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Abstract. In this paper, we provide a study about the impact of the
most prominent inpainting and denoising solutions on the latent finger-
print identification. From an in-depth analysis, we show how some of
the analyzed inpainting and denoising solutions can improve up 63% for
Rank-1 and 26% for Rank-20 the fingerprint identification rates when
state-of-the-art minutiae extractors are used. Nevertheless, it is neces-
sary to create new denoising and inpainting solutions that are specifically
built to deal with latent fingerprints and their associated issues.
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1 Introduction

Fingerprints are invaluable biometric features that have widely been adopted
among law enforcement for verifying and identification of an individual. There
exist two categories for clustering fingerprints: (i) impressions, which are acquired
under controlled conditions; and (ii) latent fingerprints, which are unintention-
ally left by someone when manipulating objects and are thus particularly useful
at crime scenes. However, due to the nature of the problem, latent fingerprints
are usually incomplete and distorted images, presenting broken ridges and con-
taining noisy background, which hinders their analysis during investigations due
to their low-quality [14].

Figure 1 shows three examples of latent-rolled pairs of identified fingerprints
from database NIST-SD27 [3]. Notice that latent fingerprints present incom-
plete and distorted images, containing noisy backgrounds. Consequently, as was
recently reported in [14], the fingerprint identification rates are lower than 10%,
13 %, and 24% for Rank-1, weighted Rank-20, and Rank-100, respectively.

An idea to get better fingerprint identification rates is to improve the qual-
ity of latent fingerprints. Some authors [1,6,9,10,12] have been studying how
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Fig. 1. Three examples of latent-rolled pairs of identified fingerprints from database
NIST-SD27 [3]. Each latent fingerprints in NIST-SD27 is labeled according to its quality
(a) good, (b) bad, and (c) ugly. Notice that, unlike the rolled impressions, the latent
fingerprints contain partial information and higher levels of noise.

improving fingerprint impressions by using denoising and inpainting solutions.
These solutions have positively impacted on the obtained accuracy for finger-
print verification. However, the literature has focused on studying denoising
and inpainting solutions by using fingerprints obtained in controlled situations
(impressions), which present higher quality than latent fingerprints.

As far as we know, there is no study on the impact of inpainting and denoising
solutions for latent fingerprints. Hence, in this paper, we introduce the first study
testing inpainting and denoising solutions on latent fingerprint databases.

Our study shows that fingerprint identification can be improved by using
inpainting and denoising solutions, which were trained by using impressions.
From our experiment result, we can conclude that the fingerprint identification
rates can be improved up 63% for Rank-1 and 26% for Rank-20 when inpainting
and denoising solutions are used. However, the fingerprint identification rates
were not always improved by using inpainting and denoising solutions; or using
some combination of them. Hence, we provide a set of recommendations for
improving these solutions; and, consequently, the fingerprint identification rates.

This paper is organized as follows: Sect.2 provides related work about
inpainting and denoising solutions proposed for fingerprints. After, Sect.3
presents our study related to the impact of the proposed inpainting and denoising
solutions on latent fingerprints. Next, Sect. 3 provides our experimental setup as
well as experimental results obtained from our study. Also, this section (Sect. 3)
provides an in-depth analysis of the obtained results. Finally, Sect.4 presents
our conclusions and future work.

2 Related Work

Latent fingerprints are acquired from uncontrolled conditions (usually at crime
scenes), hence containing noise, incomplete information, and perturbations pro-
duced by their forming mechanism. Besides, latent fingerprints suffer distortions
due to their acquisition procedure. Unlike controlled fingerprint acquisitions,
all these hostile conditions produce low-quality latent fingerprint images, which
are vital for capturing criminals [14]. The acquired low-quality images motive
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to machine learning researchers and fingerprint experts to create solutions for
improving the quality of these images, and as a result, increasing the finger-
print identification rates [6]. Notice that fingerprint images are usually com-
posed of thin ridges, and it is critical to preserve and keep them sharp during
any restoration process for their reliable use during the fingerprint identification
procedure. Any unintentional procedure that brakes or distorts the ridges can
produce spurious minutiae, impacting negatively on the identification rate (a
minutia is a minute detail on the ridges of a fingerprint, often ridge ending or
bifurcation, which, together with other ones, are essential for the identification
of people [14]).

