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A B S T R A C T   

Alzheimer’s disease is a neurodegenerative disease that leads to dementia and poses a serious threat to the health 
of the elderly. Traditional Chinese medicine (TCM) presents as a promising novel therapeutic therapy for pre-
venting and treating dementia. Studies have shown that natural products derived from kidney-tonifying herbs 
can effectively inhibit AD. Furthermore, endoplasmic reticulum (ER) stress is a critical factor in the pathology of 
AD. Regulation of ER stress is a crucial approach to prevent and treat AD. Thus, in this study, we first collected 
kidney-tonifying herbs, integrated chemical ingredients from multiple TCM databases, and constructed a 
comprehensive drug-target network. Subsequently, we employed the endophenotype network (network prox-
imity) method to identify potential active ingredients in kidney-tonifying herbs that prevented AD via regulating 
ER stress. By combining the predicted outcomes, we discovered that 32 natural products could ameliorate AD 
pathology via regulating ER stress. After a comprehensive evaluation of the multi-network model and systematic 
pharmacological analyses, we further selected several promising compounds for in vitro testing in the APP-SH- 
SY5Y cell model. Experimental results showed that echinacoside and danthron were able to effectively reduce ER 
stress-mediated neuronal apoptosis by inhibiting the expression levels of BIP, p-PERK, ATF6, and CHOP in APP- 
SH-SY5Y cells. Overall, this study utilized the endophenotype network to preliminarily decipher the effective 
material basis and potential molecular mechanism of kidney-tonifying Chinese medicine for prevention and 
treatment of AD.   

1. Introduction 

Alzheimer’s disease (AD) is the most prevalent dementia. It is pri-
marily characterized by cognitive impairment, which affects the phys-
ical and mental well-being of patients[1]. A statistical study in 2020 of 
China estimated that 65.2% (9.83 million / 15.07 million) of dementia 
patients aged 60 and older were AD patients[2]. To date, there are still 
no approved drugs that can actually reverse the progression of AD. 
Despite the initial approvals of aducanumab and GV-971 for the treat-
ment of AD in the US and China[3], controversies persist surrounding 
these two drugs. Thus, the identification of potential and effective 
therapeutic drugs for the prevention and treatment of AD is highly 

significant. 
According to the theory of Traditional Chinese Medicine (TCM), 

insufficient kidney essence can lead to dementia[4]. The utilization of 
kidney-tonifying herbs represents one of the fundamental therapeutic 
approaches within TCM for treating dementia. Indeed, contemporary 
pharmacological investigations have demonstrated the potential thera-
peutic efficacy of various bioactive components derived from 
kidney-tonifying herbs against AD. For example, Lycium barbarum 
polysaccharides, extracted from the kidney-tonifying herb Lycium chi-
nense (GouQiZi), ameliorate spatial memory deficits by negatively 
regulating the apoptotic signaling cascade to play a neuroprotective role 
[5]. Osthole, a natural coumarin derivative derived from the 

* Corresponding authors. 
E-mail addresses: wuqh@hainmc.edu.cn (Q. Wu), fangjs@gzucm.edu.cn (J. Fang).   

1 Zhao Dai and Tian Hu contributed equally to this work. 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2023.12.017 
Received 11 August 2023; Received in revised form 14 December 2023; Accepted 16 December 2023   

mailto:wuqh@hainmc.edu.cn
mailto:fangjs@gzucm.edu.cn
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.12.017
https://doi.org/10.1016/j.csbj.2023.12.017
https://doi.org/10.1016/j.csbj.2023.12.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.12.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 506–519

507

kidney-tonifying herb Cnidium monnieri (L.) Cusson (SheChuangZi), 
has shown promising outcomes in the treatment of AD. Study demon-
strated its ability to promote neuronal differentiation by upregulating 
microRNA-9 in an AD cell model and to alleviate impairment in hip-
pocampal neurons in AD mouse model[6]. 

As one of the most conserved stress responses, literature has 
demonstrated the contributory role of ER stress in the progression of AD 
[7]. For example, a recent experimental study has shown the neuro-
protective effects of the Huangpu Tongqiao capsule against AD, eluci-
dating its impact on the apoptosis pathway mediated by ER stress[8]. 
Moreover, several studies have implied that luteolin exhibits the po-
tential to ameliorate cognitive deficits in mouse models of AD through 
the inhibition of ER stress-dependent neuroinflammation[9]. Therefore, 

the regulation of ER stress might have promising potential for the 
treatment of AD. 

