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Crystal structure prediction by combining graph
network and optimization algorithm
Guanjian Cheng1,2, Xin-Gao Gong2,3 & Wan-Jian Yin 1,2,4✉

Crystal structure prediction is a long-standing challenge in condensed matter and chemical

science. Here we report a machine-learning approach for crystal structure prediction, in

which a graph network (GN) is employed to establish a correlation model between the crystal

structure and formation enthalpies at the given database, and an optimization algorithm (OA)

is used to accelerate the search for crystal structure with lowest formation enthalpy. The

framework of the utilized approach (a database + a GN model + an optimization algorithm)

is flexible. We implemented two benchmark databases, i.e., the open quantum materials

database (OQMD) and Matbench (MatB), and three OAs, i.e., random searching (RAS),

particle-swarm optimization (PSO) and Bayesian optimization (BO), that can predict crystal

structures at a given number of atoms in a periodic cell. The comparative studies show that

the GN model trained on MatB combined with BO, i.e., GN(MatB)-BO, exhibit the best

performance for predicting crystal structures of 29 typical compounds with a computational

cost three orders of magnitude less than that required for conventional approaches screening

structures through density functional theory calculation. The flexible framework in combi-

nation with a materials database, a graph network, and an optimization algorithm may open

new avenues for data-driven crystal structural predictions.
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Predicting crystal structure at a given chemical composition
prior to experimental synthesis has attracted significant
interest in condensed matter science. Earlier attempts based

on empirical rules provided qualitative descriptions of structures,
for example, Pauling’s five rules for ionic crystals1, Goldschmidt’s
tolerance factor for perovskite formability2, and dimensional
descriptors to classify the zinc-blend (ZB)/wurtzite (WZ) and
rock-salt (RS) structures for binary semiconductor compounds3,4.
Owing to reliable energy calculation via density functional theory
(DFT), the current state-of-the-art approaches for crystal struc-
ture prediction (CSP) mainly combine DFT calculations with
structural searching algorithms such as (quasi-) random search5,6,
simulated annealing7, genetic algorithm8–11, particle-swarm
optimization (PSO)12,13, and differential evolutionary process14.
These approaches extensively explore the structural candidates
via searching algorithms and by adopting DFT-calculated energy
as a stability metric. The necessary DFT calculations involve the
evaluation of numerous structural candidates in the process of
structure searching and are thus time-consuming. For example,
70 and 120 DFT structural optimizations are required to deter-
mine the ZB structure of GaAs (eight atoms in the cell)10 and α-
quartz structure of SiO2 (six atoms in the cell)12, respectively.

The advancement of machine learning (ML) in materials sci-
ence has recently focused on its applications in predicting
materials properties such as formation enthalpies (ΔH)15,16,
Gibbs free energies17, bandgaps18,19, wave function and electron
density20, X-ray absorption spectra21, and phase transitions22.
The accuracy of this approach is close to that of quantum
mechanics calculations; however, the computational costs are
orders of magnitude lower. In addition to the influence of com-
positional atoms, the influence of their spatial arrangement, i.e.,
crystal structure, on materials properties has recently been ana-
lyzed via structural characterizing approaches such as the
Wyckoff-species matrix-based method23, Voronoi tessellation
method24, and graph network18,19. A crystal (Crys) can be
represented by a vector ({vi}i=1,N, {Ri}i=1,N, L), where {vi} and {Ri}
are elemental features and coordinates of the ith atom, N is the
total number of atoms in a periodic cell, and L is the vector (a, b,
c, α, β, γ) defining the cell shape. In these approaches, crystal
structures are transformed to a physically meaningful and
algorithm-readable data formats, such as a symmetry-invariant
matrix23, bond configurations24, or crystal graphs18, enabling the
establishment of a correlation model between a crystal and its
formation enthalpy as follows:

ΔH ¼ f ðCrysðfvigi¼1;N ; fRigi¼1;N ; LÞÞ ð1Þ

In principle, CSP can be efficiently performed using Eq. (1) by
optimizing ({Ri}i=1,N, L) to minimize ΔH at a given {vi}i=1,N. This
approach replaces DFT calculations with the ML model; there-
fore, it has the potential to significantly accelerate the CSP.