One of the most prominent approaches for improving the quality of finger-
print images is to use denoising and inpainting solutions [1,6,9-12]. One of the
pioneer solutions was proposed in [10], using the approach of curvelet transforms;
which is a type of multiscale geometric transforms based on Fourier transfor-
mations for improving the quality of fingerprint images. Another solution was
proposed in [12], where the authors use ridge orientation-based clustered dictio-
naries for creating a sparse denoising framework.

An essential advance on Machine Learning was the beginning of the Neu-
ral Artificial Network-based approach. However, the most significant progress
was made when the CNN-based approach arrived, which has gained an enor-
mous attraction in recent years. Consequently, several denoising and inpainting
solutions based on CNNs were proposed for improving the quality of fingerprint
images [1,6,9,11].

One of the pioneers and most prominent CNN-based solutions is U-Net, which
was published in [11]. Figure 2 shows that U-Net’s architecture contains two 3 x 3
convolutions, each followed by a rectified linear unit (ReLU) and a 2 x 2 max
pooling operation with stride 2 for down-sampling. At the final layer, a 1x 1
convolution is used to map each 64-component feature vector to the desired
number of classes. In total, the network has 23 convolutional layers. Although
this CNN was initially proposed for biomedical image segmentation, specifically
for cell tracking challenge, its architecture has been a template for creating new
CNNSs by using its encoding and decoding procedure. It is essential to highlight
that U-Net allows obtaining good fingerprint identification by improving the
quality of fingerprint images.

The following three solution for improving the fingerprint images are based
on the U-Net’s architecture:

CVxTz was proposed in [6], which is similar to the U-net’s architec-
ture, excepting that CVxTz pad the input with zeros instead of mirroring the
edges. CVxTz’s architecture is suitable for improving the quality of fingerprint
images because it takes into account a more broad context when predicting a
pixel [6], and also it uses additional data augmentation. CVxTz was trained
and tested by using a synthetic dataset' containing 84,000 fingerprint images
(275 x 400 pixels), which were generated using a synthetic fingerprint generator

! This dataset can be downloaded from http://chalearnlap.cvc.uab.es/dataset/32/
description/.
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Fig. 2. U-net’s architecture [11]. Its encoding and decoding procedure has widely been
used to create other CNNs for improving the quality of fingerprint images.

(Anguli) [4]. All generated images were artificially transformed by adding back-
ground and random filters (blur, brightness, contrast, elastic transformation,
occlusion, scratch, resolution, and rotation). The generated dataset contains
168,000 fingerprint images (84,000 fingerprint images - one ground-truth and
one degraded image - per fingerprint). The results were assessed by using the
mean absolute error (MAE) measure, where CVxTz allows obtaining the lowest
MAE value (0.0189). The main drawback of CVxTz is that the used fingerprints
were generated artificially, which means that the performance could significantly
be degraded if the trained model is applied to real latent fingerprints.

U-Finger (a.k.a rgsl888) [9] was recently proposed as an alternative for
denoising and inpainting on fingerprint images. U-Finger’s architecture contains
an encoding module where each convolutional layer is followed by spatial batch
normalization and a ReLU neuron. From top to down, the four convolutional
layers have 128, 32, 32, and 128 kernels of size 3 x 3, 1x 1, 3x3, and 1x1,
respectively. U-Finger’s architecture’s decode module provides a similar archi-
tecture as the encoding module excepting that the number of kernels in the
four convolutional layers: 256, 64, 64, and 256. U-Finger was trained and tested
by using the same dataset above mentioned for training the CVxTz solution.
From experimental results, U-Finger obtains a worse MSE value (0.023579) than
CVxTz (0.0189).

