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Glioblastoma multiform (GBM) is a malignant central nervous system cancer with
dismal prognosis despite conventional therapies. Scientists have great interest in using
immunotherapy for treating GBM because it has shown remarkable potential in many
solid tumors, including melanoma, non-small cell lung cancer, and renal cell carcinoma.
The gene expression patterns, clinical data of GBM individuals from the Cancer Genome
Atlas database (TCGA), and immune-related genes (IRGs) from ImmPort were used
to identify differentially expressed IRGs through the Wilcoxon rank-sum test. The
association between each IRG and overall survival (OS) of patients was investigated
by the univariate Cox regression analysis. LASSO Cox regression assessment was
conducted to explore the prognostic potential of the IRGs of GBM and construct a
risk score formula. A Kaplan–Meier curve was created to estimate the prognostic role of
IRGs. The efficiency of the model was examined according to the area under the receiver
operating characteristic (ROC) curve. The TCGA internal dataset and two GEO external
datasets were used for model verification. We evaluated IRG expression in GBM and
generated a risk model to estimate the prognosis of GBM individuals with seven optimal
prognostic expressed IRGs. A landscape of 22 types of tumor-infiltrating immune cells
(TIICs) in glioblastoma was identified, and we investigated the link between the seven
IRGs and the immune checkpoints. Furthermore, there was a correlation between the
IRGs and the infiltration level in GBM. Our data suggested that the seven IRGs identified
in this study are not only significant prognostic predictors in GBM patients but can also
be utilized to investigate the developmental mechanisms of GBM and in the design of
personalized treatments for them.

Keywords: glioblastoma, expression profile, immune-related genes, prognosis prediction, overall survival

INTRODUCTION

Glioblastoma constitutes the most recurrent and aggressive primary malignant tumor of the
central nervous system (Yan et al., 2012). In spite of multimodal conventional treatments
consisting of neurosurgical resection as well as radiotherapy with accompanying adjuvant alkylating
agent temozolomide chemotherapy, the prognosis for glioblastoma multiform (GBM) individuals
remains dismal, with a median survival time ranging from 9.4 to 19.0 months (Yang et al., 2014).

Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 12 | Article 638458

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.638458
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.638458
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.638458&domain=pdf&date_stamp=2021-02-23
https://www.frontiersin.org/articles/10.3389/fgene.2021.638458/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638458 February 17, 2021 Time: 20:20 # 2

Hu et al. Immune-Related Gene Signature for Glioblastoma

This poor outcome is due to the highly invasive nature,
malignant progression, drug resistance, and tumor recurrence,
which are regulated by a large number of oncogenes and tumor
suppressor genes (Liu et al., 2015; Cao et al., 2019). Next-
generation sequencing technologies have made great progress
recently, enabling scientists to gain profound insights into the
molecular level of GBM pathophysiology (Aldape et al., 2015).
As a consequence, many prospective diagnostic and prognostic
biosignatures have been discovered, which enable a more distinct
classification and a more precise outcome estimation of GBM.
Nonetheless, given the dismal prognosis of GBM, a multiple-
gene signature derived model is still urgently required to
estimate the prognosis and treatment response more accurately
for GBM patients.

The immune microenvironment has been chronicled to play
a pivotal function in tumor biology (Hanahan and Weinberg,
2011), and cancer immunotherapy has been demonstrated to
have a significant preclinical or clinical value to many patients
with some sensitive types of cancer (Schumacher and Schreiber,
2015; Steven et al., 2016; Odunsi, 2017; Morrison et al., 2018;
Christofi et al., 2019). Increasing research evidence supports
the idea that although the brain constitutes an immunologically
specific site, the immune microenvironment provides ample
opportunities for immunotherapy of brain tumors (Lim et al.,
2018). Many kinds of immunotherapy, including GBM vaccines,
oncolytic viral therapies, immune-checkpoint suppressors, and
chimeric antigen receptor T cell therapy, have been tested in
clinical trials, but the results are not satisfactory. Tumors are
insensitive to immunotherapy due to the immunosuppressive
tumor microenvironment, defects in tumor antigen presentation,
and characteristics of the physical microenvironment, including
hypoxia and necrosis (Lim et al., 2018; Pombo Antunes et al.,
2020). The precise mechanism of immune escape is unclear.
Glioblastoma usually has a low mutational load and lower T
cell invasion relative to other tumor types (Li et al., 2016).
Thus, it is imperative to better comprehend the progress and
mechanisms of the GBM immune microenvironment. Multiple
recent studies have suggested that immune gene expression
profile biosignatures may be used as a prediction for clinical
outcomes in many cancers (Bremnes et al., 2016; Campbell et al.,
2017; Öjlert et al., 2019). Li et al. (2017) created a personalized
immune-related gene prognostic biosignature to improve the
prognosis of individuals with NSCLC.