Despite this potential advantage, the practical approach of ML-
based CSP still has challenges25. First, the ML model should have
a sensitive response to the crystal structure; therefore, the fixed-
structure model15,26 and symmetry-invariant model23, which
have a constraint on the crystal structures, are inapplicable or
limited in determining the ground state structure (GSS) that may
have arbitrary cell shape and atomic coordinates. Second, the
high accuracy of DFT calculations benefit from the systematic
cancellation of errors relative to the experiment, and the claimed
DFT-level accuracies of the ML models are obtained from
training data composed of stable crystal structures27. The
extension of ML models to structural searching is questionable
because most structural candidates in the searching process are
metastable or unstable, and their relative energies are crucial in

determining the GSS. Finally, an appropriate optimization algo-
rithm compatible with the ML model is required.

In this study, we constructed a framework that establishes a
graph network (GN) model between crystal structures and their
formation enthalpies at the given database, and this GN model
was then combined with an optimization algorithm (OA) for
CSP. The framework (a database+ a GN model+ an OA) is
flexible that allows variance in materials database, crystal graph
representation, and OA. In this study, we adopted GN developed
by Chen et al.19 as it was designed for both molecules and
crystals, facilitating the future extension of the framework to
molecules. The Open Quantum Materials Database (OQMD)28 of
version 1.3 and Matbench dataset of formation energy (MatB)29,
have been used separately to train the GN model and random
searching (RAS), PSO and Bayesian optimization (BO) has been
implemented as OAs. The performance of different combinations
have been investigated and compared to predict the crystal
structures of 29 octet binary compounds as listed in Table 1,
including group IV crystals (C, Si), group I–VII crystal (I= Li,
Na, K, Rb, Cs; VII= F, Cl), group II–VI crystal (II= Be, Mg, Ca,
Sr, Ba, Zn, Cd; VI=O, S) and typical photovoltaic semi-
conductors GaAs, CdTe and CsPbI3 (an inorganic representative
for perovskite photovoltaics). The comparative studies show that
the GN model trained on MatB combined with BO, i.e.,
GN(MatB)-BO, can predict crystal structures with the best
accuracy and extremely low computational cost. The flexibility of
graph network, database, and optimization algorithm in the
approach facilitate further development and improvement of this
approach. This study may open a new avenue for data-driven
crystal structural prediction.

Results
Crystal graph. In the original GN30, a graph is defined by three
ingredients, i.e., nodes (vi), edges connecting nodes (ek), and the
global attributes (u), which are naturally borrowed to crystal
graph as atoms, pairs, and macroscopic attributes (e.g., pressure,
temperature)19,31. Considering that multiple atoms and pairs
exist in a crystal, crystal graph is numerically represented by
G({vi}i=1,nv, {ek}k=1:ne, u), where vi and ek are the elemental and
pair attributes of ith atom and kth pair, and nv and nk are the
number of atoms and pairs, respectively, in the cell. In
MEGNet19, v and e are the atomic numbers and spatial distance,
represented by Nv- and Ne-dimensional vectors (Nv and Ne are
hyperparameters) learned from model training, respectively.
Accordingly, an embedding layer with a Nv × nv matrix (Fig. 1c)
was added after atomic attribute {vi} as input for GN (Fig. 1j). A
nv × nv ×Ne matrix (Fig. 1d) was added after {ek} (Fig. 1k), where
nv × nv represents the pair connectivity between two atoms and
each pair is represented by an expanded distance with Gaussian
basis numerically represented by Ne points. In comparison to the
fixed features, Nv- and Ne- dimensional vectors can be considered
as elemental and pair features that were learned during the model
training process. The learned elemental embeddings have been
shown to encode the elemental periodicity and can be transferred
to predict different properties19.