FDPMnet [1] was recently proposed for improving the quality of finger-
print images by using denoising and inpainting solutions. The encoding module
consists of repeated two blocks of 3 x 3 convolutional layers, batch normaliza-
tion layer, and ReLU activation. The decoding module is similar to encoding
module, excepting that max-pooling is replaced by an upsampling layer which
helps to reconstruct an output image. The final layer is a 1 x 1 convolution layer
with a sigmoid activation function which gives the reconstructed output image.
FDPMnet was trained and tested by using the same dataset above mentioned
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for training and testing the CVxTz and U-Finger solutions. From experimental
results, FDPMnet obtained the worst MSE value (0.0268) compared to CVxTz
(0.0189) and U-Finger (0.23579). The main reason why CVxTz reached better
results against the two other ones could be that it presents almost double the
network depth as compared to other proposals, and also it uses additional data
augmentation.

(@)

Fig. 3. Examples of fingerprints taken from the NIST-SD27 database [3] and the arti-
ficial dataset generated using Anguli [4]. An example of impression (a) and latent fin-
gerprint (b), taken from a real scenario. From (c) to (f) contain fingerprints generated
artificially.

Although the solutions above mentioned have managed impressive results,
they have only been trained on fingerprints obtained in very controlled condi-
tions, or on fingerprints generated synthetically by pieces of software. In Fig. 3,
we show a set of fingerprints taken from a real database and other ones gen-
erated artificially. Notice that the quality of fingerprints generated artificially
(cf), which were transformed by using some filters, look like more the quality
of an impression image (a) than the quality of a real latent fingerprint (b). Notice
that the real latent fingerprint (b) contains some spots without visible ridges,
different background textures, and different shades of gray.

From the reviewed papers and the analysis of Fig. 3, an novel avenue of study
is open since there has been little research of fingerprint denoising and inpainting
using latent fingerprints encountered in real-life situations instead of those taken
from controlled situations or generated artificially. Hence, we proposed to analyze
the performance of the most prominent denoising and inpainting solutions by
using real latent fingerprints.

3 Studying the Impact of Inpainting and Denoising
Solutions on the Latent Fingerprint Identification

This study aims to analyze the impact of the most prominent inpainting and
denoising solutions on the latent fingerprint identification. To do so, we will
analyze each solution separately as well as combinations of them by using two
real latent fingerprint databases.
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For a better understanding of our study, we have structured this section as
follows: Sect. 3.1 presents our experimental setup, where databases, tested algo-
rithms, and the methodological framework are described. Section 3.2 provides
our experimental results and an in-depth analysis of these results.

3.1 Experimental Setup

For our experimentation, we have selected two latent fingerprint databases. On
the one hand, NIST-SD27, which is a public database widely used in latent
fingerprint studies [5,14]. On the other hand, we have a non-public database
taken from a crime laboratory (from here on, Proprietary), which contains 568
rolled fingerprints (284 latent fingerprints and 284 impressions).

We selected three of the most prominent and popular minutiae extraction
extractors, which have reported reasonable identification rates. Fingernet [13]
and MinutiaeNet [8], which are based on convolutional networks; and Verifinger
[7], a proprietary minutiae extractor developed by Neurotechnology.

We selected three of the most popular inpainting and denoising solutions for
analysing their impact on the latent fingerprint identification: FDPMNet? [1],
CVxTz? [6], and U-Finger? [9] (see Sect. 2 for more details).

We selected Minutia Cylinder-Code (MCC) [2] as a representation and
matching technique for latent fingerprint identification. MCC has proven to
obtain better identification rates than other several solutions. The authors of
MCC provide a free and public SDK (SDKMCC?) for research purposes.

In our experiments, we use the identification rates plotted in the cumulative
match characteristic (CMC) curve computed according to ISO/IEC 19795-1,
which is the most used measure for assessing the fingerprint identification [14].

As the goal of this study is to analyze the impact of the most prominent
inpainting and denoising solutions on the latent fingerprint identification, we
will test every selected denoising and inpainting solution by themselves. After
that, we will test all possible combinations of them (i.e., first run the solution
A, then use the outputs as the inputs for solution B, and so on). Consequently,
we will execute 15 combinations for each database (30 in total).

As representation and matching technique is the same, and we will only
change the selected minutiae extractors as well as the combinations of the
selected inpainting and denoising solutions, we will be able to see the follow-
ing: (i) if the inpainting and denoising solution that were previously tried only
on fingerprint impressions also work well with latent fingerprints; (ii) what is the
combination of inpainting and denoising solutions improving the latent finger-
print identification rate; and (iii) what is the best combination among minutiae
extractor and inpainting and denoising solutions for latent fingerprint identifi-
cation.

