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Abstract
Background ‒ Calumenin (CALU) has been reported to
be associated with invasiveness and metastasis in some
malignancies. However, in glioma, the role of CALU
remains unclear.
Methods ‒ Clinical and transcriptome data of 998 glioma
patients, including 301 from CGGA and 697 from TCGA
dataset, were included. R language was used to perform
statistical analyses.
Results ‒ CALU expression was significantly upregu-
lated in more malignant gliomas, including higher
grade, IDH wildtype, mesenchymal, and classical subtype.
Gene Ontology analysis revealed that CALU-correlated
genes were mainly enriched in cell/biological adhesion,
response to wounding, and extracellular matrix/structure
organization, all of which were strongly correlated with
the epithelial-mesenchymal transition (EMT) phenotype.
GSEA further validated the profound involvement of
CALU in EMT. Subsequent GSVA suggested that CALU
was particularly correlated with three EMT signaling
pathways, including TGFβ, PI3K/AKT, and hypoxia path-
way. Furthermore, CALU played synergistically with EMT

key markers, including N-cadherin, vimentin, snail,
slug, and TWIST1. Survival and Cox regression analysis
showed that higher CALU predicted worse survival, and
the prognostic value was independent of WHO grade
and age.
Conclusions ‒ CALU was correlated with more malig-
nant phenotypes in glioma. Moreover, CALU seemed to
serve as a pro-EMT molecular target and could contribute
to predict prognosis independently in glioma.
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1 Introduction

In central nervous system, glioma is the most prevalent
and fatal primary cancer in adults [1]. Despite a substan-
tial body of improvements in therapy, the prognosis
for most glioma patients is still dismal. Particularly for
patients who suffered from higher grade glioma (WHO
grade IV, glioblastoma, GBM), which is the most malig-
nant and lethal type, the median survival remains less
than 15 months [2,3]. There is a growing recognition that
epithelial-mesenchymal transition (EMT) plays a key
role in mediating tumorigenesis, stemness, invasiveness,
resistance to radiochemotherapy, and early recurrence in
glioma [4–7]. It is therefore imperative to identify novel
EMT-related molecules for potential glioma diagnosis
and intervention.

Calumenin (CALU) has been widely reported in a
range of malignancies including head and neck cancer
[8], endometrial cancer [9], colon [10] and colorectal
cancer [11], lung cancer [10,12], melanoma [13], hepato-
cellular and pancreatic carcinoma [14], and breast cancer
[15]. CALU, a calcium-binding protein localized in the
endoplasmic reticulum (ER), is mainly involved in such
ER functions as protein folding and sorting. Besides,
CALU has recently been shown to influence cell mobility,
migration, invasion, and metastasis during particular
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events, such as tumorigenesis, wound healing, immune
response, and coagulation [16–21]. Several studies have
explored the relationship between CALU expression and
survival and yielded relatively consistent results. In most
types of cancer, a higher level of CALU in lesions indi-
cated a more malignant phenotype and a shorter survival
for patients.

However, the expression patterns and biological func-
tions of CALU in gliomas have rarely been described. Only
one study presented by Sreekanthreddy et al. [22] investi-
gated the prognostic potential of serum CALU in GBM,
which accounted for about 40% of pan-glioma. Here, we
analyzed clinical and transcriptome data of 998 patients,
aiming at exploring the role of CALU in gliomas.

2 Materials and methods

2.1 Sample and data collection

From Chinese Glioma Genome Atlas website (CGGA, http://
www.cgga.org.cn/), we selected 301 glioma samples with
mRNA microarray data. From The Cancer Genome Atlas
website (TCGA, http://cancergenome.nih.gov/), we obtained
697 glioma patients with RNA-sequencing data. Clinical
data, including WHO grade, IDH mutation status, molecular
subtype, and prognosis, were also available. Thus, a total of
998 samples were included in the present study. Baseline
characteristics of glioma samples in both datasets were sum-
marized in Table S1. In CGGA_301 dataset, microarray data,
which had already been normalized and centered (using
GeneSpring GX 11.0 platform) by data provider, were directly
utilized. However, in TCGA_697 dataset, RNAseq data (RSEM
normalized, level 3) were log2 transformed before data ana-
lysis. Because this study used online databases, it did not
require approval of the Ethics Committee.

Ethical approval: The conducted research is not related to
either human or animals use.

2.2 Statistical analysis

Statistical analyses were primarily performed with R lan-
guage (version 3.6.2). A set of R packages, such as
ggplot2, pROC [23], pheatmap, corrgram, circlize [24],
and gsva, were used to handle corresponding calcula-
tions and to produce figures. Cox proportional hazard
regression analyses were performed with coxph function

of survival package. Gaussian test was performed before
data analysis that required Gaussian distribution. We
performed Pearson correlation to calculate the correla-
tion coefficient between CALU and every gene. Genes
that strongly correlated with CALU were screened out
with Pearson |r| > 0.6 in each dataset. Gene Ontology
analysis (GO) of CALU-correlated genes was implemented
based on DAVID [25] website (version 6.8, https://david-
d.ncifcrf.gov/). For Gene Set Enrichment Analysis (GSEA)
[26] and Gene Set Variation Analysis (GSVA) [27], a series
of gene sets were obtained from the GSEA network (http://
software.broadinstitute.org/). A p-value less than 0.05 was
considered to be statistically significant. Two-sided signif-
icance tests were adopted throughout.