Database and data split. Two benchmark datasets, OQMD of
version 1.328, and MatB29 have been used for GN model training
and evaluation. For OQMD, data cleaning was performed to
exclude data with incomplete information and restrictions: (i) the
number of atoms in the unit cell (<50), (ii) PBE as exchange-
correlation functional, and (iii) kinetic energy cutoff (520 eV),
making data as reliable and comparable as possible. Accordingly,
more than 320,000 data points have been obtained, including
~40,000 experimentally known ones and ~280,000 hypothetical
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ones, covering 85 elements, 7 lattice systems, and 167 space
groups. For MatB, we used the Matbench v0.1 dataset29 that is
derived from data cleaning in Materials Project. For properties of
formation energy, it included ~132,000 data points, covering 84
elements, 7 lattice systems, and 227 space groups. The distribu-
tions of the number of elements and atoms in each database are
shown in Fig. 1a, b. For both OQMD and MatB, the same ratio of
data split has been adopted, i.e., training set (50%), validation set
(12.5%), and test set (37.5%), to construct GN models for CSP. In
all the training, validation, and test process, the data of 29 binary
compounds studied in this work, have been excluded.

GN model. As shown in Fig. 1h, the GN model was constructed
to establish the correlation between the crystals and their for-
mation enthalpies19. Crystal graph represented by matrix {vi}
(Fig. 1c, j) and {ek} (Fig. 1d, k) are the input of GN model and
formation enthalpy ΔH is the output. There could be m MEGNet
layers (m is hyperparameter) that make up the MEGNet blocks
(Fig. 1l) to update the matrix {vi} and {ek}. The set2set layers
(Fig. 1m, n) are used to learn a representation vector from the
matrix {vi} and {ek}. Then use the concatenate layer (Fig. 1o) to
combine these vectors, go through a fully connected layer
(Fig. 1p) composed of l dense layers (l is hyperparameter), and get
ΔH (Fig. 1q). Since the symmetries and invariances are included
in the current GN model and the pair features are established on
the connectivity between two atoms. Cell rotation or symmetry
permutation would not change the features, and thus, the GN

model. We train GN model using the data in two respective
databases, i.e., OQMD28, and MatB29, leading to two different
GN models, GN(OQMD) and GN(MatB). By optimizing hyper-
parameters in Supplementary Table 1, the best performing one in
each model was selected to minimize the errors between the GN-
predicted and DFT-calculated ΔH on the test set as the results
shown in Fig. 2. The results show that GN(OQMD) has less MAE
(16.07 meV/atom) than GN(MatB) (31.66 meV/atom). MAE of
GN(MatB) is close to the previous report of 32.7 meV/atom29.
Such a tiny difference of 1 meV on the same MatB dataset may
originate from different data split. The insets in Fig. 2 show a
systematic decrease of the MAE as the number of training data.
Better performance of OQMD can be ascribed to its larger
database (~320,000 DFT-calculated data for inorganic com-
pounds), which is more than twice than MatB. Despite less MAE
of GN(OQMD), as shown later, its performance on CSP is
inferior to GN(MatB), indicating possible overfitting of
GN(OQMD).

Symmetry constraint. The wealth of experimental data shows
that most of the crystal structures at low temperature have
symmetry operations32 and adding symmetry constraint would
accelerate CSP. Meanwhile, most crystal structures in training
data, either OQMD or MatB, are symmetrical (with space group
spanning from P2 to P230). In this work, we treat CSP with
symmetry constraint, by adding two additional structural fea-
tures, crystal symmetry S and the occupancy of Wyckoff position

Table 1 The performance of GN-OA with different combinations of databases (OQMD and MatB) and optimization algorithms
(RAS, PSO, BO) for crystal structure prediction of 29 typical compounds.

Compounds OQMD MatB

RAS PSO BO RAS PSO BO

LiF √ √ √
NaF √ √ √ √ √
KF √ √ √ √
RbF √ √
CsF √ √
LiCl √
NaCl √ √ √ √ √
KCl √ √ √
RbCl √ √ √ √
CsCl √ √ √ √
BeO √ √ √
MgO √ √ √ √ √
CaO √ √ √ √ √
SrO √ √ √ √ √
BaO √ √ √
ZnO √ √ √ √
CdO √ √
BeS √ √ √ √ √ √
MgS √ √
CaS √ √ √ √
SrS √ √ √
BaS √ √ √ √ √
ZnS √ √ √
CdS √
C √ √ √
Si √ √
GaAs √ √
CdTe √ √ √ √
CsPbI3 √
Accuracy 62.1% (18/29) 20.7% (6/29) 62.1% (18/29) 72.4% (21/29) 27.6% (8/29) 86.2% (25/29)