2 http://github.com/adigasu/FDPMNet.

3 http://github.com/CVxTz/fingerprint_denoising.

* http://github.com /rgsl888/U-Finger- A- Fingerprint- Denosing-Network.
5 http://biolab.csr.unibo.it.
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Fig. 4. CMC results for the NIST-SD27 database.

3.2 Experimental Results

Figure4 shows the identification rates by using CMC curves (from Rank-1 to
Rank-20) for each tested minutiae extractor on the NIST-SD27 database. This
figure quantifies the ratio of correct identifications in the first place and among
the 20 first ranks, respectively. From Fig. 4, we can notice that using Fingernet
as a minutiae extractor, it allows obtaining the best results without using any
inpainting and denoising solutions. The second-best result was obtained by only
using FDPMNet, which presents an identification rate decrease of 48.91% (from
53.10% to 27.13%) for Rank-1 and an average identification rate decrease of
30.59% (from 63.91% to 44.36%) throughout the first-20 ranks.

From Fig. 4, we can notice a similar result to the one obtained by Fingernet
but when MinutiaeNet is used. For MinutiaeNet, the best results come from
not using any inpainting and denoising solutions. The second-best result was
obtained by only using CVxTz, which presents an identification rate decrease of
67.74% (from 24.03% to 7.75%) for Rank-1 and an average accuracy decrease of
52.85% (from 38.02% to 17.93%) throughout the first-20 ranks.

Regarding the findings mentioned above, in Fig. 4, different results can be
seen when Verifinger is used for extracting minutiae. The best result is coming
from using CVxTz firstly and after, FDPMNet. This combination allows for
obtaining an accuracy increase of 28.30% (from 20.54% to 26.36%) at Rank-1
and an average accuracy increase of 35.05% (from 30.08% to 40.62%) throughout
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the first-20 ranks. Also, notice that only the combinations FDPMNet-CVxTZ-

UFinger and FDPMNet-UFinger-CVxTZ do not improve the results obtained
by Verifinger without using any inpainting and denoising solutions.
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Fig. 5. CMC results for the Proprietary database.

Figure 5 shows from Rank-1 to Rank-20 identification rates by using CMC
curves for each tested minutiae extractor on the Proprietary database. This
figure quantifies the ratio of correct identifications in the first place and among
the first-20 ranks, respectively. From Fig. 5, we can notice that using Fingernet
as a minutiae extractor, it allows obtaining the best results without using any
inpainting and denoising solutions. The second-best result was obtained by only
using FDPMNet, which presents an identification rate decrease of 31.45% (from
87.32% to 59.86%) for Rank-1 and an identification rate decrease of 20.78%
(from 92.45% to 73.24%) throughout the first-20 ranks.

From Fig. 5, we can notice that Verifinger obtains the best results from Rank-
1 to Rank-8 without using any inpainting and denoising solutions. However,
from Rank-9 to Rank-20, the best result is coming from using FDPMNet firstly
and after, CVxTz. This combination decreases the identification rate in 5.95%
(from 59.15% to 55.63%) for Rank-1, increases the identification rate in 1.06%
(from 73.24% to 74.01%) throughout the first-20 ranks, and an identification
rate increase of 3.29% (from 76.20% to 78.71%) from Rank-9 to Rank-20.

