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Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia. Many inflamma-

tory factors such as amyloid-β and pro-inflammatory cytokines are known to contribute to

the inflammatory response in the AD brain. Sphingolipids are widely known to have roles in

the pathogenesis of inflammatory diseases, where the precise roles for sphingolipids in

inflammation-associated pathogenesis of AD are not well understood. Here we performed a

network analysis to clarify the importance of sphingolipids and to model relationships

among inflammatory factors and sphingolipids in AD. In this study, we have updated sphin-

golipid signaling and metabolic cascades in a map of AD signaling networks that we named

“AlzPathway,” a comprehensive knowledge repository of signaling pathways in AD. Our net-

work analysis of the updated AlzPathway indicates that the pathways related to ceramide

are one of the primary pathways and that ceramide is one of the important players in the

pathogenesis of AD. The results of our analysis suggest the following two prospects about

inflammation in AD: (1) ceramide could play important roles in both inflammatory and anti-

inflammatory pathways of AD, and (2) several factors such as Sphingomyelinase and

Siglec-11 may be associated with ceramide related inflammation and anti-inflammation

pathways in AD. In this study, network analysis of comprehensive knowledge repository

reveals a dual role for ceramide in AD. This result provides a clue to clarify sphingolipids

related inflammatory and anti-inflammatory pathways in AD.

Background
Alzheimer’s disease is the most common cause of senile dementia. Nearly 36 million people
were affected by dementia worldwide as of 2010, and this figure is estimated to increase to 65.7
million by 2030 [1]. The societal costs of dementia are already huge and could continue to
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increase rapidly. Alzheimer’s disease (AD) thus represents a major public health concern and
has been identified as a research priority. To address this global social issue, clarification of the
pathology and the identification of effective therapies for AD are urgently needed.

The principal pathological feature of AD is brain atrophy and neural cell death. Previous
studies demonstrated the occurrence of inflammation in pathologically vulnerable regions of
AD brain [2]. Inflammation contributes to pathogenic processes in the degenerating brain tis-
sue [3]. Currently, many inflammatory factors such as amyloid-β and inflammatory cytokines
are known to contribute to the inflammatory response in the AD brain [2, 4, 5], and among the
inflammatory factors, sphingolipids in particular have been implicated in AD. For instance,
altered distributions of the gangliosides GM1 and GM2 [6], elevated levels of ceramide [7] and
the up regulation of ceramide generating enzyme [7] have been reported in the AD brain. In
addition, sphingolipids such as ceramide and gangliosides are widely known to have roles in
the pathogenesis of inflammatory diseases. In cystic fibrosis, an accumulation of ceramide in
lung epithelial cells was reported to mediate inflammation and cell death [8]. Ceramide meta-
bolic pathways play vital roles in the pathogenesis of other inflammatory diseases as well, such
as inflammatory bowel disease and rheumatoid arthritis [9]. However, the precise roles for
sphingolipids in inflammation and neurodegeneration are not well understood in the patho-
genesis of Alzheimer’s disease [10].

A comprehensive knowledge repository was proposed to consider global connections
among disease factors such as the relationships among signaling molecules, exposures, pheno-
types and well-known but not well-understood factors including sphingolipids [11–15]. Such a
knowledge repository can provide a comprehensive map of pathogenic signaling pathways
based on the ever-increasing data that have accumulated in specific fields such as AD. Each
comprehensive knowledge repository includes various types of factors for a disease such as
genomic variants, signaling molecules, exposures and phenotypes.

We have previously constructed (AlzPathway 1) and updated a comprehensive map of AD
signaling pathways (AlzPathway 2) [16]. It is the first comprehensive knowledge repository,
and it was constructed with manual curation from 123 review articles. AlzPathway has been
used to simplify the signal transduction pathways of multiple risk factors [17], collect associ-
ated factors and pathways of biological interest [18], extract enriched modules among several
datasets [19], and provide a training data set in a supervised text mining tool, which warrants
future investigation [20]. AlzPathway would also be informative for pathway-based drug dis-
covery efforts [21].