The tick mark means that the GN-OA approach is able to correctly predict the ground-state structures within 5000 iteration steps.
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Wi for the ith atom, which are chosen through 229 space groups
and associated 1506 Wyckoff positions33. As shown in Fig. 1e, the
procedure firstly chose a symmetry S among P2 to P230 and then
the lattice parameters L are generated within the chosen sym-
metry. Secondly, a combination of Wyckoff positions {Wi} at given
symmetry is selected to meet the number of atoms given in a cell.
The atomic coordinates {Ri} are then given by the selected Wyckoff
position {Wi} and lattice parameters L. Space group S and corre-
sponding {Wi} are variables upon optimizations during CSP with
symmetry constraint to generate Crys({vi}, S, {Wi}, {Ri}, L) (Fig. 1f).
For practical implementation, we added an additional constraint
(4.0 Va > V > 1.0 Va, where Va is the volume sum of compositional
atoms) to avoid the generation of unreasonable structures with
extremely small or large volumes.

Optimization algorithms. CSP is an optimization problem to
identify S, {Wi}, {Ri}, and L at a given chemical composition {vi}
to minimize ΔH. After constructing crystal structure Crys({vi}, S,
{Wi}, {Ri}, L) (Fig. 1f), a structural analysis is performed and
convert Crys({vi}, S, {Wi}, {Ri}, L) to crystal graph G({vi},{ek})
(Fig. 1g) and its formation enthalpy is obtained by GN model
ΔH= f [G({vi},{ek})] (Fig. 1h).

Ideally, if one could enumerate all possible crystal structure
Crys({vi}, S, {Wi}, {Ri}, L), do crystal graph conversions to
G({vi},{ek}), obtain their formation enthalpy by GN model ΔH= f
[G({vi},{ek})], the problem of CSP was simply solved by choosing
the crystal structures with the lowest ΔH. However, the
enumeration of all possible structures is a long-standing challenge.
Here, we adopted three OAs (Fig. 1i), RAS, PSO, and BO, since
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Fig. 1 Flowchart of GN-OA approach. Two databases, OQMD and MatB, have been separately used for training GN model and the elemental appearance,
the distributions of number of elements and atoms in each database are shown in a OQMD and bMatB with quantitative number shown in Supplementary
Figs. 1 and 2, respectively. For crystal graph, the input atomic feature is c embedded atomic number (from 1 to Nv) for each compositional atom (from 1 to
nv) and d the pair feature is Gaussian-expanded distance (from 1 to Ne) for each pair connecting atom (i) (from 1 to nv) and (j) (from 1 to nv). The
structural generation part includes e symmetry constraint, f structural generation, g crystal graph conversion. The GN model h combines j embedded
atomic number, k Gaussian-expanded pair distance, l the MEGNet blocks, the set2set layers for m atomic number and n pair distance, o concatenate layer,
p fully connected layer to obtain q the correlation model between a crystal and its formation enthalpy. i Optimization algorithm block.
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RAS and PSO are successful algorithms applied in DFT-based
CSP5,12 and BO has been shown to be compatible with the black-
box ML model, demonstrating a great capability to identify the
global minimum34,35, and has been recently combined with DFT
calculations for CSP in fixed crystal systems36. Here, we applied
BO via a Gaussian mixture model based on the tree of Parzen
estimators (TPE)37 to explore the structural space. Compared to
the normal BO algorithm based on the Gaussian process, which
performs better in low-dimensional space (number of features
<20), the TPE-based Gaussian mixture model demonstrated
higher efficiency in high-dimensional space37.

As shown in the right panel of Fig. 1, for a given number of
atoms in a cell, n initial structures Crys({vi}, S, {Wi}, {Ri}, L) were
randomly generated, and their corresponding elemental and pair
attributes were obtained by structural analysis to convert the
crystal structure to crystal graph G({vi},{ej}). Accordingly, ΔH’s
were predicted using the GN model to obtain n pairs of (Crys,
ΔHCrys). After that, the approach will iteratively go the loop of
structural searching from Fig. 1f–i and then back to 1f by OA.
Different OAs will generate new structures in Fig. 1i, f in different
ways. For RAS, the new structure was generated in a stochastic
way and did not depend on the searching history. For PSO, in
each iteration, a set of n structures were generated as a new
generation by tracking two extremes (Crys, ΔHCrys) values (pbest
and gbest)38. We used scikit-opt (https://github.com/guofei9987/
scikit-opt) and choose the momentum parameter ω as 0.8, the
cognitive and social parameters are 0.5 and 0.5, respectively. For
BO, a new structure with potentially low ΔH was recommended
and the recommendation model was re-trained based on all
previous pairs of (Crys, ΔHCrys) in a manner of active learning.
We employ TPE-based BO as implemented in Hyperopt37,
(https://github.com/hyperopt/hyperopt) and choose observation
quantile γ as 0.2534 and a maximum number of trails to 200.

