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Abstract
Purpose  Deep brain stimulation (DBS), an effective treatment for movement disorders, usually involves lead implantation 
while the patient is awake and sedated. Recently, there has been interest in performing the procedure under general anesthe-
sia (asleep). This report of a consecutive cohort of DBS patients describes anesthesia protocols for both awake and asleep 
procedures.
Methods  Consecutive patients with Parkinson’s disease received subthalamic nucleus (STN) implants either moderately 
sedated or while intubated, using propofol and remifentanil. Microelectrode recordings were performed with up to five 
trajectories after discontinuing sedation in the awake group, or reducing sedation in the asleep group. Clinical outcome was 
compared between groups with the UPDRS III.
Results  The awake group (n = 17) received 3.5 mg/kg/h propofol and 11.6 μg/kg/h remifentanil. During recording, all anes-
thesia was stopped. The asleep group (n = 63) initially received 6.9 mg/kg/h propofol and 31.3 μg/kg/h remifentanil. During 
recording, this was reduced to 3.1 mg/kg/h propofol and 10.8 μg/kg/h remifentanil. Without parkinsonian medications or 
stimulation, 3-month UPDRS III ratings (ns = 16 and 52) were 40.8 in the awake group and 41.4 in the asleep group. Without 
medications but with stimulation turned on, ratings improved to 26.5 in the awake group and 26.3 in the asleep group. With 
both medications and stimulation, ratings improved further to 17.6 in the awake group and 15.3 in the asleep group. All 
within-group improvements from the off/off condition were statistically significant (all ps < 0.01). The degree of improve-
ment with stimulation, with or without medications, was not significantly different in the awake vs. asleep groups (ps > 0.05).
Conclusion  The above anesthesia protocols make possible an asleep implant procedure that can incorporate sufficient micro-
electrode recording. Together, this may increase patient comfort and improve clinical outcomes.

Keywords  Deep brain stimulation · Parkinson’s disease · Asleep implantation · Awake implantation · Anesthesia

Introduction

Deep brain stimulation (DBS) is an effective treatment for 
neurodegenerative disorders with advanced motor symp-
toms, such as Parkinson’s disease (PD), essential tremor 
(ET), and dystonia. Treatment involves placing electrodes 
into basal ganglia structures, targeting the subthalamic 
nucleus (STN), internal segment of the globus pallidus 
(GPi), or the ventral intermediate nucleus of the thalamus 
(VIM) [2, 3]. Treatment may be unilateral or bilateral. 
Leads are then connected to a subcutaneously implanted 
pulse generator located in the chest or abdominal region. 
After programming, stimulation achieves functional 
inhibition of the overactive neural pathways, improving 
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symptoms of on/off motor fluctuation, tremor, rigidity, 
bradykinesia, and/or dyskinesia [36].

Leads are placed in a stereotactic procedure using atlas 
coordinates supplanted with detailed preoperative imaging 
and/or intraoperative microelectrode recordings (MER) of 
the brain [12, 35]. According to procedures commonly 
employed for the past quarter century, DBS patients are 
awake, although sedated and treated with local anesthetics, 
during the procedure. This enables MER for the purpose 
of identifying the optimal physical target and making fine 
adjustments in lead location. The patient’s cooperation is 
required during this testing, in order to provide verbal or 
other feedback regarding cessation of symptoms and/or 
the appearance of side effects [26]. Quantitative aspects of 
MER can, however, be assessed without the patient’s coop-
eration, such as assessment of bursting patterns to identify 
STN neurons and firing rates to distinguish GPi neurons 
from those of the external globus pallidus (GPe) [17, 20].

Awake DBS procedures can be stressful and are associ-
ated with high burden for PD patients since surgery needs 
to be performed in the medical off state after cessation 
of parkinsonian medications. Furthermore, patients may 
not be fully cooperative or accurate in their feedback due 
to interference of the sedatives [21, 38]. Awake proce-
dures may extend the duration of surgery and increase 
the costs, although findings vary on this matter [13, 23]. 
Taking another approach, DBS implantations can also be 
completed in asleep patients, that is, under full general 
anesthesia. Clinical outcomes of awake and asleep lead 
placements have generally been equivalent [7, 8, 16, 31, 
34, 37], albeit with small sample sizes and high patient 
heterogeneity in some comparative trials. The equivalence 
of asleep procedures, together with the face validity of 
increased patient comfort, has led to a shifting of per-
spectives that makes asleep DBS procedures the preferred 
approach [6].