3 Results

3.1 CALU was significantly upregulated in
GBM, IDH wildtype, mesenchymal, and
classical subtype

According to the WHO grade system, CALU expression
was analyzed in both CGGA and TCGA datasets, and
the results congruently showed a significantly positive
correlation between WHO grade and CALU expression
(Figure 1a and d). Moreover, when IDH mutation status
was defined as a subclassifier, we observed that IDHwild-
type GBM exhibited the highest expression pattern of
CALU in both CGGA and TCGA datasets. Besides, CALU
expression in IDH mutant glioma seemed to be univer-
sally lower than that in IDH wildtype, across different
WHO grade, except for lower grade glioma (LGG) in
CGGA, which exhibited apparent trends although not
significant (Figure 1b and e). Subsequently, the distri-
bution of CALU expression among different molecular
subtypes (defined by TCGA network) was investigated.
As shown in Figure 1c and f, CALU was significantly upre-
gulated in classical and mesenchymal subtype compared
to neural and proneural subtype. These findings indi-
cated that higher CALU expression was usually accom-
panied by higher malignancy potential of glioma.

3.2 CALU-related biological process

In total, 621 genes in CGGA chort and 965 in TCGA cohort
were identified as CALU-related genes. To ensure the
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accuracy of the analysis, we subsequently identified
203 genes that overlapped between two independent
cohorts, all of which were positively correlated with
CALU (Table S2). Based on these genes, GO analysis
revealed that genes that significantly correlated with
CALU were highly enriched in a set of biological pro-
cesses that correlated with EMT, including cell/biological
adhesion, response to wounding, extracellular matrix/
structure organization, collagen fibril organization, and
collagen biosynthetic process (Figure 2a and b). More-
over, the association between CALU expression and
EMT was revealed by GSEA analysis. CALU expression
was found to be positively associated with the gene set
of HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI-
TION in both CGGA dataset (NES = 1.897, FDR = 0.035)
and TCGA dataset (NES = 1.818, FDR = 0.075) (Figure 2c
and d). These findings suggested that CALU might be
particularly involved in EMT process during glioma
progression.

3.3 CALU-related EMT signaling pathways

To get further understanding of the association between
CALU and EMT, seven gene sets, representing distinct EMT
signaling pathways [28], were obtained from GSEA network
(Table S3). Through cluster analyses, we identified 3 EMT
signaling pathways (TGF-β, PI3K/AKT, and hypoxia),
which might be strongly correlated with CALU (Figure 3a
and b). Moreover, seven gene sets were transformed into
seven metagenes with GSVA analysis, which were subse-
quently put into Pearson correlation together with CALU.
According to Pearson r among seven metagenes and
CALU, Corrgrams were plotted to assess their interrela-
tionships. CALU was found to be positively correlated
with TGF-β, PI3K/AKT, and hypoxia, in line with what
we observed in clusters. However, only a very weak cor-
relation was revealed between CALU expression and four
other pathways (WNT, MAPK, NOTCH, and HEDGEHOG),
which might be ascribed to signal noise (Figure 3c and d).

Figure 1: CALU expression in CGGA and TCGA dataset according to WHO grade (a and d), IDH mutation status (b and e), TCGA molecular
subtype (c and f). * indicates p value < 0.05, **indicates p value < 0.01, *** indicates p value < 0.001, **** indicates p value < 0.0001.
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3.4 CALU was synergistic with EMT key
markers

Assuming that CALU played a vital role in regulating
glioma EMT, we investigated the association between
CALU and EMT markers, including N-cadherin, E-cad-
herin, snail, slug, and vimentin. Pearson correlation tests
were performed with CALU and the above five EMT mar-
kers in both CGGA and TCGA. Circos plots were derived
from Pearson r-values between CALU and five markers.

As shown in Figure 4a and b, CALU expression showed
high agreement with N-cadherin, snail, slug, and vimentin.
In contrast, a weak relationship between CALU and E-
cadherin was found in Circos plots, which could be defined
as a noise. Heretofore, some other members, including
TWIST1/2, β-catenin, and ZEB1/2, have been reported as
key markers in EMT [29]. Thus, we additionally put them
into analysis together with CALU. CALU expression was
tightly associated with TWIST1 in both CGGA and TCGA
datasets (Figure 4c and d).

