complexity degree of this time series
of power consumption is useful. This analysis is usually used in medicine where the course of an
electrocardiogram (ECG) or electroencephalogram (EEG) is analyzed. For example, based on EEG
complexity degree, the beginning, end, and the type of epileptic seizure can be identified.
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However, as shown in [8], the time series complexity can also be an indicator of its predictability
in forecasting its future course. A high degree of the complexity in such a case suggests that any
prediction at a given point in the time series is very likely to be far more erroneous than a prediction
at another point in the analyzed time series where the complexity degree is lower. One could even
say that, from a certain degree of time series complexity, any forecast is worthless and can easily be
replaced by a simple arithmetic mean.

By analyzing the complexity of this time series of power consumption, it is possible to determine
in advance whether the prediction of its development can be credible. This is very important if the
forecast indicates the possibility of overloading the power system.

Accelerated versions of entropy algorithms such as Fast Approximate Entropy and Fast Sample
Entropy from the software package TSEntropies [9] may be helpful in really quickly determining the
plausibility of future time series predictions. See Appendix A for installation instructions.

The calculated waveforms of ApEn, SampEn, FastApEn, and FastSampEn values together with
the course of the analyzed power consumption time series are shown in the graph in Figure 1. As can
be seen from this image, the values of the new accelerated algorithms are at different levels than their
original versions. This fact is discussed in detail in [6], where it is also shown that their ability to detect
an increase or decrease in complexity of the time series is roughly the same as in their original versions.
A more detailed analysis of this phenomenon goes beyond the scope of this article.

Figure 1. The normalized supercomputer power consumption time series, which is the subject of the
analysis, along with calculated values of Approximate Entropy (ApEn), Sample Entropy (SampEn),
Fast Approximate Entropy (FastApEn), and Fast Sample Entropy (FastSampEn). A floating window
with a width of 2880 min was used for the calculation.

Here is an example of a simple source code, which can be used to calculate the course of the
Sample Entropy of power consumption, the measured values of which are stored in the time series
powerTS. The floating calculation window in this case is 2880 in length:

library(TSEntropies)
SampEn_powerTS <- numeric()
for (i in 1:7120) {

SampEn_powerTS[i] <- SampEn(powerTS[i:(i+2880)])
}
plot(powerTS[1:10000], type="l")
lines(x = 1440 + (1:length(SampEn_powerTS)), y = SampEn_powerTS, type = "l",

lty = 3, col = "darkgreen")
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# x = 1440 + ... is the offset to the middle of the calculation window

This chunk of code assumes that the power consumption time series powerTS is already
normalized, which should be done in advance. The displayed course of the calculated SampEn
value is shifted by half a calculation window so that its values in the graph are located in the middle of
the area from which they were calculated.

4. Benchmarks and Comparison

Another software program that can calculate both Approximate Entropy and Sample Entropy is
the R package pracma [10]. Therefore, this R package was chosen for comparison with the TSEntropies
package. The pracma package is a versatile software that allows one to calculate many different
practical features. It provides a large number of functions from numerical analysis and linear
algebra, numerical optimization, differential equations, time series, plus some well-known special
mathematical functions.

Three types of time series were used in the comparative tests. Firstly, the real-world time series
powerTS represented by the power consumption of the supercomputer infrastructure. Furthermore,
an artificial time series sinTS whose course is determined by the sine function. This time series
is assumed to be a low degree of complexity. It will be interesting to observe the difference in
computational times compared to the last type of time series rnormTS with a high degree of complexity,
which is a random signal with normal probability distribution.

From the point of view of the focus of this paper, the most important are calculations of ApEn,
SampEn, FastApEn, and FastSampEn values of the supercomputer power consumption time series
powerTS from the real world and therefore the attention will be given especially on them. The detailed
results of calculations of artificially created time series as sinTS and rnormTS have already been
published in [6].

The measured run-times for time series powerTS are depicted in the graphs in Figure 2, where the
package functions implemented in C were used, and, in Figure 3, where the package functions
implemented in R were used. The run-times achieved by the package pracma can also be found in
these two figures, which allows an immediate graphical comparison of the performance with the
TSEntropies package.