In the present study, 18 review articles related to both sphingolipids and AD were collected
and manually curated to update AlzPathway as ‘AlzPathway 3,’ using Cell Designer [22], a
modeling editor for biochemical pathways. We also performed a network analysis on AlzPath-
way 3 to clarify the importance of sphingolipids in AlzPathway and to model relationships
among inflammatory factors and sphingolipids in Alzheimer’s disease.

Materials and Methods

Update of AlzPathway
We collected all review articles based on these three criteria, 1) related to both sphingolipids
and Alzheimer’s disease 2) published after 2000 3) be accessible from PubMed (http://www.
ncbi.nlm.nih.gov/pubmed). We obtained 18 review articles [10, 23–39] fulfilling these criteria.

We manually curated these review articles, and then we updated AlzPathway by using Cell
Designer. In the process of manual curation, we collect all molecular names and reactions from
figures of review articles. We named the updated AlzPathway ‘AlzPathway 3.’Molecules are
distinguished by the following types: proteins, complexes, simple molecules, genes, RNAs, ions,
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degraded products, and phenotypes. The detailed protocol of the construct relations, file for-
mat and gene symbols conformed to the construction method used for AlzPathway [16].

Construction of binary-relation AlzPathway 3 and extraction of key
molecules
We converted AlzPathway 3 from the Systems Biology Graphical Notation (SBGN) process
description notation to binary-relation notation. In the SBGN process description notation, a
reaction consists of reactants, modifiers, and products. We converted this notation to the
binary-relation notation by decomposing reactions into the reactions between (1) reactants
and products and those between (2) modifiers and products. For simplification, the molecules
were limited to proteins, complexes, genes, RNAs, simple molecules and phenotypes. We cal-
culated the betweenness centralities on the binary-relation AlzPathway 3 to evaluate the topo-
logical properties of nodes and edges.

In previous studies, the betweenness centrality [40] was shown to have important meaning
in biological networks such as a protein-protein interaction networks [41] and gene regulatory
networks [42]. Betweenness centrality is an indicator of how many shortest paths among all
nodes in network pass through a node or edge. In AlzPathway, nodes correspond to molecules,
and edges correspond to path between two molecules. It was also shown that in AlzPathway,
primary factors of AD studies such as amyloid-β and Tau protein have high betweenness cen-
trality [16]. In the present study, we calculated the edge betweenness centrality [43, 44] to
extract the high edge betweenness centrality network (primary pathway). We calculated the
node betweenness centrality [41] of the binary-relation AlzPathway 3 to extract high centrality
nodes and compare the node betweenness centrality between primary factors of AD.

Evaluation of relationships among sphingolipids and inflammatory
factors
A sub-network, namely two hops from “Ceramide” and “Inflammation” was extracted from
the binary-relation AlzPathway 3 to model the comprehensive relationships among them. The
reason for extracting the sub-network between “Ceramide” and “Inflammation” is that cer-
amide has high node betweenness centrality next to amyloid-β in AlzPathway 3. Two (hops) is
the minimum number to make a connection between “Ceramide” and “Inflammation.” Top 50
high betweenness centrality relations were future extracted from this sub-network to simplify
and evaluate the relationships between “Ceramide” and “Inflammation.”

Results and Discussion

Overview of AlzPathway 3
Here, we present an updated map of AD signaling networks we established (Fig 1). We col-
lected 18 review articles related to both sphingolipids and AD, manually curated these review
articles, and updated AlzPathway using Cell Designer ver. 4.2. The AlzPathway 3 map consists
of 1,538 species, 1,127 reactions and 138 phenotypes. The molecules shown on AlzPathway 3
can be categorized as follows: 721 proteins, 246 complexes, 300 simple molecules, 33 genes, 37
RNAs, 24 ions, and 23 degraded products. The breakdown of reactions is as follows: 472 state
transitions, 22 transcriptions, 30 translations, 184 heterodimer associations, 56 dissociations,
106 transports, 22 unknown transitions, six unknown negative influences and 226 omitted
transitions. In AlzPathway 3, sphingolipid-involved relations can be found in the following
canonical pathways: “amyloid-β cleavage and degradation”, “inflammation”, “ganglioside syn-
thesis in the endoplasmic reticulum”, “sphingolipids metabolism in lysosomes”, and
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“sphingolipid synthesis in Goldi network” and “ceramide synthesis” (Fig 1). The AlzPathway 3
is available as the SBML map for CellDesiginer (S2 File). The latest version of AlzPathway map
is accessible at http://www.alzpathway.org/.