Other findings that we can notice from Fig. 5 is that, when using MinutiaeNet
to extract minutiae from the proprietary database, the best results are coming
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from using CVxTz. Nevertheless, it is very close to the results obtained by the
combination of using U-Finger firstly and after FDPMNet. When compared
MinutiaeNet with and without using any inpainting and denoising solutions,
CVxTz increases the identification rate of 63.67% (from 7.75% to 12.68%) for
Rank-1 and, on average, increases the identification rate of 22.83% (from 23.36%
to 28.70%) for the first 20 ranks. On the other hand, the combinations U-Finger
and FDPMNet increase the identification rate of 59.09% (from 7.75% to 12.32%)
for Rank-1 and, on average, increases the identification rate of 21.02% (from
23.36 to 28.27%) for the first 20 ranks. It is essential to highlight that the results
obtained by MinutiaeNet (without using any inpainting and denoising solutions)
fall drastically when the Proprietary database is used, which could indicate that
MinutiaeNet is biased in NIST-SD27.
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Fig. 6. Ground-truth minutiae and their matches (yellow circles) using different minu-
tiae extractors, inpainting and denoising solutions, and two latent fingerprints. (a)
latent fingerprint having minutiae extracted by a fingerprint expert. (b) the same latent
fingerprint of (a) but having minutiae extracted by some of the three tested minutiae
extractor (Fingernet, Verifinger, and MinutiaeNet). (¢) it is the latent fingerprint (a)
but filtered by CVxTZ. (d) it is the latent fingerprint (a) but filtered by FDPMNet. (e)
it is the latent fingerprint (a) but filtered by U-Finger. (f) it is the latent fingerprint
(a) but using the best combination of the tested inpainting and denoising solutions.
Each latent fingerprint image having matched minutiae contains its associated F1 score
value on top. (Color figure online)
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For an in-depth analysis, Fig. 6 shows a comparison of the obtained results
by using the ground-truth minutiae and their matches (yellow circles), the three
tested minutiae extractors, the three tested inpainting and denoising solutions,
and two latent fingerprints taking from the tested databases. From this figure,
we can notice that FingertNet obtains the best F1 value for the NIST-SD27
database when inpainting and denoising solutions are not used. Also, we can see
that Verifinger obtains the best F1 value for the NIST-SD27 database when the
combination CVxTz and FDPMNet is used. Also, notice that Minutiae obtain
the best F1 value for the Proprietary database when the combination FDPM-
Net and U-Finger is used. All these findings can be corroborated by Figs. 4-5.
Also, from Fig. 6, notice that the image quality for combination column (f) is
better than using inpainting and denoising solutions alone. Furthermore, we can
see that CVxTz (c¢) and U-Finger (e) provide blur on images, which makes it
difficult to extract matched minutiae. Finally, from this figure, we can observe
that Fingernet obtains the lowest number of spurious minutiae when inpaint-
ing and denoising solutions are not used. Nevertheless, for both Verifinger and
MinutiaeNet, some inpainting and denoising combinations allow obtaining the
best ratio between matched and spurious minutiae.

4 Conclusions

Denoising and inpainting solutions for fingerprint are of utmost importance
since the fingerprint identification serves a crucial role in aiding police investiga-
tions for verifying and identifying people. However, most research on fingerprint
denoising and inpainting focus on using fingerprint impressions, which contain
less distortion than latent fingerprints, and they are obtained in controlled situ-
ations.

In this paper, we analyzed the impact of the most prominent inpainting and
denoising solutions on latent fingerprint identification by using two latent fin-
gerprint databases and three of the most popular minutiae extractors. From our
results, we have found that using fingerprint denoising and inpainting solutions
improve, in most cases, the identification rate of latent fingerprints even when
dealing with images containing a noisy background and undefined ridges. On the
one hand, the best denoising and inpainting solutions for NIST-SD27 are FDPM-
Net when Fingernet is used, CVxTz when MinutiaeNet is used, and CVxTz
firstly and after FDPMNet when Verifinger is used. On the other hand, the best
denoising and inpainting solutions for Proprietary are FDPMNet when Finger-
net is used, CVxTz, and the combination U-Finger firstly and after FDPMNet
when MinuatiaeNet is used, and the combination FDPMNet firstly and after
CVxTz when Verifinger is used.

From the analyzed solutions, we can conclude that they can improve up
63% for Rank-1 and 26% for Rank-20 the fingerprint identification rates when
Verifinger or MinutiaeNet are used. Nevertheless, fingerprint identification was
not always improved when these solutions were used jointly with Fingernet.

Our results and analysis open the door to future research aimed at studying
and creating of denoising and inpainting solutions that are specifically built to
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deal with latent fingerprints and their associated issues. Another avenue of future
research is to inspect further how existing techniques can be improved by data
augmentation and deblurring using generative adversarial networks.

Acknowledgment. Authors want to thank the Computer Science department at Tec-
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