Figure 2: Functional enrichment of CALU in glioma. Gene Ontology analysis (a and b) and Gene set enrichment analysis (c and d).
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3.5 Higher CALU was related to a worse
prognosis

To evaluate the prognostic value of CALU in glioma,
Kaplan-Meier (KM) survival curves were plotted. In pan-
glioma samples, when comparing the two groups defined
by median CALU expression, we observed that higher
CALU expression predicted a significantly shorter survival,

as shown in Figure 5a and d. Moreover, glioma patients
were further divided into LGG and GBM subgroup. In both
subgroups, patients with higher CALU exhibited univer-
sally worse survival than those with relatively lower
CALU (Figure 5b, c, e and f), except for TCGA GBM, which
also showed an apparent trend. To identify the indepen-
dent effect of CALU on glioma prognosis, Cox regression
analyses were performed with covariates including CALU

Figure 3: Cluster (a and b) and GSVA (c and d) of CALU-related EMT signaling pathways in glioma.
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expression, age, and WHO grade. Multivariate analyses
revealed that CALU expression was a significant prognos-
ticator independent of age and WHO grade in both CGGA
and TCGA (Table 1).

4 Discussion

We explored CALU expression at transcriptional level via
a cohort of 998 glioma samples and demonstrated that
CALU expression was positively correlated with WHO
grade. In addition, upregulation of CALU was usually par-
alleled with a more malignant and aggressive phenotype,
such as IDH wildtype, classical subtype, and mesenchymal

subtype. Survival analyses revealed that higher CALU
was related to a worse prognosis, independent of age
and WHO grade. These results concordantly indicated
that CALU might contribute to malignant progression of
glioma, which were in line with the results from a previous
GBM study [22]. Thus, unveiling the regulative mechanism
of CALU may facilitate to develop a novel gene for poten-
tial glioma diagnosis and treatment.

CALU is one of the members of CREC protein family.
This molecule family mainly consists of Cab45, Reticulocalbin
1, ERC-55, and CALU and is characterized by multiple EF-
hand motifs with low affinity of Ca2+-binding [30]. Under
normal physiological conditions, CALU primarily partici-
pates in regulating Ca2+-dependent protein folding, sorting
and maturation in the ER [31], Ca2+ homeostasis [32,33],

Figure 4: Correlation of CALU and EMT biomarkers in glioma (a and b, key biomarkers; c and d, other biomarkers).
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and muscle contraction/relaxation [34]. However, in tumor
microenvironment, CALUwas reported to play a critical role
in promoting a series of malignant phenotypes including
cancer cell survival [21], filopodia formation and cell migra-
tion [20], invasiveness [12], metastasis [15,35], cancer devel-
opment [10], and resistance to chemotherapy [13]. So far,
very little is known about the biological function of CALU in
glioma. In the current study, GO analysis was performed to
elucidate the biological function of CALU in glioma and it
revealed that CALU showed high association with multiple
EMT-related biological processes, including cell adhesion,
biological adhesion, extracellular matrix/structure organi-
zation, collagen fibril organization, and collagen biosyn-
thetic process. GSEA in both CGGA and TCGA further exhib-
ited a remarkable relationship between CALU and EMT.
EMT has been extensively reported to act as a critical
mechanism not only in invasiveness, but also in early

recurrence and resistance to therapy in glioma [5,6,36].
These findings suggested that CALU might facilitate the
malignant progression of glioma primarily via modulating
EMT process, which has not yet been reported previously.
Despite no report with regard to the pro-EMT effect of CALU,
the other two members (Cab45 [37] and EFHD2 [38]) from
the same protein family have been described in EMT regu-
lation, which indirectly supported the potential role of
CALU in glioma EMT.

We then chose a panel of EMT pathways and markers
and examined their interrelationships with CALU. CALU
was revealed to be highly associated with TGFβ, PI3K/
AKT, as well as hypoxia pathway, indicating that CALU
might regulate glioma EMT through these signaling path-
ways. Furthermore, most of the EMT biomarkers showed
robust correlation with CALU, suggesting a synergistic
effect among CALU and these members during EMT

Figure 5: Survival analysis for CALU in pan-glioma (a and d), LGG (b and e), and GBM (c and f).

Table 1: Cox regression analysis of overall survival in glioma

Covariates CGGA_301 TCGA

Univariate Multivariate Univariate Multivariate

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age 1.041 (1.027–1.055) 0.000 1.017 (1.004–1.031) 0.010 1.075 (1.062–1.087) 0.000 1.046 (1.032–1.060) 0.000
Grade 2.670 (2.221–3.210) 0.000 2.292 (1.867–2.814) 0.000 5.057 (3.915–6.532) 0.000 3.033 (2.273–4.047) 0.000
CALU 2.123 (1.746–2.581) 0.000 1.300 (1.033–1.636) 0.025 2.159 (1.892–2.463) 0.000 1.295 (1.094–1.534) 0.003
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process. These findings further validated the potential
role of CALU during EMT process in glioma.

In conclusion, CALU was upregulated in more malig-
nant gliomas and predicted much worse prognosis.
Furthermore, CALU seemed to be mainly involved in
EMT process of glioma, potentially through modulating
TGFβ, PI3K/AKT, and hypoxia pathway. However, limita-
tions still exist in this study. First, no biological validation
was performed, which might compromise the robustness
of results. Further researches focusing on in vivo/in vitro
experimental studies are warranted. Second, despite the
large sample in our study, data from TCGA and CGGA
were mainly retrospectively collected, the control of
data quality was heterogeneous, and some data were
unavailable, which might lead to potential bias.
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