When lead placement is solely reliant on imaging dur-
ing asleep procedures, it can be argued that this limits the 
precision of targeting. MER may not be incorporated into 
asleep DBS procedures due to the potential for anesthetics 
to suppress or alter neuronal activity [5, 17, 20], and the 
surgeon may prefer to have the conscious cooperation of the 
patient. Asleep-awake-asleep procedures have been devel-
oped to address this, in which deeper sedation is initially 
induced but discontinued during MER to allow the patient 
to wake up to the point of cooperation, and then resumed 
for the completion of the procedure [18, 33]. This approach 
may, however, see some patients who are slow to rouse from 
sedation or remain too groggy to participate in the MER 
feedback. Another option, described in a previous report 
from our group [4, 31], is to induce full intubated general 
anesthesia and to temporarily reduce the anesthesia during 
the MER process to allow the observation of some indicators 

such as the appearance of discrete muscle twitching due to 
pyramidal tract stimulation.

A previous report from our group has shown that asleep 
DBS procedures are feasible and result in clinical outcomes 
that are as good or better than those of awake procedures [4]. 
A caveat of asleep DBS procedures is that anesthesia dosage 
must be carefully titrated to allow sufficient brain activity for 
microelectrode recordings. This report describes the anes-
thesia protocol for both awake and asleep DBS procedures 
at a high-volume center to achieve both options safely and 
effectively. The patients in this study are a single center sub-
group from a recent report [30].

Methods

Study design

Patients were enrolled as part of a larger prospective multi-
center study [30]. This report includes all consecutively 
enrolled patients from a single center (Center of Neuro-
modulation in Düsseldorf, Germany). Separate from the 
larger study, this report concerns data captured to establish 
procedural recommendations for anesthesia dosage and tim-
ing in DBS microelectrode recording (MER). Patients were 
enrolled between April 2016 and May 2019. The study had 
the oversight of the institutional ethics committee and was 
publicly registered (study number 5379R, registration-ID 
2,019,095,251). Participants gave their written informed 
consent before the initiation of study procedures.

Patients

Patients were adults between the ages of 32 and 83, capable 
of understanding and consenting to study procedures, and 
suitable candidates for de novo bilateral DBS implantations 
targeting the subthalamic nucleus (STN-DBS) for Parkin-
son’s disease with the Infinity system (Abbott). Patients were 
not considered for DBS procedures on the basis of high-risk 
comorbidities or DBS contraindications that would present 
a risk to safety.

Surgical procedures

There were two sets of patients: those chosen for asleep 
surgery and those chosen for awake surgery. This determi-
nation was made clinically by the multidisciplinary team 
including neurologists and neurosurgeons in consultation 
with the patient and family members, at a pre-surgery plan-
ning conference. Decisions took into account the patient’s 
general condition, age, and patient’s preference. All pro-
cedures were conducted in medication off state, with all 
dopaminergic medication discontinued at least 12 h before 
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surgery, except for subcutaneous apomorphine, which was 
discontinued in the morning of surgery [32]. Generally, the 
surgical procedures are consistent with standard practices 
and have been described previously [1, 4]. Stereotactic plan-
ning was performed using preoperative MRI including T1/
T2/FLAIR sequences and contrast enhanced stereotactic CT. 
The head was fixed on a stereotactic Leksell frame. Infu-
sions of propofol and remifentanil were used in all patients, 
as described in the next section, using dosing that achieved 
moderate sedation in the awake group and complete general 
anesthesia (requiring endotracheal intubation) in the asleep 
group. Stereotactic targeting of the STN was performed the 
day before surgery using MRI sequences, according to AC 
PC line, anatomical structures, and Schaltenbrand Wahren 
atlas coordinates. Directional DBS leads (0.5 mm [small 
space for STN], Infinity DBS system; Abbott) were used.

All but two patients received MER with up to five micro-
electrodes. The two patients had just macroelectrode implan-
tation due to revision surgery. We included them because of 
the intraoperative testing under the anesthesia protocol as 
described in the “Methods” section. Intraoperatively micro-
stimulation via MER electrodes (Inomed GmbH, Emmend-
ingen, Germany) was used [14, 28]. First, testing at low 
frequency stimulation at 4 Hz with 210–500 μs pulse width 
and up to 6 mA intensity followed by effective stimulation 
using 60 μs pulse width, 130 Hz frequency and stimula-
tion amplitude up to 5 mA. In the awake group, recordings 
were completed after a temporary discontinuation of seda-
tion (10–15 min). Because patients were fully awake and 
could follow instructions, clinical effects such as resolution 
of tremor/rigidity symptoms and the appearance of adverse 
events such as dysarthria, muscle contraction, eye move-
ment, and dysesthesia were evaluated. For patients in the 
asleep group, sedation was reduced for the sake of optimal 
MER discharges in the recorded brain activity but without 
regaining any awareness or requiring extubation. Low fre-
quency stimulation using the macrocontact of the micro-/
macroelectrode was first performed to evaluate the threshold 
for irregular muscular activity as an indicator for stimulating 
the internal capsule. Then, 130 Hz stimulation was tested to 
show potential side effects.