Applications. The GN-OA approach was then applied to iden-
tifying the crystal structures of 29 compounds listed in Table 1.
There are more than 300 types of prototype structures for AB
compounds28; two representatives of these are tetrahedral-
coordination ZB/WZ and octahedral-coordination RS struc-
tures. Predicting ZB/WZ and RS structures proves the ability of
CSP from ionic to covalent systems39.

As aforementioned, the framework of approach is flexible that
we adopted OQMD and MatB respectively to train GN model
and RAS, PSO, and BO for the optimization algorithm. Here, we
take CaS for example, to compare the performance of RAS, PSO
and BO on CSP with GN model trained on MatB. The
characteristics of three OAs can be clearly seen in the evolution
of ΔH on the iteration steps in Fig. 3a. The ΔH distributes
randomly in energy scale (Y-axis in Fig. 3a) for RAS. While, PSO
can quickly find the low-ΔH configurations (exploitation). But its
problem is that it may be stuck in the local minimum as shown
that most of the PSO-selected structures after 1500 steps are close
to each other and located around the energy of local minimum, as
shown by a sharp DOS (density of structures) at a local
minimum. In contrast, BO is an algorithm that has a balance
between exploitation and exploration, as shown by double peaks
in DOS, indicating that it has a higher ability to jump out of one
particular local minimum (exploration). In this case, GN(MatB)-
RAS and GN(MatB)-BO find the correct GSS at the 2503th and
372th iteration step, respectively, while GN(MatB)-PSO cannot
find correct GSS within 5000 steps. For GN(MatB)-BO, the GSS
was found at 207th step (Fig. 3f) with a lattice constant of 6.50 Å
and then the GN(MatB)-BO show ability to optimize the lattice
constant to 5.77 Å as shown in Fig. 1g, close to 5.72 Å of DFT-
calculated value.

The approaches of GN-RAS, GN-PSO, and GN-BO were then
applied to CSP for 28 other compounds. The results are
summarized in Table 1. It was observed that: (i) like the case
shown for CaS, the accuracy of OA for CSP follow the sequence
that BO > RAS > PSO, whether the GN is trained on OQMD or
MatB; (ii) GN model trained on MatB generally show better
accuracy for CSP than that trained on OQMD, whether RAS,
PSO or BO was adopted. As a result, GN(MatB)-BO shows the
best performance. The corresponding ΔH evolution of
GN(MatB)-RAS, GN(MatB)-PSO, and GN(MatB)-BO for all 29
compounds are shown in Supplementary Figs. 3–10. For 25
compounds that GN(MatB)-BO can correctly predict,
GN(MatB)-BO can predict their lattice constants and absolute
energy differences (|ΔHDFT − ΔHGN|) with averaged 2.24% error
and 20.8 meV/atom, respectively, to DFT-calculated values, as
shown in Fig. 4.

In comparison to DFT-based approach. Accuracy and efficiency
are two criteria for a CSP approach. It should be noted that the
accuracy of the current GN-OA approach is inferior to that of the
DFT-based approach in terms of non-100% prediction accuracy
and the variation of lattice parameters. In fact, the GN model is
trained based on the DFT-calculated data; thus, it cannot surpass
the accuracy of DFT results. In compromise with the accuracy,
GN(MatB)-BO finished those tasks with much higher efficiency
than DFT-based CSP, as shown in Fig. 5. Here, we compare the
computational cost of DFT-PSO and GN(MatB)-BO to predict 25
compounds and found that GN(MatB)-BO has a computational
cost three orders of magnitude lower than DFT-based approach.
DFT-PSO typically requires 60–80 DFT calculations (Si and
CsPbI3 as the example shown in Supplementary Fig. 11) to find
the GSS, which is consistent with previous reports of 70 and 120
DFT structural optimizations to find the GSS of GaAs (eight
atoms in the cell)10 and SiO2 (six atoms in the cell)12,
respectively.

