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Abstract

Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical
research but is still rarely used in clinical practice. In this study, we argue that RNA-seq should be
considered a routine diagnostic tool, as it offers not only insights into aberrant gene expression and
splicing but also delivers additional readouts on immune cell type composition as well as B-cell and
T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers vital insights into a
patient’s immune status via integrative analysis of RNA-seq data from patients infected with various
SARS-CoV-2 variants (in total 240 samples with up to 200 million reads sequencing depth). We
compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell,
EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We
observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between
SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the
tools MiXCR and TRUST4 to show that - combined with sequence alignments and pBLAST - they
could be used to classify a patient's disease. Finally, we investigated the sequencing depth required
for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our
study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq
analyses can supplement missing CBC data and offer insights into immune responses, disease
severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads
per sample.
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Introduction

Peripheral blood is the tissue of choice in clinical diagnostics and biomedical
research due to minimally invasive sample collection. As blood perfuses all organs, it
provides insights into various diseases and medical conditions1,2. In general, we can
investigate active pathways and organismal responses to stimuli (e.g., a viral
infection) on a transcriptomic level3,4 by using well-established sequencing
techniques such as bulk RNA sequencing (RNA-seq). A blood sample contains
various cell types with different expression profiles. Complete blood counts (CBCs)
are routinely assessed in the clinical setting and provide specific information
regarding the proportions of cells present5. Within the white blood cell compartment,
the percentages of neutrophils, lymphocytes, monocytes, eosinophils, and basophils
provide insight into the type and response to infection and underlying disease and/or
therapy6–14. However, CBCs are frequently unavailable in publicly accessible
datasets, limiting insights into the status of the immune system.

Employing either bulk RNA-seq or single-cell RNA-seq (scRNA-seq, i.e., profiling
gene expression at the individual cell level)15 can provide a detailed description of
cellular composition, all based on the expression levels of genes. Performing
scRNA-seq on each patient and cell type is not feasible due to the logistics and high
costs of scRNA-seq16. To gain insights into the individual immune reactions to
disease from RNA-seq data alone, it is essential to determine the composition of
immune cells and gene expression in patient samples. CBCs - if available - provide a
fundamental understanding of changes in the immune system; however, they do not
specify more fine-grained segmentation into functional subgroups, which often drive
disease progression. Hence, computational techniques such as MCP-counter17,
xCell18, EPIC19, and quanTIseq20 (see Materials and Methods and Suppl. Materials 1
and 2 for differences, strengths, and weaknesses of each program) deconvolute bulk
RNA-seq using signatures or gene sets of cell-type specific genes. They give a
robust estimate of the abundance of various immune cell types within and across
patient samples. Such insights into the status of an immune system are helpful for
diagnostics, prognosis, and treatment selection with demonstrated potential in
oncology21 and other diseases10,12. Here, we compare four different deconvolution
approaches using bulk RNAseq to analyze changes in the white blood cell
compartment over time in individuals infected with SARS-CoV-2.

In this study, we (1) compared computationally estimated immune cell abundances
to CBC counts, the current gold standard. Moreover, we (2) investigate the immune
cell abundances in patients infected with SARS-CoV-2 variants that differed in
severity and tracked their progression over time, comparing them to a baseline
model (i.e., seronegative samples taken from individuals that reportedly were never
infected with SARS-CoV-2) to elucidate immune response differences and their
progression over time to a healthy state. Additionally (3), we characterized the BCR
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and TCR profiles in infected patients. Finally (4), we compare how the performance
of these methods is influenced by sequencing depth, i.e., how many reads have
been sequenced for each sample.