Due to the level of anesthesia, contralateral muscle con-
tractions and other side effects (e.g., from activation of the 

internal capsule) were the only observations. In both groups, 
the electrophysiological recordings provided information 
about correct electrode positioning as was also assessed 
by intraoperative x-ray and confirmed by intraoperative 
stereotactic CT at the end of surgery. The pulse generator 
(Infinity DBS system; Abbott) was subsequently implanted 
under general anesthesia within 3 days or immediately after 
electrode insertion.

Assessments and analysis

Since all included patients underwent surgery, there was no 
loss of follow-up. Anesthesia administration was captured 
for all patients. Motor function after 3 months of treatment 
was assessed for PD by the motor domain of the unified PD 
rating scale (UPDRS III) under three conditions: without 
parkinsonian medications or stimulation (meds off/stim off), 
without medications but with stimulation turned on (meds 
off/stim on), and with medications and stimulation turned on 
(meds on/stim on). Descriptive statistics (means, standard 
deviations [± SD]) were calculated. The degree of UPDRS 
III improvement from meds off/stim off was compared to 
both meds off/stim on and meds on/stim on, forming the 
primary outcome criteria. Differences of UPDRS III within 
each of the groups were analyzed with Friedman tests and 
post hoc Dunn tests. Statistical power for the samples was 
calculated post hoc. GraphPad Prism™ was used for statisti-
cal analysis. The significance level was set at p < 0.05.

Results

Patients

The study enrolled 80 patients, all with PD. Of these, 17 
were implanted with awake procedures. This group included 
15 men and 2 women with an average age of 59.1 years 
(range: 38–78). The remaining 63 patients were implanted 
while asleep. The group included 39 men and 24 women 
with an average age of 64.1 years (range 40–79 years). 
Baseline characteristics of the patients were similar between 
groups (Table 1).

Table 1   Baseline characteristics Awake (n = 17) Asleep (n = 63)

Age, years (mean) 59.1 64.1
Gender (% male) 88% 62%
Duration of PD (mean) 8.7 9.9
Preoperative Hoehn & Yahr stage (mean, range) 2.2 (2–2.5) 2.4 (1–4)
Preoperative levodopa equivalent daily dose (mean, range) 575 (200–1550) 644 (200–2000)
Preoperative UPDRS III score, off (mean, range) 41.8 (29–60) 39.7 (15–76)
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Anesthesia dosage

Awake group

Propofol was delivered at 3.5 (± 2.1) mg/kg/h (range: 
0.8–6.7). Remifentanil was administered at a rate of 11.6 
(± 6.5) μg/kg/h (5.0–25.0). During the test phase, the admin-
istration of anesthesia was stopped for both propofol and 
remifentanil. The average surgery duration (OR time from 
skin incision to last stitches) was 153 min (105–181), and 
subjects were under anesthesia for all of that time, but for 
the short cessation of medications during testing. No other 
anesthetics were used during surgery. A mean of 3.3 (± 0.99) 
MER trajectories was used per side, in all but two patients. 
In the large majority of cases, the central (planned) MER 
trajectory was used (85.3% of the awake patients and 70.6% 
of the asleep patients; see Table 2).

Asleep group

Initial dosage during the fully asleep phase used propo-
fol at 6.9 (± 1.5) mg/kg/h (2.7–10.7) and remifentanil at 
31.3 (± 8.0) μg/kg/h (10.0–50.0), respectively. During the 
test phase, this was reduced, allowing for microelectrode 
recording, to 3.1 (± 1.0) mg/kg/h (0.1–6.7) propofol and 10.8 
(± 2.5) μg/kg/h (4.0–20.0) remifentanil (Table 3). The aver-
age surgery duration was 142 min (53–205), and subjects 
were under anesthesia for all of that time. No other anesthet-
ics were used during surgery. MER recording was used for 
determination of the borders of the STN and yielded useful 
information for all patients across a mean of 3.9 trajectories 
(± 0.77) per side. In addition, clinical testing for side effects 

provided a reliable marker for the proximity to the internal 
capsule.