Binary-relation notation and key molecules
To clarify the principal structure of AlzPathway 3, we constructed the binary-relation notation
AlzPathway 3. Binary-relation notation AlzPathway 3 is available as the cys file (S3 File) which
can be opened by Cytoscape 3. [45] High-centrality relations were highlighted as primary rela-
tions in accordance with the edge betweenness centrality of each reaction. The top 50 high-cen-
trality relations are shown in Fig 2a. Among the several highlighted binary relations were AD
hallmark pathways that are the same as in AlzPathway [16]: amyloid plagues (amyloid-β accu-
mulation), i.e., relations involving amyloid-β, and neurofibrillary tangle accumulation (hyper-
phosphorylated tau accumulation), i.e., relations connecting amyloid-β precursor protein
(APP), APC-AXIN-GSK3β-CTNNB1 complex and microtubule-associated protein tau. Some
less known relations were also found among the highlighted binary relations: those connecting

Fig 1. Overview of AlzPathway 3 overlaid with sphingolipid-related canonical pathway annotations. AlzPathway 3 consists of 1,384 molecules, 1,127
reactions, and 138 phenotypes. Purple lines are newly added relations involving sphingolipids.

doi:10.1371/journal.pone.0148431.g001
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ceramide and amyloid-β. In the ranking of node betweenness (Fig 2b), amyloid-β is the highest
centrality node (0.27) and ceramide is the second- highest (0.16).

These results for the centralities of binary-relation notation AlzPathway 3 show that path-
ways related to ceramide are some of the primary pathways, as are those involving amyloid
plagues and neurofibrillary tangle accumulation. In addition, the results of our network analy-
sis suggest that ceramide is one of the important players in the pathogenesis of AD, as shown
in previous studies [46–48].

Sphingolipids and inflammation mediators in AlzPathway
Ceramide is one of the highest centrality nodes in binary-relation notation AlzPathway 3. We
extracted a sub-network consisting of two hops from “Ceramide” and “Inflammation” from
binary-relation notation AlzPathway 3 to model the comprehensive relationships among cer-
amide and inflammatory mediators (Fig 3a). The sub-network termed as ‘simplified binary-
relation notation AlzPathway 3.’ Based on the edge betweenness centrality of each reaction, the
high-centrality relations were highlighted as primary relations. The top 50 high-centrality rela-
tions in simplified binary-relation notation AlzPathway 3 are shown in Fig 3b.

We found two inflammation-related pathways in simplified binary-relation notation Alz-
Pathway 3: (1) an inflammatory pathway connecting ceramide and “Inflammation” (overlaid
by yellow), and (2) an anti-inflammatory pathway connecting ceramide and “Anti-inflamma-
tion response” (overlaid by red). The inflammatory pathway includes several proteins and phe-
notypes: TREM-DAP12 complex, sphingomyelinase, amyloid-β1–42, mitochondria
dysfunction, microglia activation and apoptosis. TREM-DAP12 complex is the starting point
in the inflammatory pathway, which is a well-known trigger of inflammation [49]. Previous

Fig 2. Binary-relation notation AlzPathway 3 and the keymolecules. (a) The top 50 high-centrality relations as the highlighted primary pathway of
AlzPathway. Circles are nodes in AlzPathway 3. Lines are edges between nodes. As represented, red lines have high edge betweeness centrality and blue
lines have low. (b) The top 10 high-betweenness centrality nodes and their centrality.

doi:10.1371/journal.pone.0148431.g002
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studies showed that the secretion of sphingomyelinase is triggered by inflammatory cytokines
[50] and that the expression of sphingomyelinase is upregulated in tissues/cells of inflamma-
tory diseases including AD [7, 51]. Amyloid-β1–42 is known as a stimulator of neuroinflam-
mation in the AD brain [52]. These studies suggest that TREM-DAP12 complex,
sphingomyelinase and amyloid-β1–42 play roles in inflammatory signaling in the AD brain.