In a previous study, a prognostic immune-related gene
signature with nine IRGs based on a total of 161 samples
from the Cancer Genome Atlas database (TCGA) was generated
(Liang et al., 2020), and the 9-IRG model was identified as
an independent predictor in glioblastoma. These researchers
established a crosstalk network between prognostic immune-
related genes (IRGs) and transcription factors. Correlations
between immune infiltration cells and risk score were also
identified. However, the potential molecular mechanisms were
not clarified in their study. Thus, it is necessary to elucidate
the function of these genes in the risk score and poor survival
outcomes.

Here, we generated a seven immune-linked gene biosignature
to exhibit the connection between gene expression and GBM

prognosis, and we verified this biosignature in the TCGA and
GEO dataset. These data may provide a novel reference for
the prognostic prediction of GBM. We also confirmed the
relevance of the seven IRGs to immune checkpoints, immune
cell infiltration, oncogenesis pathway, and drug sensitivity. As
a result, we not only generated a predictive model for GBM
prognosis but also indicated the potential function of these IRGs
in the occurrence and development of glioblastoma.

MATERIALS AND METHODS

Data Sources and Preliminary
Processing
The RNA-Seq data of 169 GBM samples and five normal brain
samples, as well as the clinical data of these GBM patients, such
as age, gender, molecular subtype, gene mutation status, survival
time, and survival status, were obtained from the TCGA dataset1.
Additionally, the GBM patients’ microarray and clinical data
were collected from independent datasets in the GEO database,
including GSE74187 (n = 60) and GSE4412 (n = 59). These gene
expression data were generated and annotated on GPL6480 or
GPL97 platform. The immune-related gene set, including 2,498
genes, was downloaded from the ImmPort database. The RNA-
Seq and microarray data were normalized using scale method,
and the data were pre-processed through the following steps:
(1) patients with unavailable clinical and/or survival information
were removed, (2) only the expression profiles of IRGs were
preserved, and (3) genes with exceeding low abundance were
filtered out (the expression value was 0 in more than half of
the samples, or the average expression value was less than 0.3 in
the samples). Finally, 1,100 genes were used for univariate Cox
regression analysis and LASSO analysis.

Differential Gene and Functional
Enrichment Analysis
The expression analysis of 2,498 immune-linked genes was
conducted to identify the differentially expressed IRGs by the
limma R package [false discovery rate (FDR) < 0.05 and log2
| fold change| > 1] (Ritchie et al., 2015). We conducted
functional enrichment analyses to identify potential molecular
biomechanisms of the differentially expressed IRGs via GO
analysis and KEGG pathways (Yang et al., 2018). GOplot
package was used for illustrating the relationship between genes
and enriched KEGG pathways. Gene Set Enrichment Analysis
(GSEA) (Mootha et al., 2003; Subramanian et al., 2005) was
employed to examine the signaling cascades in which the IRGs
were enriched between the high- and low-risk subgroups.

Establishment of the
Immune-Associated Gene Biosignature
The univariate Cox regression analysis was applied to investigate
the association between each IRG and OS of patients based on
the TCGA dataset. To build the immune-related risk model,

1https://tcga-data.nci.nih.gov/tcga/
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the genes with p value < 0.01 were considered as candidate
survival-associated IRGs. The LASSO regression model was used
to determine the most significant survival-correlated IRGs. First,
the GBM patients in TCGA dataset were randomly divided
into training and internal validation cohorts at a 4:1 ratio,
forming a training cohort (n = 134) and an internal validation
cohort (n = 33). The LASSO regression was employed based
on 10-fold cross-validation to minimize the risk of overfitting.
LASSO tends to “shrink” the regression coefficients to zero
as λ increases. The optimal λ that yielded minimum cross
validation error in 10-fold cross validation was chosen. The risk
score was calculated by using the sum of normalized expression
weighted by the LASSO regression coefficients (Zhong et al.,
2020):

Risk score = EmRNA1×CmRNA1+EmRNA2×CmRNA2+
EmRNAn×CmRNAn

where E designates the expression level of each gene;
and C designates the lasso regression coefficient
of each gene.

The patients were separated into low- and high-risk groups
according to the median of the risk score. OS of the patients in
the two groups was analyzed by the log-rank test with “survival”
package in R. Receiver operating characteristic (ROC) curve
and the corresponding area under the ROC curve (AUC) were
calculated to evaluate the prognostic value of the risk score by
using “ROC” package.

CIBERSORT and Assessment of
Tumor-Infiltrating Immune Cells
CIBERSORT is a computational technique that predicts the cell
type signature in mix tissues through gene expression levels
(Newman et al., 2015). Cell types can be identified using RNA
mixtures in nearly any tissue (Yang et al., 2019). For this
study, we employed CIBERSORT to examine the 22 types of
immune cells in tumor tissues and show the percentages of 22
sets of tumor-infiltrating immune cells (TIICs) with bar plots
and a corheatmap.

Analysis of Immune Infiltration
To analyze the correlation between the risk signature and
infiltrating levels of six immune cells, including B cells, CD4+
T cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells, Spearman’s correlation was calculated and the strength of
correlation for the absolute value of r was as follows: r between
0 and 0.3 indicates a weak correlation; r between 0.3 and 0.7
indicates a moderate correlation; r between 0.7 and 1.0 indicates
a strong correlation (Akoglu, 2018).