The endophenotype network is a molecular network capable of 
characterizing the intermediate genetic characteristics of an indepen-
dent biological system’s function, which is an effective strategy to 
explore the drug-disease or disease-disease correlation through the uti-
lization of the network proximity method [10,11]. The hypothesis sur-
rounding the endophenotype network within AD posits that AD involves 
various pathological mechanisms, each of which can be considered as an 
endophenotype, and these phenotypes are simultaneously involved in 
the pathogenesis of multiple diseases[12]. Recently, Fang et al. devel-
oped a methodology based on endophenotype disease modules, which 
combined with large-scale data mining of clinical electronic medical 

Fig. 1. The overall workflow of this study. (a) Construction of a drug-target network; (b) Endophenotype disease network framework by assembling the drug-target 
network, AD disease endophenotype network, and human protein-protein interactome; (c) Identification of the potential candidates in kidney-tonifying herbs 
through the approach of network proximity; (d) Experimental validation and mechanism exploration of potential drug candidates. 
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records for drug repurposing, and identified sildenafil as a potential drug 
for the treatment of AD[13]. 

In this study, we initially compiled the components of kidney- 
tonifying herbs and constructed a drug-target network (Fig. 1a) from 
multiple data sources. Next, we integrated the AD disease genes and ER 
stress endophenotype genes and developed an endophenotype disease 
network framework by assembling the drug-target (D-T) network, the 
AD disease network and the human protein-protein interactome 
(Fig. 1b). We further utilized the network proximity approach to 
discover the underlying anti-AD components targeting ER stress within 
kidney-tonifying herbs (Fig. 1c). Finally, we prioritized the most 
promising components, performed systematic pharmacological analysis, 
and validated their anti-AD effects and associated mechanisms of action 
(MOA) (Fig. 1d). 

2. Materials and methods 

2.1. Construction of D-T network of ingredients in kidney-tonifying herbs 

Initially, kidney-tonifying herbs were identified from the Chinese 
Pharmacopoeia. Kidney-tonifying herbs were defined as those classified 
under the renal meridian in the Chinese Pharmacopoeia, with explicit 
documentation in the sections on functionality and indications con-
firming their kidney-tonifying properties. To construct the D-T network 
of kidney-tonifying herbs, we integrated the ingredients of kidney- 
tonifying herbs from the five authoritative databases, namely, the 
TCMIO database (http://tcmio.xielab.net/)[14], TCMID database (htt 
p://www.megabionet.org/tcmid/)[15], TCMSP database (https://old. 
tcmsp-e.com/tcmsp.php)[16], TCM-MESH database (http://mesh.tcm. 
microbioinformatics.org/)[17] and TM-MC database (https://tm-mc. 
kr/)[18]. We removed the duplicate ingredients according to their 
InChIKeys among different databases using the Open Babel software 
[19]. 

Furthermore, the targets of herbal ingredients were integrated based 
on three kinds of data sources: 1) Data on D-T interactions (DTIs) 
involving human proteins were sourced from the ChEMBL database 

(https://www.ebi.ac.uk/chembl/)[20], BindingDB (https://www. 
bindingdb.org/bind/index.jsp)[21] and STITCH (http://stitch.embl. 
de.)[22] database; 2) Information on ingredient-target interactions 
was extracted from the HIT database (http://lifecenter.sgst.cn/hit/)[23] 
and TCMID database[15]; 3) manual curation of the relevant pharma-
cological literature data of TCM compounds for kidney-tonifying herbs 
published in pharmacological or comprehensive journals during 2008 to 
2017[24]. 

2.2. Integration of AD disease genes and ER stress genes 

We first downloaded a list of AD disease genes data from the AlzGPS 
database (https://alzgps.lerner.ccf.org/)[25]. The list of AD disease 
genes was integrated from multiple data sources, including the 
large-scale genome-wide association studies (GWAS) analyses, the 
Human Gene Mutation Database (HGMD) database[26], DisGeNET 
database (https://www.disgenet.org/)[27] (score ≥ 0.2), MalaCards 
database (https://previous.malacards.org/pages/info)[28] and the 
Open Targets database (https://www.opentargets.org/)[29] (score ≥
0.7, owning the literature evidence). Finally, 144 AD disease genes were 
obtained (Table S1). 

The endophenotype ER stress genes were collected from the 
QuickGO database (https://www.ebi.ac.uk/QuickGO/). Three sets of 
ER stress-related genes were acquired, including GO:0051082, 
GO:0034976 and GO:0030968. We then removed the duplicated genes 
and obtained 57 ER stress genes (Table S1). 

2.3. Physicochemical properties calculation 

The physicochemical property results of the chemical ingredients in 
kidney-tonifying herbs were obtained via the SwissADME database 
(http://www.swissadme.ch/)[30]. For large molecules with more than 
200 characters per SMILES, ADMETlab 2.0 (https://admetmesh.scbdd. 
com/)[31] was used to evaluate their physicochemical properties. Six 
physicochemical properties were calculated, including the molecular 
lipophilicity (logP), molecular solubility (logS), molecular weight (MW), 

Fig. 2. Chemical components analysis of the 56 kidney-tonifying herbs from the Chinese Pharmacopoeia.  
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number of hydrogen bond acceptors (nHBA), number of hydrogen bond 
donors (nHBD) and number of rotatable bonds (nRTB). 