Clinical outcomes for PD patients (UPDRS III ratings)

UPDRS III ratings were analyzed in 16 awake and 52 asleep 
patients (a small number of patients were unable to com-
plete testing). After 3 months of treatment, outcomes were 
favorable in both groups. Without medications or stimula-
tion (meds off /stim off), ratings were 40.8 (± 9.7) in the 
awake group and 41.4 (± 15.1) in the asleep group. Without 
medications but with stimulation turned on (meds off/stim 
on), ratings improved to 26.5 (± 8.7) in the awake group and 
26.3 (± 12.4) in the asleep group. With both medications 
and stimulation (meds on/stim on), ratings improved further 
to 17.6 (± 6.6) in the awake group and 15.3 (± 9.5) in the 
asleep group. Friedman tests revealed significant differences 
between the conditions for both groups (awake: X2 = 28.5, 
p < 0.0001, asleep: X2 = 103.0, p < 0.0001), and statistical 
power was higher than 90% within each group. Post hoc 
Dunn tests showed statistically significant improvements 
relative to the meds off/stim off condition for both meds off/
stim on (awake: p < 0.01, asleep: p < 0.001) and meds on/
stim on (asleep: p < 0.001, asleep: p < 0.001) (Fig. 1A). The 
degree of improvement (difference scores, relative to meds 
off/stim off) was not different between the awake vs. asleep 
groups for either meds off/stim on (awake 14.3 [± 7.6], 
asleep 15.2 [± 7.7], p = 0.66) or meds on/stim on (awake 
23.9 [± 8.6], asleep 26.1 [± 12.0], p = 0.64) (Fig. 1B).

Stimulator implantation usually took place 2 days after 
electrode insertion. The electrodes were externalized for 
scientific reasons to undergo MEG examinations. All but 

Table 2   Microelectrode recording trajectories on each side

Trajectory Awake Asleep

Left (n = 17) Right (n = 17) Total (n = 34) Left (n = 63) Right (n = 63) Total (n = 126)

Central (planned) n (%) 16 (94.1%) 13 (76.5%) 29 (85.3%) 45 (71.4%) 44 (69.8%) 89 (70.6%)
Anterior n (%) 0 (0%) 1 (5.9%) 1 (2.9%) 6 (9.5%) 6 (9.5%) 12 (9.5%)
Posterior n (%) 0 (0%) 0 (0%) 0 (0%) 3 (4.8%) 0 (0%) 3 (2.4%)
Medial n (%) 0 (0%) 1 (5.9%) 1 (2.9%) 1 (1.6%) 3 (4.8%) 4 (3.2%)
Lateral n (%) 1 (5.9%) 1 (5.9%) 2 (5.9%) 5 (7.9%) 5 (7.9%) 10 (7.9%)
Other n (%) 0 (0%) 1 (5.9%) 1 (2.9%) 3 (4.8%) 5 (7.9%) 8 (6.3%)

Table 3   Anesthesia protocols 
during awake and asleep 
procedures

Awake (n = 17) Asleep (n = 63)

Implant phase Test phase Asleep phase Test phase

Propofol (mg/kg/h) Mean (SD)
Range

3.5 (2.1)
0.8–6.7

None 6.9 (1.5)
2.7–10.7

3.1 (1.0)
0.1–6.7

Remifentanil (μg/kg/h) Mean (SD)
Range

11.6 (6.5)
5.0–25.0

None 31.3 (8.0)
10.0–50.0

10.8 (2.5)
4.0–20.0
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two patients agreed to participate; the two were implanted 
in an all-in-one procedure. The intended level of anes-
thesia was maintained throughout the procedures for all 
patients. A single patient in the awake group raised his 
hand during the test phase with shallow sedation (as previ-
ously agreed in case of any perception) but did not show 
any cardio-vascular stimulation nor any recollection later. 
No serious complications occurred, i.e., hemorrhages or 
mechanical complications. In two cases, both in the asleep 
group, infections developed by postoperative month two. 
Both required stimulator revisions, followed by 6 weeks of 
specific antibiotic treatment and replacement of the stimu-
lator 4 weeks later. Dopaminergic medication was adapted 
within the following 6–12 weeks. After 12 weeks, patients 
returned for a final adaptation of the stimulation setting.