Methods

Datasets

We utilized publicly available data from human buffy coat white blood cells from four
distinct bulk RNA-seq experiments: GSE190680 (variants: Alpha, Alpha+EK (i.e.,
Alpha with an additional E484K mutation in the spike protein), Gamma)22,
GSE162562 (seronegative)23, GSE201530 (variant: Omicron BA.1)24, and
GSE205244 (variants: Omicron BA.1 and Omicron BA.2)25 (Suppl. Table 1a).
Variants had samplings of days 0-5, 6-10, 11-15, 16-30, and >30 after hospitalization
or onset of symptoms (Suppl. Tables 1a-b). All samples were processed by nf-core
RNA-seq v. 3.8.1 using default parameters26. All 252 samples were controlled for
quality by utilizing the reports of FastQC27 and MultiQC28, and only those (240
samples in total) with sufficient quality were included in the subsequent analyses
(Suppl. Table 1b, Suppl. Table 2)29,30. Samples came from different studies but were
processed in the same laboratory and with the same staff to avoid technical
differences31.

Immune deconvolution methodology

Cell-type deconvolution is a computational method applied to bulk RNA-seq data to
estimate the abundance of cell types in a biological sample and is primarily used in
the context of immune cells. In this study, we employ several tools bundled in the
immunedeconv tool (using default settings established there), as it was previously
shown that no single tool generally outperforms all others across all immune cell
types32 (for marker genes See Suppl. Figs. 1a,b and
https://doi.org/10.6084/m9.figshare.24442423.v1). Computational cell type
deconvolution methods generally produce fractions or scores representing the
abundance of specific cell types in the samples, which we use here for inter-sample
comparisons between patients infected with different SARS-CoV-2 variants (see
Suppl. Materials 117–20).

BCR/TCR repertoire methodology

BCR/TCR repertoire analysis refers to the study of the diverse collection of BCRs
and TCRs present within an individual's B and T cell repertoire (i.e., all unique
antigen-specific receptors expressed on the surface of T cells and B cells),
respectively. These receptors play a crucial role in the adaptive immune system by
recognizing and binding to specific antigens derived from pathogens or abnormal
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cells, thus serving as biomarkers for past or current infections. Each BCR and TCR
has a unique amino acid sequence, which contributes to the vast diversity and
specificity of the immune response. We used two methods - MiXCR33 and TRUST434

- to investigate bulk RNA-seq data by reconstructing B and T cell repertoires (Suppl.
Materials 235–37).

We used the Python package scirpy38 to analyze results from both methods. To
extract only BCR/TCR sequences that differ from those found in a healthy
population, we utilized the following steps: we computed a pairwise distance matrix
for input sequences to identify sequences forming clonotypes and likely targeting
similar antigens. Our objective was to identify sequences targeting SARS-CoV-2
antigens, enabling us to determine which BCR and TCR sequences respond to the
virus. As sequences present in seronegative samples cannot target the SARS-CoV-2
virus, we can disregard them and focus on sequences exclusive to infected patients,
further refining our search for the specific anti-SARS-CoV-2 receptor sequence. We
use the ClustalW algorithm39 to perform multiple sequence alignment (see Suppl.
Materials 340–43). In the final steps, we employed the protein BLAST (pBLAST)
tool44,45 to annotate clusters and sequences (e.g., those surpassing the cutoff and
unlinked to sequences originating from healthy samples) to associate discovered
sequences with specific viruses.

Subsampling to a lower sequencing depth

RNA-seq always comes with a tradeoff between costs and information gain. Given
the high sequencing depth (up to 150 million reads per sample) of the samples
investigated here, we were interested in establishing a lower bound for obtaining
robust results. To this end, we downsampled the samples to fifty and ten million
reads using samtools46. Subsequently, we repeated both the immune deconvolution
analysis and the BCR/TCR analyses. First, we generated TPMs expression matrices
from the downsampled FASTQ files using salmon47 and revisited the immune
deconvolution methods, then executed MiXCR and TRUST4 on the downsampled
data and performed the subsequent analyses as described above.