In contrast, the anti-inflammatory pathway includes several nodes showed as amyloid-β-,
glycolipid- and glycoprotein-involved relations. In these relations, amyloid-β-glycolipid, amy-
loid-β-sialylated glycoprotein, and amyloid-β- sialic acid-binding immunoglobulin-type lectin
(iglec) 11-glycolipid and amyloid-β-siglec 11-sialylated glycoprotein complexes were found.
These siglec 11 complexes lie on the membrane of microglia and reduce the induction of inter-
leukin (IL)-1β and inducible nitric oxide synthase [53]. This reduction activity leads to a sup-
pression of microglial inflammation.

These studies revels that ceramide has both proinflammatory and anti-inflammatory effects
in microglia. Our network analysis suggests two possibilities regarding inflammation in AD:
(1) ceramide is centeredin both inflammatory and anti-inflammatory pathways of AD, and (2)

Fig 3. Factors potentially associated with ceramide and inflammation. (a) Extracted sub-network from the binary-relation notation AlzPathway 3. The
simplified binary-relation notation AlzPathway 3 consists of two hops from “Ceramide” and “Inflammation.” (b) The top 50 high-centrality relations of the
simplified binary-relation notation AlzPathway 3.

doi:10.1371/journal.pone.0148431.g003

Network Analysis on Knowledge Repository of Alzheimer's Disease

PLOS ONE | DOI:10.1371/journal.pone.0148431 February 5, 2016 6 / 10



several factors such as sphingomyelinase and siglec 11 are associated with inflammation or
anti-inflammation, respectively.

The regulatory mechanisms of inflammation and anti-inflammation by ceramide and
inflammatory mediators will be revealed by further studies.

In conclusion, we showed the importance of ceramide in the pathogenesis of AD. We have
collected and manually curated review articles related in AD, and we updated AlzPathway
using Cell Designer named it AlzPathway 3. Our network analysis revealed that ceramide in
particular among the sphingolipids is a key molecule in AD. Ceramide could play important
roles in both inflammatory and anti-inflammatory pathways. The results of our network analy-
sis also suggest mediators of inflammation and anti-inflammation in addition to ceramide in
AD. These results contribute to a new hypothesis that ceramide play a dual role in the regula-
tion of inflammation in AD brain and need further investigation as a mechanism of inflamma-
tory mediation in the AD brain. The result of network analysis provides a clue to clarify
inflammatory and anti-inflammatory pathway related sphingolipids in AD. Our comprehen-
sive knowledge repository and network analysis approach will be used to increase the database
for AD drug discovery and development.

Comparing with other knowledge driven strategies
Recently, a study with network analysis of knowledge driven protein-protein interaction (PPI)
network has been reported [54]. In this study, they calculated reliability scores of PPI with
knowledge and discovered ‘Knowledge cliff’ which includes new therapeutic target of AD.
Their research was specialized to discover therapeutic target with PPI rather than clarify AD
related molecular mechanisms. Our AlzPathway focuses on not only PPI but also on signaling
cascade including small molecules such as sphingolipids. Because of this completeness, Alz-
Pathway is providing clues to clarify comprehensive molecular mechanisms such as network
analysis on this research.

Supporting Information
S1 File. SBML map file of AlzPathway3. The SBML map file alzpathway_3 can be browsed
using CellDesigner. Please download CellDesigner at http://www.celldesigner.org/, install it,
and open the SBML map file alzpathway_sbml_map.xml to browse AlzPathway map by Cell-
Designer.
(XML)

S2 File. Binary-relation notation file of AlzPathway 3. The cys file alzpathway_br.cys is the
binary-relation notation of AlzPathway 3 which can be opened by using Cytsoscape 3.
(ZIP)

S1 Table. Gene names and their functional categories which have been newly added to the
AlzPathway 3.
(XLSX)
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