2.4. Network proximity approach 

The background of human protein interactions was obtained by 
integrating different types of protein-protein interactions (PPIs) and 
experimental evidence from different bioinformatics databases[32]. The 
network proximity method was then used to measure the network dis-
tance between the AD/ER stress protein module (T) and the drug target 
module (C) in the context of protein interaction. The nearest distance 
dTC represents the distance of the protein module to the drug module. 
The formula is as follows: 

〈dTC〉 =
1

||T| | + ‖C‖

(
∑

t∈T
minc∈Cd(t, c)+

∑

c∈C
mint∈T d(t, c)

)

where d(t, c) represents the shortest distance between the AD/ER stress 
gene t and drug target c. 

The network distance (Z-score, zd)between T and C was calculated by 
randomly selecting two groups of proteins from the PPI network that 
both matched the original protein sets in size and distribution. The 
formula is as follows: 

zd =
d − d

σd 

We considered Z < − 1.5 and P < 0.05 to be statistically significant. 

Detailed descriptions of this approach to screen potential drug candi-
dates can be found in previous literature[33]. 

2.5. Experimental validation 

2.5.1. Chemicals and reagents 
Echinacoside (# T1716) and Danthron (# T0800) were purchased 

from Targetmol (Shanghai, China). The following antibodies were used 
for Western blots and immunofluorescence: Heat Shock Protein Family 
A Member 5 (BIP) antibody (# AF0729, Affinity Biosciences), Phos-
phorylated Protein Kinase R-like Endoplasmic Reticulum Kinase (p- 
PERK) antibody (# DF7576, Affinity Biosciences), Protein Kinase R-like 
Endoplasmic Reticulum Kinase (PERK) antibody (# AF5304, Affinity 
Biosciences), Activating Transcription Factor 6 (ATF6) antibody (# 
DF6009, Affinity Biosciences), DNA Damage Inducible Transcript 3 
(CHOP) antibody (# AF6277, Affinity Biosciences), and beta Actin 
(ACTB) antibody (# AF7018, Affinity Biosciences). 

2.5.2. Cell viability assay 
The two cell lines used for the in vitro experiment were SH-SY5Y and 

APP-SH-SY5Y. The former is a commonly used neuronal cell model, 
while the latter has the ability to mimic the pathogenesis of AD attrib-
uted to Aβ accumulation. Both of these two cells were cultured in a 96- 
well plate for 24 h and treated with 2 natural products (echinacoside 
and danthron) for 24 h. Perform the steps outlined in the MTT operation 
protocol. Finally, the absorbance was read at 490 nm. 

Fig. 3. Distributions of six physicochemical properties of chemical components in 56 kidney-tonifying herbs. These physicochemical properties include the mo-
lecular weight (MW), molecular lipophilicity (logP), molecular solubility (logS), the number of hydrogen bond acceptors (nHBA), the number of hydrogen bond 
donors (nHBD) and the number of rotatable bonds (nRTB). 
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2.5.3. Western blot assay 
Equal volumes and masses of proteins were loaded on 10–15% SDS- 

PAGE gels and blotted onto methanol-activated polyvinylidene fluoride 
(PVDF) membranes (Millipore, USA). The membranes were exposed to 
the blocking solution (5% BSA) and incubated for one hour at room 
temperature. After this step, primary and secondary antibodies were 
applied to the membranes and then visualised. 

using ChemiDocXRS＋(Bio-RAD, USA). Image J was used for density 
analysis. 

2.5.4. Immunofluorescence assay 
The cells in the 24-well plate were washed, fixed, permeabilized, 

incubated according to the immunofluorescence kit protocol, and finally 
stained with DAPI (DNA stain), sealed, and observed using a fluores-
cence microscope. 