As mentioned in Section 2, the number of computational operations and hence the computational
time required for new modified algorithms depends on the degree of disorder in the analyzed time
series. This is one of the reasons why all three types of these time series were used to test the
performance of this software. Since the lowest level of disorder is assumed for the sinTS, it is expected
that its run-times will also be the lowest.

A summary of measured run-times required by both accelerated algorithms for all three types of
time series using the TSEntropies package is shown in Figure 4, which presents the resulting run-times
of the Fast Approximate Entropy algorithm, and Figure 5, which presents the resulting run times of
the Fast Sample Entropy algorithm. These calculations were performed for various lengths of time
series from 103 to 107 samples.

During the calculations, the default values of the parameters were set for the executed functions.
Their settings can be seen in Appendix B.

The calculations were performed on a computer with an Intel Core i5-6200U CPU @ 2.30 GHz
processor, 8 GB RAM SO-DIMM DDR3 1600 MHz and SSD LiteOn L8H-256V2G-HP. The operating
system installed was Ubuntu 18.04.4 (64-bit).

This testing could, of course, be done on one of the supercomputer clusters (Salomon, Anselm,
or Barbora) and surely shorter computational times would be achieved, but there was an effort to
show that this R package TSEntropies and also new algorithms can handle any time series even on a
regular computer.
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Figure 2. Comparison of the time needed to run various types of algorithms using the TSEntropies
package functions implemented in C and the pracma package functions. The analyzed time series is
the power consumption of the supercomputer.

Figure 3. Comparison of the time needed to run various types of algorithms using the TSEntropies
package functions implemented in R and the pracma package functions. The analyzed time series is
the power consumption of the supercomputer.
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Figure 4. Comparison of Fast Approximate Entropy computation times for time series with various
levels of disorder.

Figure 5. Comparison of Fast Sample Entropy computation times for time series with various levels
of disorder.

5. Conclusions and Future Work

As can be seen from the graphs of run-times in Figures 2–5, the TSEntropies package calculates
both Approximate and Sample Entropy much faster than package pracma. This is true not only for
functions implemented in C (Figure 2), which were approximately 100 times faster, but even in R
(Figure 3), which were about 20 times faster.

It can also be observed in Figures 4 and 5 that the run-times of the new accelerated algorithms
confirmed the assumption of the dependence of computation time on the analyzed time series disorder
level. Interestingly, with these algorithms, the multiplicative difference between sinTS and rnormTS
run-times for C functions was much greater (150 times) than for R functions (only 30 times) of the
same TSEntropies package.

The computed values of all algorithms as well as their run-times were slightly lower for powerTS
than for rnormTS, suggesting that there are some regularities in the power consumption waveform
that distinguish it from a completely random signal. This proves that an eventual prediction of its
development would make sense. Although this finding is not the purpose of this paper, it nevertheless
indicates the possible use of this software.

Perhaps the most important result of testing this TSEntropies package seems to be that the
computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up
to 500 times lower in the time series from the real world than the computational times of their original



Entropy 2020, 22, 863 8 of 10

versions. This makes this software a really powerful tool for the fast searching for any regularities in
huge amounts of data. Such type of search is needed in a wide range of fields. From the detection of
epileptic seizures in the ECG, through the prediction of engine gear failure by mechanical vibration
analysis, to such exotic issues as the search for intelligent life manifestations in radio signals from the
surrounding universe. In all these cases (and many others), there is a need for rapid analysis of huge
amounts of data. The new accelerated Fast Approximate Entropy and Fast Sample Entropy algorithms
implemented in the TSEntropies package are perfect for this.

As a future development of this software, it seems appropriate to create a fully parallelized
version, which would be intended mainly for processing big data on supercomputers. Another possible
direction that this software development could take is to add a graphical output of the course of the
calculated values along with the course of the analyzed time series, similar to those in Figure 1.
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Appendix A. Installation of TSEntropies Package

The TSEntropies package [9] is available from the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/package=TSEntropies. Therefore, the TSEntropies package can be installed
in the standard way using the command:

R> install.packages("TSEntropies")

This package does not use any other R packages, so there is no need to worry about setting
dependencies. However, the version of R itself should be at least 3.4.0 [11].