Discussion
To the best of our knowledge, this is the first study to establish a
GN-OA framework for CSP, which contains three essential parts:
(1) a database consisting of crystal structures and the formation
energies; (2) a GN constructing the correlation model between
crystal structure and formation energies; (3) an OA to search the
crystal structures with minimum formation energy. These three
parts are all fast-developing research frontiers and certainly not
perfect at present; therefore, the limitations of the current GN-
OA approach are also apparent, such as the failure to predict the
GSS of some crystals and the deviation of predicted lattice
parameters. There are two failure modes. One is the failure of GN
model to put the GSS as the lowest ΔH, such as CdS (Supple-
mentary Fig. 12), and the other is the failure of OA not visit the
GSS with the lowest ΔH, such as GN-PSO for CaS (Supplemen-
tary Fig. 13). Meanwhile, their advantage is that any progress of
these three aspects may help in improving the efficiency and
accuracy of GN-OA approach.

In this study, we adopted and compared OQMD and MatB
databases, mainly containing stable or metastable structures
(global or local minimums in PES). However, during the struc-
tural searching process, most structures are unstable (away from
the minimums). The addition of the energetic data of these
unstable structures should help the model to capture the entire
PES landscape, thereby improving the efficiency and accuracy of
GN-OA approach. Notably, generating energy landscape on
numerous unstable structures is a necessary step for generating
ML potential40. In principle, CSP based on ML potential should
be more accurate; however, ML potential is generated on fixed
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types of elemental combinations [{vi} is constant], for example of
aluminum40, while the GN model for CSP should be universal for
all elements [{vi} is a variable]. For constant {vi}, 6000–10,000
DFT calculations are required to generate an applicable ML
potential. It is an open question that how many DFT data are
required to generate a reasonable GN model and how to combine
existing DFT data trained for ML potential generation into GN
model. This requires further investigation.

n this study, we adopted the framework of MEGNet19 as a
crystal graph. Since the first development of crystal graph
(CGCNN)18, many studies are being conducted to further
improve the crystal graph, such as improved crystal graph con-
volutional neural network (iCGCNN)41, directional message
passing neural network (DimeNet)42, atomictic line graph neural
network (ALIGNN)19,43–47, which was reviewed in a recent
paper48. The implementation of those crystal graphs in GN-OA
framework or further development of crystal graphs may further
improve the accuracy.

We show that BO algorithm when combined with GN model is
superior to PSO and RAS, which are often combined with DFT
for CSP. Notably, BO is also replaceable. An optimization algo-
rithm that is compatible with black-box GN model needs further
exploration.

A platform will be established to allow the users to combine
their crystal representation, database, and structural searching
approach to optimize GN-OA approach for CSP. In addition to
the database, crystal graph, and optimization algorithm, oppor-
tunities are given to technical improvements, such as algorithm
parallelization and optimization, which may also improve the
accuracy and efficiency.

In summary, we constructed a flexible framework that used a
graph network to establish the ML model between crystal struc-
tures and their formation enthalpies at the given database, and
this model was then combined with an optimization algorithm
for CSP. The framework was then applied to predict the crystal
structures of 29 typical compounds. The comparative studies of
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multiple combinations of database, GN model, and optimization
algorithm showed that GN model trained on MatB combined
with Bayesian optimization structural searching [GN(MatB)-BO],
although with less accuracy than DFT results, can predict crystal
structures with computational cost three orders of magnitude less
than DFT-based approaches. Meanwhile, the limitations of the
current GN-OA approach are also apparent. In terms of meth-
odology, several directions need further development, including
crystal structure characterization, structural searching, and algo-
rithm parallelization, to predict more complicated and unknown
structures more efficiently. The current study may open a new
avenue for data-driven crystal structural prediction without using
the expensive DFT calculations during structural searching.

Data availability
All relevant data are included in this article and its Supplementary Information files.

Code availability
The code for GN-OA approach is available on http://www.comates.group/links?
software=gn_oa. All GN-based results reported in this work can be reproduced by this
code. The DFT-based results are produced by CALYPSO code.
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