3. Results 

3.1. Kidney-tonifying herbs and chemical components analysis 

We first collected 56 kidney-tonifying herbs from the Chinese 
Pharmacopoeia (version: 2015) and subsequently integrated their 
chemical ingredients from the five authoritative databases (see Material 
and Method 2.1), resulting in 4338 kidney-tonifying TCM chemical in-
gredients after removing duplicates. To explore the composition simi-
larity of the 56 kidney-tonifying herbs, we further performed the 
chemical components analysis on these herbs. As shown in Fig. 2, there 
are multiple common chemical components among the 56 kidney- 
tonifying herbs. The top 10 herbs with the highest number of chemical 
components and their corresponding component overlap rates were as 

follows: Schisandra chinensis (Turcz.) Baill. (WuWeiZi, 445, 28.76%), 
Lycium barbarum L. (GouQiZi, 335, 48.36%), Tetradium ruticarpum (A. 
Juss.) T.G.Hartley (WuZhuYu, 284, 36.97%), Cornus officinalis Siebold 
& Zucc. (ShanZhuYu, 283, 51.24%), Syzygium aromaticum (L.) Merr. & 
L.M.Perry (DingXiang, 268, 50.75%), Polygala tenuifolia Willd. 
(YuanZhi, 238, 10.50%), Cistanche deserticola Ma (RouCongRong, 218, 
44.04%), Epimedium sagittatum (Siebold & Zucc.) Maxim. (YinYan-
gHuo, 211, 32.23%), Eucommia ulmoides Oliv. (DuZhong, 201, 
41.79%) and Achyranthes bidentata Blume (NiuXi, 186, 33.87%). This 
result preliminarily explains the reason why kidney-tonifying Chinese 
herbs are generally effective for AD, which may attribute to the similar 
active component groups, thus exerting similar anti-AD effects. 

3.2. Physicochemical properties analysis of chemical components in 
kidney-tonifying herbs 

The physicochemical properties of various chemical components can 
provide significant and valuable information on druggability. MW was 
considered to be a simple estimate of molecular size, and LogP and LogS 
represented the lipophilicity and solubility of a compound. Moreover, 
nHBA and nHBD usually represented the hydrogen bonding ability while 
nRTB represented the number of rotatable bonds. As shown in Fig. 3, the 
MWs of most chemical components were distributed between 0 and 600 
with a total frequency of 81.2%, indicating that most of the chemical 
components in kidney-tonifying herbs were small molecule compounds. 
Among these compounds, the highest frequencies of LogP and LogS were 
36.91% and 61.15%, respectively, distributed between 15 and 20 and 
between − 5 and 0. As for the nHBA, nHBD and nRTB, it was obvious 
that all of them were widely distributed. Intriguingly, we found that the 
highest frequency of nHBA (54.44%), nHBD (76.17%) and nRTB 

Fig. 4. Drug-target network for ingredients of 56 kidney-tonifying herbs. The network connects 548 natural products to 2255 target proteins. The font size of the 
labels and the size of the nodes are proportional to the degree. The natural products are ranked by the degree number and the labels of the top ten natural products 
and genes with the highest degrees are shown. The network was generated by the Gephi[37] (version 0.9.2). 
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(57.55%) were all distributed between 0 and 5, suggesting the high 
consistency of the distribution of the chemical components in kidney- 
tonifying herbs. Overall, most of the natural products had good physi-
cochemical properties. 

3.3. D-T network analysis of herbal ingredients in kidney-tonifying herbs 

Next, we conducted a comprehensive D-T network for kidney- 
tonifying herbs (Fig. 4) by assembling the DTIs data from several pub-
lic databases and literature. This network included 7582 DTIs, inter-
acting 548 natural products with 2255 target proteins (Table S2). Fig. 4 
shows that most of the kidney-tonifying compounds interact with 
different proteins, with an average target degree of 4.1 (K) for each 
compound. The top 10 in the 548 natural products with the highest 
degree number are: quercetin (CID5280343, K=292), triadesin A 
(CID238, K=216), α-D-Mannose (CID185698, K=214), citric acid 
(CID311, K=171), luteolin (CID5280445, K=154), apigenin 
(CID5280443, K=151), 6-deoxypyranose (CID840, K=142), berberine 
(CID2353, K= 135), alpha-GlcNAc (CID82313, K=127) and caffeic acid 
(CID689043, K=62). These natural products likely have potential ther-
apeutic effects on AD. For example, network analysis shows that luteolin 
has 154 target connections, including 12 AD-related genes, 2 ER stress 
genes, and 1 overlap. A recent study demonstrated that luteolin can 
alleviate learning and memory impairments in transgenic AD mouse 
models through inhibiting ER stress as well as improving 

neuroinflammation[9]. 
Meanwhile, among the 2255 target proteins, CASP3 (D=81) had the 

largest number of compound interactions, followed by RELA (D=68) 
and TNF (D=68). Literature evidence suggests the role of these targets in 
AD. For instance, it has been shown that the systemic upregulation of 
TNF-α accelerates a pro-inflammatory environment in the brain, 
contributing to the development of AD-like pathology and cognitive 
dysfunction[34]. Several members of the caspase family of proteases (e. 
g., caspase-3) are involved in apoptosis during AD progression. For 
example, alterations in caspase-3 levels were found in AD patient sam-
ples, suggesting the importance of CASP3[35]. Overall, the D-T network 
analysis indicates that the natural products from the kidney-tonifying 
herbs have multiple pharmacological properties[36], which can act on 
various AD-related and ER stress genes. Therefore, we next attempted to 
identify the natural products with potential anti-AD effects through 
targeting ER stress in kidney-tonifying Chinese herbs by integrating the 
D-T network and disease endophenotype network. 