Results

In this study, we highlight the potential of RNA-seq data in clinical practice. Typically
used for studying gene expression, RNA-seq data offers crucial insights into the
status of the immune system via computational cell type deconvolution as well as the
analysis of BCR and TCR sequences. While such advanced analysis techniques are
increasingly widespread in oncology, we focus here on demonstrating their
applicability in infectious diseases by example of SARS-CoV-2 infection. We
re-analyzed data from 240 SARS-CoV-2 patients over time from the initial
hospitalization through recovery22,24,25. First, we deconvolute the bulk RNA-seq data
into immune cell-type fractions that changed as the patients went from the initial
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hospitalization through recovery. We show that the estimated values of the immune
deconvolution methods approximate the CBC information. We further elucidate that
with computational immune deconvolution methods, we can reveal changes between
patients infected with SARS-CoV-2 variants with differing severity of disease48,49.
Next, we illustrate how we can utilize BCR and TCR computational analysis to
classify the patients’ cause of disease and investigate the effect of sequencing at
various depths on the robustness of our results.

Approximated immune cell abundances by immune deconvolution methods
are close to real complete blood count data

In Figure 1, we observe a consistent positive correlation across lymphocytes,
monocytes, and neutrophils using the four deconvolution methods with the CBC data
for patients with the Alpha and Alpha+EK (Alpha with an additional E484K mutation
at the spike protein) variant infections. The strength of these correlations varies as
scores fluctuate in magnitude based on the cell type and method employed. The
chart highlights that the EPIC method's outcomes closely align with the CBC data,
standing out, particularly in its accuracy for monocytes. While both quanTIseq and
MCP-counter yield commendable results for neutrophils and lymphocytes, xCell's
predictions for neutrophils appear to be less reliable. Importantly, when consolidating
the findings from all methodologies, the immune deconvolution results consistently
align with the CBC data. However, neutrophils and monocytes especially appear to
be harder to estimate overall using deconvolution. Method choice can play an
important role here, as only EPIC is able to detect monocytes consistently. This
reaffirms that immune deconvolution could serve as an instrument for assessing
immune cell levels derived from RNA-seq data, though results do vary between
methods and cell types.
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Figure 1: Correlation between CBC data and immune deconvolution scores across
lymphocytes, monocytes, and neutrophils using all four deconvolution methods. The
colored lines display the linear regression model for each cell type, the shaded areas
are the confidence intervals. Statistical values: EPIC: Neutrophil: R=0.55, p=0.00011,
RMSE=70.39, Lymphocyte: R=0.47, p=9e-04, RMSE=22.61, Monocyte: R=0.41,
p=0.0058, RMSE=9.69; MCPcounter: Neutrophil: R=0.4, p=0.0074, RMSE=576.76,
Lymphocyte: R=0.29, p=0.051, RMSE=193.25, Monocyte: R=0.49, p=0.00068,
RMSE=13.29; quanTIseq: Neutrophil: R=0.63, p=4.5e-06, RMSE=70.37,
Lymphocyte: R=0.75, p=1.8e-09, RMSE=22.58, Monocyte: R=-0.029, p=0.85,
RMSE=9.77; xCell: Neutrophil: R=0.62, p=7.5e-06, RMSE=71.03, Lymphocyte:
R=0.69, p=9.6e-08, RMSE=22.37, Monocyte: R=0.24, p=0.11, RMSE=9.76.

Immune deconvolution revealed differences in patients with different severity
of disease progression

During the SARS-CoV-2 pandemic, different SARS-CoV-2 variants emerged
(ancestral, Alpha, Alpha+EK, Gamma, Omikron BA.1, and Omikron BA.2), which
differed in transmissibility and severity. Variants that emerged during the end of the
pandemic were associated with less severe disease50. The Alpha variant was
reported to demonstrate an increase in transmissibility due to the N501Y mutation in
comparison to the wild-type virus51. The Alpha+EK variant was reported to more
efficiently evade a neutralizing antibody response due to the additional E484K
mutation but was not associated with more severe disease. The Gamma variant
carried both N501Y and E484K mutations and was reported to enhance