Discussion

Some reports of asleep procedures for DBS implantation 
describe targeting based solely on imaging [6, 9, 24]. Gen-
erally, MER is not attempted in asleep procedures due to the 
depth of anesthesia and its effects on neuronal recordings 
[34]. However, some argue that because it requires multiple 
brain penetrations, MER increases the risk for intracranial 
hemorrhage and other complications [7, 25]. The converse 
position is that careful MER during asleep implantations 
make for better quality of targeting [26, 27, 29]. As previ-
ously shown by our team, by adapting the number of tra-
jectories by respecting the individual anatomical condition 
of the patient, we did not result in any hemorrhage in our 

Fig. 1   A Box plots showing 
UPDRS III scores at 3 months 
in the awake and asleep groups 
under three conditions: without 
medications or stimulation 
(meds off/stim off), without 
medications but with stimula-
tion turned on (meds off/stim 
on), and with medications and 
stimulation turned on (meds 
on/stim on). Comparisons and 
results of hypothesis testing 
are indicated. B UPDRS III 
difference scores, relative to 
meds off/stim off, for the meds 
off/stim on and meds on/stim 
on conditions for both the 
awake and asleep groups. Bar 
heights and error bars represent 
means and standard deviations. 
Comparisons and results of 
hypothesis testing are indicated
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patient cohort [14]. Other work completed by our group has 
shown the value of using MER during asleep procedures to 
identify and avoid the pyramidal tract [28].

Controlled anesthesia for intraoperative recordings dur-
ing STN DBS implantation surgery was first described in 
2014 [11]. However, this procedure requires replacement of 
propofol with sevoflurane, a halogenated gas. Here, we have 
described minor modifications to the standard DBS implant 
anesthesia protocol by reducing the propofol and remifen-
tanil dosages considerably, to allow observations of motor 
activation without bringing the patient out of anesthesia. 
Those medications were used because they are appropriate 
for anesthesia induction and maintenance in neurosurgery. 
In patients with PD, propofol is recommended on balance 
as an induction agent, although the potential development 
of dyskinesias should be monitored [10]. No anesthesia-
related clinical issues were noted, and clinical outcomes in 
the asleep group were equivalent or better than those of the 
awake group. Recently, we could also show that our modi-
fied anesthesia protocol may increase therapeutic window 
compared to conventional awake surgery [31]. Together, this 
supports the safety and effectiveness of this approach. The 
use of MER is important to maintain a reasonable outcome 
in STN DBS; however, the type of anesthesia does not cor-
relate with the outcome [19]. Even more, by using asleep 
surgery, operating room time can be shortened (including 
by creating the option for a single procedure within a similar 
OR setting for both groups), and related complications, like 
frontal air assumption, can be avoided [15].

Only a minority of PD patients who are eligible for DBS 
is deciding for themselves to undergo surgery. One of the 
major reasons to refuse surgery is the fear of having awake 
brain surgery [22]. Whether asleep DBS reduces the general 
resistance to undergo DBS within the patient community is 
a matter of further evaluation.

Limitations of this study include the assessment of 
UPDRDS-III scores in a subset of subjects (16 of 17 awake 
and 52 of 63 asleep patients, due to inability to complete 
testing secondary to fatigue or refusal to temporarily dis-
continue parkinsonian medications). Although this smaller 
sample size, as well as the difference in samples sizes 
between the groups, does limit the generalizability of the 
data, hypothesis testing was sufficiently robust since statis-
tical power was above 90% for both groups. Another limi-
tation stems from the non-randomized nature of the study 
design; the choice of sedation versus general anesthesia can 
introduce selection bias. This was not systematically con-
trolled for but presumably would reflect the larger clinical 
population in which this choice is offered. Another possi-
ble limitation is that selection bias of subjects cannot be 
ruled out, although therapy-related bias is mitigated by all 

surgeries having been performed by one surgeon using the 
same stimulation systems. Achieving long-term data was not 
the intention of this study nor the PROGRESS trial; even so, 
the larger study’s timelines proceeded through 6 months, and 
similar trends in UPDRS scores were observed [30].

In summary, this report describes the anesthesia protocol 
for minor modifications to the DBS implant workflow that 
makes possible an asleep implant procedure without sacrific-
ing the option of MER. DBS implantations in an asleep pro-
cedure is as good as under awake conditions. This requires 
only a single procedure and may increase patient comfort. 
A subsequent report will describe the electrophysiological 
recordings from both the awake and asleep groups.
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