3.4. Identification of potential anti-AD ingredients in kidney-tonifying 
herbs 

In this part, we used the network proximity method to identify the 
anti-AD ingredients in kidney-tonifying herbs. Our network prediction 
model prioritized 104 TCM compounds that were significantly corre-
lated with the AD endophenotype network (P < 0.05) using the network 

Fig. 5. Sankey diagram illustrating 39 potential anti-AD compounds from 22 kidney-tonifying herbs identified by the network proximity approach. The 22 kidney- 
tonifying herbs are derived from 52 kidney-tonifying herbs containing more than 5 potential anti-AD compounds. The 39 anti-AD compounds identified by more than 
or equal to 22 kidney-tonifying herbs are listed. The network was performed by Omicshare webserver (https://www.omicshare.com/tools). 
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proximity score threshold of Z < − 1.5 (Table S3). Interestingly, we 
found that 41 out of the predicted compounds (39.4%) had in vitro or in 
vivo AD literature evidence (Table S3) after in-depth literature search, 
indicating that our network model had high predictive accuracy. For 
example, caffeic acid was reported to significantly alleviate Aβ-induced 
toxicity, increase lifespan, reduce body paralysis, and ameliorate 
reproductive defects in Caenorhabditis elegans models[38]. Moreover, 
an in vitro study revealed that gallic acid showed potent 
anti-amyloidogenic properties in a cell membrane-like environment, 
highlighting its potential in the prevention and treatment of AD[39]. 

We then integrated these 104 potential anti-AD compounds and 
found that they were attributed to 52 kidney-tonifying herbs listed in 
Chinese Pharmacopoeia. Among them, a total of 22 kidney-tonifying 
herbs contained more than 5 potential anti-AD compounds (e.g., 
CiWuJia, Fig. 5), and the top 7 kidney-tonifying herbs with the highest 
number of anti-AD compounds were Morus alba L. (SangShen, n = 24), 
Lycium barbarum L. (GouQiZi, n = 18), Cornus officinalis Siebold & 
Zucc. (ShanZhuYu, n = 15), Gynochthodes officinalis (F.C.How) 

Razafim. & B.Bremer (BaJiTian, n = 15), Neolitsea cassia (L.) Kosterm. 
(RouGui, n = 13), Rubus idaeus Linn. (FuPenZi, n = 12), Cistanche 
deserticola Ma (RouCongRong, n = 12). In addition, we found that there 
was a total of 39 anti-AD compounds identified by more than or equal to 
2 kidney-tonifying herbs (Fig. 5), indicating their significance against 
AD. 

Taking Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. 
(CiWuJia, n = 7) as an example, network proximity predicted that 
CiWuJia contained 7 potential anti-AD compounds, among which 3 
compounds were confirmed to have anti-AD effects (Table 1). Indeed, 
Experimental literature evidence has shown that CiWuJia and its active 
components can significantly improve the cognitive impairment and 
learning and memory ability. For instance, the ethanol extract of 
Acanthopanax koreanum (EEAK) has been shown to ameliorate the 
cognitive dysfunction in mice, and the potential mechanism is related to 
the activation of Akt, CaMKII and CREB in the hippocampus[40]. 
Moreover, the active ingredients of CiWuJia (eleutheroside B or E) may 
improve cognitive function related to learning and memory in aged rats 

Table 1 
7 potential anti-AD compounds in Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (CiWuJia).  

Name Structure PubChem CID MW MF PMID 

2,6-Dimethoxy-1,4-benzoquinone 68262 168.15 g/mol C8H8O4 N/A 

Stearic acid 5281 284.5 g/mol C18H36O2 N/A 

Sesamol 68289 138.12 g/mol C7H6O3 25449035 

Eudesmin 234823 386.4 g/mol C22H26O6 N/A 

4-Hydroxybenzoic acid 135 138.12 g/mol C7H6O3 N/A 

Caffeic acid 689043 180.16 g/mol C9H8O4 33432954; 27430591 

Protocatechuic acid 72 154.12 g/mol C7H6O4 32679284 

Note: MW represents the molecular weight while MF denotes the molecular formula. 
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by activating cholinesterase or enhancing the reuse of choline to pro-
mote the synthesis of acetylcholine in hippocampal neurons[41]. 