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.03.564190doi: bioRxiv preprint 

https://paperpile.com/c/Yj9hvP/6Sm3
https://paperpile.com/c/Yj9hvP/FjFK
https://doi.org/10.1101/2023.11.03.564190
http://creativecommons.org/licenses/by-nc-nd/4.0/


transmissibility with potential antibody resistance, but, again, disease severity was
reported unchanged. The Omicron BA.1 and BA.2 variants, with numerous spike
protein mutations, mediated immune escape. However, while their transmissibility
increased, these variants, in general, demonstrated less severe disease outcomes.
This pattern of viral evolution has been reported previously as a virus adapts to its
human hosts over time, favoring transmission over severity50.

We hypothesize that non-hospitalized patients infected with an Omicron variant
might demonstrate an immune response closer to healthy, non-infected individuals
than to hospitalized patients infected with earlier SARS-CoV-2 variants. To explore
this hypothesis, we first compared trends in the abundance of B cells, Neutrophils, T
cell CD4+, and T cell CD8+ in the SARS-CoV-2 variants and the seronegative
samples using four different deconvolution tools (quanTIseq, MCP-counter, EPIC,
and xCell, see Materials and Methods) (Figure 2 and Figure 3). We found that all
four methods, in general, recapitulated the same trends. The immune cell fractions
or scores across all methods and immune cell types evolved over time to more
closely resemble seronegative samples as healthy patients. We also observed that
non-hospitalized patients infected with an Omicron variant more closely resembled
the seronegative patients as compared to the hospitalized patients infected with
earlier variants, especially as compared to the time when they were initially
hospitalized.

We further categorized samples into different time brackets after hospitalization or
onset of symptoms (days 0-5, 6-10, 11-15, 16-30, and >30). Over time, the projected
immune cell fractions appeared to progressively align with those observed in
seronegative samples, consistent with patient recovery over time (Figure 3). Patients
diagnosed with Alpha and Alpha+EK, variants associated with more severe disease,
demonstrated a lengthier time until their immune cell fractions approximated those of
seronegative individuals.

B cell and T cell repertoire analysis offer insights into past or current
infections

In general, when an infection occurs, an 'immunological footprint' in the form of
specific BCR and TCR repertoires can be identified. In this section, we investigated
whether bioinformatics BCR and TCR repertoire analysis approaches (i.e., a
combination of MiXCR and TRUST4) of transcriptomic data, coupled with a
computational tool that associates known BCR and TCR repertoires with causes of
diseases (i.e., BLASTp44,45), could be used to classify a disease cause for an
admitted patient (see Materials and Methods).

With the computational tool MiXCR, we identified 534 unique receptor sequences,
while we identified 569 sequencing with TRUST4 across the variants. Of these, 492
sequences were identified by both tools, while 42 and 77 sequences were uniquely
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identified by MiXCR and TRUST4, respectively. This means that 81% of the
sequences were found by both tools, 7% only by MiXCR, and 13% only by TRUST4
(Suppl. Fig. 2). We decided to use only the sequences identified by both tools for
further analyses to ensure more reliable results. In the next step, we eliminated
sequences that exhibited homology to seronegative samples to account for BCR and
TCR sequences that probably lack specificity for SARS-CoV-2, given that no
seronegative sample should possess them (see Materials and Methods, Suppl. Fig.
3). Among the residual sequences, we discerned fifteen that did not display similarity
to any sequence also found in seronegative samples. A subsequent BLASTp
assessment of these sequences identified anti-SARS-CoV-2 immunoglobulin hits
within the top 100 matches for seven sequences (Suppl. Table 3). The residual eight
sequences predominantly align with generic immunoglobulin sequences. The
sequence logo derived from all fifteen sequences highlights conserved motifs at the
start (S), the end (VF), and a recurring pattern (DSS) in the center. In contrast, the
intervening positions exhibit significant variability, underscoring the pronounced
diversity among these sequences (see Suppl. Fig. 4).
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Figure 2. The abundance of immune cells (given by percentage or method-specific
score) detected by the immune deconvolution methods quanTIseq, MCP-counter,
EPIC, and xCell over all time points combined for the immune cells B cell,
Neutrophil, T cell CD4+, and T cell CD8+.
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Figure 3: Cell-type fractions separated over brackets 0-5, 6-10, 11-15, 16-30, and
>30 days after hospitalization or onset of symptoms detected by the immune
deconvolution methods quanTseq, MCP-counter, EPIC, and xCell for the immune
cells B cell, Neutrophil, T cell CD4+, and T cell CD8+. The Gamma variant has been
removed in this analysis due to poor sample size per time bracket (Suppl. Tables
1a-b).