If the installation was successful, the package can be loaded by:

R> library(TSEntropies)

Appendix B. TSEntropies Package Content and Implementation

The package contains functions for calculation of Approximate Entropy and Sample Entropy
as well as their modified versions: Fast Approximate Entropy and Fast Sample Entropy. All these
algorithms are implemented in two ways.

First, they are implemented as functions only in R. These functions include the suffix _R in their
name. Then, these algorithms are implemented again in R, but, in this implementation, R serves only
as a wrapper for hidden internal functions written in C. As it will be seen in the next chapter, using this
way a significant acceleration of the calculation is achieved. Functions created in this way are indicated
by an _C suffix.

The package also includes functions without any suffix in their name. These functions only trigger
functions of the same name, but with the suffix _C and pass them the very same parameters. These alias
functions are here to make it easier to use those faster versions of implementation. If someone wants to
use functions written purely in R, then they must explicitly use functions with the suffix _R. However,
in terms of speed, this option is not recommended.

The structure of the parameters is essentially the same for all implemented functions. The only
difference is in the case of functions implementing modified algorithms in the default value of the last
parameter r. This parameter determines the highest value of the distance between sub-sequences that
are still considered as similar. For the original algorithms, it is recommended to set this parameter
to a value corresponding to 0.2 times the standard deviation of the analyzed time series. However,
in numerical experiments with modified algorithms, it has been found that it is more appropriate for
them to set this parameter to a value equal to 0.15 times this standard deviation.

https://cran.r-project.org/package=TSEntropies
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The remaining parameters, as well as their default values, are the same for all package functions.
The analyzed time series, denoted as TS, is always the first and mandatory parameter. It should be in
the form of some numeric R vector.

An important parameter is the dimension dim, which is optional. This parameter corresponds to
the variable m in all the above formulas. As it can be seen from the package listing below, its default
value is 2.

For clarity, here is a list of all the functions of this package and their syntax usage:

ApEn(TS, dim = 2, lag = 1, r = 0.2 * sd(TS))
ApEn_C(TS, dim = 2, lag = 1, r = 0.2 * sd(TS))
ApEn_R(TS, dim = 2, lag = 1, r = 0.2 * sd(TS))

SampEn(TS, dim = 2, lag = 1, r = 0.2 * sd(TS))
SampEn_C(TS, dim = 2, lag = 1, r = 0.2 * sd(TS))
SampEn_R(TS, dim = 2, lag = 1, r = 0.2 * sd(TS))

FastApEn(TS, dim = 2, lag = 1, r = 0.15 * sd(TS))
FastApEn_C(TS, dim = 2, lag = 1, r = 0.15 * sd(TS))
FastApEn_R(TS, dim = 2, lag = 1, r = 0.15 * sd(TS))

FastSampEn(TS, dim = 2, lag = 1, r = 0.15 * sd(TS))
FastSampEn_C(TS, dim = 2, lag = 1, r = 0.15 * sd(TS))
FastSampEn_R(TS, dim = 2, lag = 1, r = 0.15 * sd(TS))

All of these functions return a value of type numeric. Examples of use may be as follows.
A simple example of calculating the Approximate Entropy of a random time series with a normal

probability distribution using a function implemented in C:

R> library(TSEntropies)
R> rnormTS <- rnorm(1000)
R> ApEn(rnormTS)
[1] 1.61967
R> ApEn(rnormTS, r = 0.1*sd(rnormTS))
[1] 1.07962
R> ApEn(rnormTS, dim = 4, r = 0.5*sd(rnormTS))
[1] 0.8241541

or an example of calculating the Fast Sample Entropy of a time series whose values are derived from
the course of a sine wave using a function implemented in R:

R> library(TSEntropies)
R> sinTS <- sin(seq(0,100*pi,pi/10))
R> FastSampEn_R(sinTS)
[1] 0.003059666
R> FastSampEn_R(sinTS, r = 0.3*sd(sinTS))
[1] 0.003047234
R> FastSampEn_R(sinTS, dim = 5, r = 0.4*sd(sinTS))
[1] 0.001019888

It is similar for ApEn_C(), ApEn_R(), SampEn(), SampEn_C(), SampEn_R(), FastApEn(),
FastApEn_C(), FastApEn_R(), FastSampEn(), and FastSampEn_C() functions.
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