3.5. Identification of potential ingredients modulating ER stress in kidney- 
tonifying herbs 

The network proximity approach was also to predict the active in-
gredients that modulated ER stress in TCM kidney-tonifying herbs. Fig. 6 
reveals that 85 TCM compounds derived from 44 kidney-tonifying herbs 
listed in the Chinese Pharmacopoeia have the potential to regulate ER 
stress. After a comprehensive literature review, we discovered that 37 
(43.5%) had been confirmed to regulate ER stress (Table S4). For 
instance, ellagic acid was shown to induce apoptosis in bladder cancer 
cells by regulating the ER stress[42]. Among the 44 kidney-tonifying 
herbs, 34 out of them had three or more potentially active compounds 
related to ER stress, and 38 potentially active compounds existed in two 
or more species of kidney-tonifying herbs (Fig. 6). 

As shown in Fig. 6 quercetin had the highest frequency and was 
present in 21 herbs, suggesting its potential effect on ER stress. Indeed, a 
recent study has demonstrated that quercetin could act on the AMPK/ 
SIRT1 signaling pathway to alleviate ER stress, and relieve apoptosis and 
inflammation[43]. Quercetin was also reported to act on GADD34 in the 
brain to reduce eIF2α phosphorylation and ATF4 expression, thereby 
improving memory and delaying early memory decline in AD model 
mice[44]. Our findings indicate the presence of over 10 promising 
compounds that have the potential to regulate ER stress in six different 
herbs, specifically Syzygium aromaticum (L.) Merr. & L.M.Perry 
(DingXiang, n = 13), Eucommia ulmoides Oliv. (DuZhong, n = 12), 
Morus alba L. (SangShen, n = 12), Tetradium ruticarpum (A.Juss.) T.G. 
Hartley (WuZhuYu, n = 11), Rubus chingii Hu (FuPenZi, n = 11), and 
Epimedium sagittatum (Siebold & Zucc.) Maxim. (YinYangHuo, 
n = 11). 

3.6. Identification of potential anti-AD compounds targeting ER stress for 
experimental validation 

We further identified the potential anti-AD compounds targeting ER 
stress by integrating the results from Fig. 5 (Table S3) and Fig. 6 
(Table S4), and found that 32 compounds had the potential for both anti- 
AD effect and regulating ER stress (Fig. 7). Following a systematic search 
of the literature, we confirm that 18 out of 32 compounds have 
demonstrated anti-AD effects or impact on ER stress (Table S5). Taking 
myricetin as an example, research found a significant increase in the 
hippocampal CA3 pyramidal neurons and an improvement in cognitive 
function related to learning and memory in AD rats, indicating that 
myricetin could be beneficial for the treatment of AD[45]. In addition, 
myricetin has been shown to protect β-cells against apoptosis by regu-
lating ER stress[46]. To narrow the range of probable compounds for 
experimental verification, only those with both AD or ER stress regula-
tion literature evidence and a Z-score value under − 2.0 (Z < − 2.0) 
were retained, resulting in a total of 12 compounds. Drug uptake and 
distribution require plasma protein binding (PPB), while drugs that act 
on the central nervous system need to cross the blood-brain barrier 
(BBB) to reach the targets. We calculated the PPB and BBB of drugs via 
the ADMET lab2.0 (https://admetmesh.scbdd.com/). After evaluating 
of PPB, BBB, and literature evidence of drugs (Table S6), we selected 2 
predictive compounds (echinacoside and danthron) to verify their 
anti-AD efficacy and ER-related molecular mechanism in vitro. 

3.7. Systems pharmacology analysis of promising candidates 

Next, we developed the D-T subnetwork and PPI network of the two 
promising candidates (echinacoside and danthron). Fig. 8a shows the 
network that comprises 15 DTIs and 156 PPIs, interacting with 56 AD 
genes, 30 ER stress genes, 2 overlapped genes and 12 other genes. 
Echinacoside, the major active component of TCM Cistanches Herba is 
demonstrated to possess numerous properties, such as anti- 
inflammatory, antioxidant and anti-apoptotic effects[47]. Fig. 8a in-
dicates that echinacoside binds to 10 genes (e.g., CASP3) and 74 PPI 
partners. It was suggested that the ER stress inhibitor regulates CASP3, 
revealing its role in ER stress[48]. Additionally, CASP3 is involved in the 
AD pathological process. For instance, variations in CASP3 levels have 
been found in samples of AD patients[35]. As an anthraquinone deriv-
ative naturally extracted from rhubarb, danthron displays potential 
antitumor and antioxidant properties[49,50]. Network analysis shows 
that danthron interacts with 5 genes (e.g., LMNA) and 51 PPI partners. 
Multiple pieces of evidence have confirmed the role of LMNA in ER 
stress[51] and AD[52]. Intriguingly, we found that these two com-
pounds both act on several genes, such as MAPK1, indicating that they 
might exert a synergistic effect on AD. 