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.03.564190doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.564190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sequencing depth analysis reveals that a low depth of 10 million reads is
sufficient to get to the same conclusions

Despite a reduction in sequencing depth, the trends observed in immune
deconvolution outcomes remained consistent. Notably, there were still significant
discrepancies in the levels of immune cells when comparing Alpha and Alpha+EK
infections to seronegative cases with a sequencing depth of 50 million (Suppl. Fig.
5a) and with an even lower sequencing depth of 10 million (Suppl. Fig. 5b).
Furthermore, temporal analysis reaffirmed these findings, indicating the recurrent
trend where, across all variants, there is a convergence toward the levels observed
in seronegative samples (Suppl. Figs. 6a,b). However, conducting immune
deconvolution analysis at a lower sequencing depth results in findings of less
significance and lower confidence. Still, the differences described remain significant.
Through this analysis, we demonstrated that a lower and even a very low
sequencing depth of 10 million is indeed sufficient to discern the trends in immune
cell levels and highlight the differential impacts of various variants on the immune
system (Figure 4). Furthermore, when evaluating the immune deconvolution scores
alongside the CBC data for patients infected with the Alpha and Alpha+EK variants,
a notable correlation is evident for a sequencing depth of 50 million (P-value
3.765e-11, Suppl. Fig. 7a) and a sequencing depth of 10 million (P-value 9.119e-12,
Suppl. Fig. 7b).

In the repeated BCR/TCR analysis with a significantly reduced sequencing depth of
10 million, we identified only 95 unique BCR and TCR sequences. This is markedly
fewer than in the prior analysis, but the decline is anticipated due to the reduced
sequencing depth, which results in fewer overall sequences from the RNAseq
experiments. Of the 95 sequences, 18 (19%) were solely identified by MiXCR, seven
(7%) exclusively by TRUST4, and 70 (74%) were detected by both tools. This
indicates that the majority of the sequences were still identifiable by both tools
(Suppl. Fig. 8). After eliminating sequences resembling those in seronegative
samples, we pinpointed eight unique sequences. Among these, seven were matched
to anti-SARS-CoV-2 immunoglobulin sequences (Suppl. Table 4, Suppl. Figs. 7 and
8).

The sequences identified by the two BCR/TCR analyses, with full sequencing depth,
and with low sequencing depth, differ between results. Additionally, there's a
variation in the positions of the SARS-CoV-2 specific hits. At greater sequencing
depth, these hits are more commonly found within the top ten. In contrast, when the
sequencing depth is reduced, they are more likely to be ranked higher, and, as a
result, the findings become somewhat less substantiated.

A statistical comparison like comparing the P-values for the immune deconvolution is
not possible here as MiXCR and TRUST4 do not generate significance values, and
the BLAST E-values represent the number of random hits that can be generated in a
database of a certain size and, therefore are not suitable to compare the significance
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of our results but merely the reliability of each sequence match individually. In both
analyses, we were able to find seven anti-SARS-CoV-2-related hits that appear in
the first one hundred BLAST results. Notably, even though MiXCR and TRUST4
identified fewer sequences overall due to the reduced depth, the count of
SARS-CoV-2 specific sequences remained consistent.

In conclusion, a sequencing depth of 10 million was adequate to yield results
comparable to analyses with much higher depths (up to 200 million reads). However,
a greater sequencing depth produces more robust outcomes.

Figure 4: Significance values for sequencing depth analysis for downsampled (10
million and 50 million reads per sample) and the full sequencing depth (up to 150
million reads per sample) in the immune deconvolution analysis.

Discussion

We found that the immune deconvolution tools, including quanTIseq, MCP-counter,
EPIC, and xCell, generally predict similar trends in immune cell composition (B cells,
Neutrophils, T cell CD4+, and T cell CD8+) across SARS-CoV-2 samples that reflect
differences in severity and over time. However, we can also see large differences
between individual samples. Our computational results predict a progressive
alignment of immune cell fractions with those of seronegative samples, correlating
with decreased disease severity and/or individual disease progression. However,
individuals with severe disease courses like Alpha and Alpha+EK show extended
recovery timelines before reaching these levels, indicating a potential marker of
disease severityA confounder that should be considered in the analysis could be that
SARS-CoV-2 can invade immune cells and could potentially skew the results of the
immune deconvolution results52. While computational deconvolution methods are
able to robustly estimate trends in immune-cell composition correctly, they do show a
large variance in prediction accuracy on a sample level. This drawback is especially
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important when trying to use such methods in a personalized fashion. Here,
prediction accuracy is not high enough to give precise results of immune-cell
composition in patients. However, so-called second-generation deconvolution
methods53 promise to increase prediction quality by employing scRNA-seq datasets
as an additional resource in deciphering the cell-type composition of bulk RNA-seq
datasets. Such tools may also reveal changes in the functional state of immune cells
and thus surpass information provided by CBC measurements.

We further introduced an approach for diagnosing infections using RNA-seq with
bioinformatic analysis of BCR and TCR repertoires. We speculate that patterns of
BCR and TCR repertoires could be associated with different disease settings. The
current system is built on known BCR and TCR repertoires associated with diseases,
which means it can only be used for identifying known infections54,55. As data on BCR
and TCR repertoires from different clinical settings is deposited and available for
analysis, it is possible the information can be used to improve understanding of
immune response in individual patients. At present, ethical considerations of detailed
genomic analysis in individual patients can limit the types of information gathered
and their distribution. However, anonymized data obtained through clinical trials with
informed consent may still be useful in exploring how changes in TCR and BCR
repertoires evolve during disease and recovery.

Our analyses demonstrate that a reduced sequencing depth of 10 million is sufficient
to identify overarching trends in immune cell levels and anti-SARS-CoV-2 specific
sequences, although higher sequencing depths yield more robust outcomes. Despite
lower depths resulting in findings of less significance and confidence, the overall
trends and correlations with CBC data remain consistent. The BCR/TCR analyses
further corroborate these findings, as even at reduced sequencing depths,
SARS-CoV-2-specific sequences were still identifiable. These results affirm the
feasibility of using lower sequencing depths for meaningful analyses in the study of
immune responses and pathogen-specific immunity, making it more feasible in a
clinical setting due to lower costs.

Since 2001, genome sequencing costs have significantly decreased from $100
million to the $1,000 genome milestone, reflecting similar cost reductions in RNA
sequencing56. With the impending expiration of Illumina's key patents, the RNA
sequencing market could see heightened competition and further price reductions, a
recent article in Science just speculated about the costs being reduced to $10057.
This shift might be key to embedding sequencing more deeply into routine clinical
practice, making it a more accessible tool for patient care and research.