To investigate the molecular mechanism of echinacoside and dan-
thron against AD, we conducted an enrichment analysis of all the 
affected genes. Fig. 8b shows that these genes are enriched in different 
biological processes (BPs), including the response to ER stress. Recent 
evidence in the literature shows that ER stress has been observed in both 
in vitro cellular models of AD and certain animal models of the disease 
[53]. Since both compounds act on ER stress and AD according to our 
predictive results, it is probable that echinacoside and danthron exert 
their therapeutic effects on AD through ER stress regulation. Addition-
ally, these genes are also involved in multiple KEGG pathways, including 
apoptosis, implying a potential mechanism against AD (Fig. 8c). 
Apoptosis is known to be responsible for manifestations associated with 
AD under pathological conditions[54]. Interestingly, ER stress has been 
found to mediate the apoptotic pathway, presenting a new and prom-
ising therapeutic target for AD treatment[55]. 

3.8. Echinacoside and danthron downregulated ER stress-related proteins 

Following the results mentioned above, we selected echinacoside 

Fig. 6. The potential compounds targeting endoplasmic reticulum stress from 
kidney-tonifying herbs identified by network proximity approach. The com-
pounds with experimental evidence are marked in bold. Each endoplasmic re-
ticulum stress-regulated compound belongs to a specific number of kidney- 
tonifying herbs denoted by K, while D denotes the number of endoplasmic re-
ticulum stress-regulated compounds present in each kidney-tonifying herb. The 
diagram was developed by using Perl. 
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Fig. 7. Identification of potential anti-AD compounds targeting endoplasmic reticulum stress from kidney-tonifying herbs.  
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and danthron for cell viability detection and mechanism verification of 
ER stress, and drug concentrations were referred to in the previously 
published literature. It was evident from the data presented in Fig. 9a 
and b that neither echinacoside nor danthron caused toxicity to SH-SY5Y 
and APP-SH-SY5Y cell lines. The effects of echinacoside and danthron on 
ER stress proteins by western blot (Fig. 9c, d, and e). p-PERK (P < 0.05) 
and ATF6 (P < 0.05) were downregulated significantly by 40 μM of 
echinacoside. Furthermore, ATF6 was markedly downregulated by 
20 μM of echinacoside (P < 0.05). Besides, we found that 10 μM of 
danthron significantly downregulated p-PERK (P < 0.05) and ATF6 
(P < 0.01). Additionally, a dose of 20 μM of danthron notably down-
regulated BIP (P < 0.05), p-PERK (P < 0.05), ATF6 (P < 0.001) and 
CHOP (P < 0.05), respectively. Two proteins (p-PERK and ATF6) were 
then evaluated with immunofluorescence assay, which confirmed that 
the administration of echinacoside and danthron reduced the expression 

of p-PERK and ATF6 (Fig. 9f). 

4. Discussion 

Kidney tonification for the treatment of cognitive impairment is a 
well-established and effective method in TCM. There is a considerable 
amount of high-quality clinical evidence to support this effect[56]. A 
two-year, placebo-controlled, randomized trial demonstrated the 
long-term therapeutic effects of Bushen capsules can improve mild 
cognitive impairment[57]. In addition, a randomized, double-blind, 
placebo-controlled clinical trial demonstrated the efficacy of the kid-
ney tonic formula "ba wei di huang wan" in the treatment of dementia 
[58]. The 2020 edition of the Guidelines for the diagnosis and treatment 
of AD in China recommends that the TCM treatment for AD adopts 
sequential kidney tonification therapy in the initial stage and 

Fig. 8. Systems pharmacology analysis of echinacoside and danthron. The drug-target network consisted of 15 drug-target interactions and 156 protein-protein 
interactions (a). Biological process enrichment analysis and (b) KEGG pathways annotations results (c) were performed via the ClueGo plug-in in the Cyto-
scape software. 
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Fig. 9. Echinacoside and danthron downregulated endoplasmic reticulum stress-related proteins. Cell viability of echinacoside and danthron on SH-SY5Y and APP- 
SH-SY5Y cell lines was assessed using the MTT assay (a, b). Western blot results of ER stress-related proteins (BIP, p-PERK, PERK, ATF6, CHOP) were analyed through 
Western blot on APP-SH-SY5Y cell line (c, d, e). Immunofluorescence expression of ATF6 and p-PERK on APP-SH-SY5Y cell line (f). Data are presented as mean 
± standard deviation. * P < 0.05, * * P < 0.01, * ** P < 0.001. 
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throughout the whole process, thereby highlighting the crucial role of 
kidney-tonifying herbs in modern AD treatment. Currently, there is still 
no comprehensive method that can entirely uncover the pharmacody-
namic material basis of kidney-tonifying herbs for preventing and 
treating AD. Nonetheless, the endophenotype network method guided 
by the network medicine theory, provides the potential to decipher it. 

Our study employed a network medicine framework to investigate 
the pharmacodynamic material basis and MOA of kidney-tonifying 
herbs in treating AD by regulating ER stress. Specifically, we con-
structed both the AD disease network and the D-T network of kidney- 
tonifying TCMs. We then identified potentially active ingredients in 
kidney-tonifying TCMs that could effectively treat AD and regulate ER 
stress by using the network proximity method. Furthermore, we inte-
grated the anti-AD compounds that targeted ER stress and verified the 
anti-AD mechanisms of action through in vitro experimental validation. 

Our study demonstrated that echinacoside and danthron regulated 
ER stress in AD cell models. Echinacoside is a natural phenylethanoid 
glycoside that has protective effects against neurodegenerative diseases. 
Recent study has shown that echinacea exerts neuroprotective effects by 
inhibiting the α-synuclein /TLR2/NF-κB/NLRP3 axis of microglia in 
models of Parkinson’s disease (PD)[59]. In AD, echinacoside blocks 
amyloid deposition by inhibiting amyloid oligomerization, thereby 
improving cognitive dysfunction caused by Aβ1–42[60]. In addition, 
echinacoside inhibits the increase of intracellular reactive oxygen spe-
cies (ROS) induced by Aβ[61]. In terms of regulating ER stress. echi-
nacoside has been proven to regulate ER stress in animal models of PD 
[62], osteoarthritis[63], heart failure[64] and so on. Danthron is a 
natural product derived from salvia miltiorrhiza. Study has shown that 
danthron may reduce Aβ25–35 related neurotoxicity by inhibiting mem-
brane lipid peroxidation and glutathione deprivation[65]. We validated 
the role of echinacoside and danthron in regulating ER stress in AD cell 
models. This study confirmed the role of danthron in regulating ER stress 
for the first time, and provided a useful reference for clarifying the ef-
ficacy of echinacoside and danthron. 

Overall, our study presents three advantages that may be emphasised 
as follows. Firstly, the potential anti-AD ingredients with promising 
regulatory effects on ER stress in kidney-tonifying TCMs were system-
atically screened, which contributed to clarifying the pharmacodynamic 
material basis of kidney-tonifying TCMs against AD. Moreover, we have 
effectively verified that two promising compounds (echinacoside and 
danthron) can regulate ER stress to exhibit anti-AD effects. This provides 
important evidence for identifying and developing AD drug candidates 
derived from kidney-tonifying TCMs. Finally, the study utilized the 
endophenotype network method to investigate the effectiveness of 
kidney-tonifying TCMs against AD, which conformed to the Network 
pharmacology evaluation method guidance[11]. This approach is a 
beneficial attempt for developing new approaches to TCM network 
medicine, and it holds a significant reference value for the moderniza-
tion of TCM theory. 

However, the study has several limitations. Firstly, due to the limited 
information on disease genes and compound targets available through 
public databases and literature evidence, the incompleteness of the D-T 
network and disease network ramains unavoidable. To address this, the 
target prediction method based on network inference[66] could be 
introduced to expand the DTIs and help to identify more potential active 
compounds. Secondly, there is a need for further improvement of pre-
dictive network models, as there is a lack of information regarding the 
contents of compounds found in kidney-tonifying herbs, as well as the 
evaluation data of absorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties of drugs within the body. In the future, we 
will select two or three kidney-tonifying TCMs and conduct qualitative 
and quantitative analyses on blood components using modern TCM 
analysis methods. Any redundant compounds will then be filtered out 
through ADMET property assessments. Lastly, we did not consider the 
synergistic effect of compounds or herbs[67,68] and just performed in 
vitro experiment. Thus, we will further investigate the synergistic effect 

of herbs and in vivo validation in next study. 
In summary, this study combined the clinical advantages of TCMs 

with the cutting-edge network medicine approach to decipher the 
pharmacodynamic material basis and the potential MOAs of kidney- 
tonifying TCMs in preventing and treating AD, providing a new para-
digm for the transformation of TCM research from empirical medicine to 
evidence-based medicine. 

5. Conclusion 

In this study, we used the network proximity approach to identify the 
potential anti-AD compounds regulating ER stress in kidney-tonifying 
herbs. We next validated the role of echinacoside and danthron in 
regulating ER stress in an in vitro AD model by combining literature 
studies and systematic pharmacological analyses. In general, this study 
has preliminarily interpreted the effective material basis and potential 
molecular mechanism of kidney-tonifying Chinese medicine for pre-
vention and treatment of AD by using endophenotypic network 
approach. 
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