As RNA-sequencing technologies advance and become cheaper, they hold promise
for future clinical utility by providing a more detailed view of global gene expression
profiles. For example, quantitative polymerase chain reaction (qPCR) has already
been adopted in clinical settings for its high sensitivity and specificity in detecting and

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.03.564190doi: bioRxiv preprint 

https://paperpile.com/c/Yj9hvP/KLK4
https://paperpile.com/c/Yj9hvP/Eejq+9esc
https://paperpile.com/c/Yj9hvP/Wevc
https://paperpile.com/c/Yj9hvP/kIij
https://doi.org/10.1101/2023.11.03.564190
http://creativecommons.org/licenses/by-nc-nd/4.0/


quantifying microbial pathogens58 or SARS-CoV-259,60. To our knowledge, RNA-seq
combined with immune deconvolution is not directly used in a routine clinical
setting61; however, it has been employed in research settings analyzing whole blood
sequencing datasets14. Previous work has also identified specific immune cell
subsets, including neutrophils, to be associated with more severe SARS-CoV2
infection62. In the future, immune deconvolution and BCR/TCR could potentially
guide the decision-making of a physician, e.g., the immediate allocation of a newly
admitted patient with potentially severe disease progression to the intensive care
unit, recognizing that such a tool would require ongoing updates to maintain its utility
for predictive modeling63,64. With more blood samplings after admission, we can also
see if the disease course will change, and the medical doctor could, based on this
analysis and other factors, advise the patient to be submitted to the intensive care
unit65. Nonetheless, we have to consider that our study relies on data either primarily
collected from hospitalized elderly patients (i.e., Alpha, Alpha+EK, and Gamma) or
mild disease progression (i.e., Omikron BA.1 and Omikron BA.2), potentially
introducing a selection bias. Moreover, differences in local healthcare systems, as
well as individual patient factors (e.g., age and preconditions), could influence
recovery timelines and should be factored into any broader applications of these
findings. Additionally, the predictive methods used for immune cell fraction
estimations, while robust and consistent, are not without their limitations and
potential discrepancies. In addition to immune cell composition, analyzing immune
cell receptors of B and T cells by employing tools such as MiXCR33 and TRUST434 in
combination with BCR/TCR databases can provide a rapid determination of the type
of a previously discovered virus or infection. However, with our proposed method, we
do find potential clonotypes but are not able to confirm if they come from a new virus
variant. Genomic data analysis from cell preparation, library generation, sequencing,
and quality control is, with the current technology, not feasible in a matter of hours,
as is the case for CBCs. Recent advances to introduce RNA-seq into clinical settings
describe a complete workflow to finish in about one week66. One technology that is
able to improve the precision of BCR/TCR detection is Oxford Nanopore sequencing.
While not currently implemented in many studies of the transcriptome due to
sequencing error limitations and PCR-induced distortions67, it promises to increase
clonotype detection and tracking68.

In summary, we employed computational immune deconvolution tools at distinct
SARS-CoV-2 data sets, illustrating that they can be used to supplement immune cell
abundance estimates for bulk RNA-seq data that is not accompanied by CBC
information. Additionally, these tools can be used for discerning trends in immune
cell fractions during disease recovery and for comparing differences in immune cell
fractions between more and less severe SARS-CoV-2 variants. Using the proposed
workflow to utilize BCR/TCR methods combined with alignments and pBLAST could
help to pinpoint the type of viral infection. Our presented bioinformatic strategies
combined with expert medical judgment, new technologies, and automatizations
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could promise a path toward precision medicine, where treatment plans are
personalized and optimized for each individual in the future based on individualized
genetic analyses.

Availability
Computational scripts can be found at:
https://github.com/biomedbigdata/SARS-CoV-2_immunedeconv_bcrtcr
Analysis results can be downloaded as an RData object in Supplemental Materials
and on figshare:
www.doi.org/10.6084/m9.figshare.24221167
Data can be publicly found at:
GSE190680 (variants: Alpha, Alpha+EK, Gamma)
GSE162562 (Seronegatives)
GSE201530 (variant: Omikron BA.1)
GSE205244 (variants: Omikron BA.1 and Omikron BA.2)
List of marker genes per method can be found here:
https://doi.org/10.6084/m9.figshare.24442423.v1
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