Statistical Analysis
Boxplot was generated using the “ggplot2” package in R.
Heat map was generated using the “pheatmap” package in R.
A correlation analysis of the seven immune genes was performed
using the R “corrplot” package in the Pearson’s method. Circular
plot was generated using the “circlize” package in R. Student’s
t test was used to compare data from subgroups. Pearson’s

correlation test was used to analyze the correlation between the
IRGs signature and the expression of immune checkpoint genes.
K-M survival curves were compared using log-rank test. All
statistical analyses were conducted on R software (version 3.6.0).
A p value of < 0.05 was considered to indicate significance. Other
statistical methods were described throughout the study.

RESULTS

Identification of Differentially Expressed
IRGs in GBM
The mRNA levels of 2,498 IRGs in GBM (n = 169) and normal
brain tissues (n = 5) from TCGA were compared via the
Wilcoxon rank-sum test. In total, 595 differentially expressed
IRGs comprising 416 upregulated genes and 179 downregulated
genes were identified (Supplementary Table 1). The volcano
plot and heat map of differentially expressed IRGs are shown in
Figures 1A,B.

Functional Characterization of DEIRGs
The gene functional enrichment assessment showed that immune
responses were the most common. The most significant
biological terms were “regulation of leukocyte activation,”
“plasma membrane protein complex” and “receptor ligand
activity” among biological processes, cellular components, and
molecular functions, respectively (Figure 2A). With regard to
the KEGG cascades, most of signaling cascades were linked to
immune reactions, and cytokine-cytokine receptor crosstalk was
the most significantly enriched term (Figure 2B). For better
visualization, two heatmaps of these values were plotted using the
logFC, including one for GO terms (Figure 2C) and the other
for KEGG pathways (Figure 2D). Some GO terms and KEGG
cascades were linked to certain immune processes.

Identification of Prognostic Genes
The univariate Cox regression model was applied to select IRGs
with the patient OS, and a total of 15 IRGs were discovered
to be significantly associated with OS (p < 0.01). These genes
were subjected to the LASSO regression analysis to calculate the
correlation coefficients. The signature performed best when only
seven genes were included (Figures 3A,B). For this analysis, we
used LASSO regression to obtain the following seven optimal
IRGs (risk genes) for incorporation into the prognostic risk
model in TCGA training cohort (Supplementary Figure 1):
Bone Morphogenetic Protein Receptor Type 1A (BMPR1A),
Cathepsin B (CTSB), NFKB Inhibitor Zeta (NFKBIZ), TNF
Superfamily Member 14 (TNFSF14), C-X-C Motif Chemokine
Ligand 2 (CXCL2), Semaphorin-4F (SEMA4F), and Oncostatin
M Receptor (OSMR). Among these genes, CTSB, NFKBIZ,
TNFSF14, CXCL2, SEMA4F, and OSMR were characterized as
high-risk genes (estimating a poor prognosis), whereas BMPR1A
was identified as low-risk genes (functioning as a protective
factor) with regard to the OS of patients (see detailed information
in Table 1).
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FIGURE 1 | Identification of differentially expressed IRGs between GBM and normal brain tissues. (A) Volcano plots showing the log2 (fold change) of mRNA in GBM
compared to normal brain tissues, and the corresponding-log10 (P value) in TCGA datasets. Genes with adjusted P value below 0.05 and fold change above one
(below –1) were marked with red (green) dots. (B) Heatmap of the differentially expressed IRGs in TCGA datasets.

FIGURE 2 | GO terms and Enrichment of KEGG pathways for differentially expressed IRGs. (A) GO biological process analysis for the immune-related DEGs.
(B) KEGG pathway enrichment analysis for the immune-related DEGs. (C) Heatmap of the GO terms by logFC. (D) Heatmap of the KEGG pathways by logFC.

Construction of a Seven-Gene
Prognostic Biosignature
The LASSO regression analysis was used to screen the risk genes
for estimating the prognosis of GBM individuals (Friedman et al.,
2010; Simon et al., 2011). We utilized mRNA contents and
predicted the regression coefficients of the risk genes to compute

a risk score for each GBM individual. The prognostic estimation
model was created, which incorporated seven immune-linked
genes. The following formula was used for the calculation:

Risk score = (−0.194) BMPR1A+0.011 CTSB+0.050 NFKBIZ
+0.081 TNFSF14+ 0.090 CXCL2
+0.217 SEMA4F+0.250 OSMR
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FIGURE 3 | Seven-immune-related gene signature prognostic risk model analysis of GBM patients in TCGA dataset. (A) LASSO coefficient profiles of the 15 IRGs in
TCGA-GBM. (B) A coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for
TCGA. (C) Kaplan–Meier survival curves for high-risk and low-risk groups. (D) ROC curves to examine the predictive accuracy of the model for OS at 1-, 2-, and 3-
years.

According to the formula, we calculated the risk scores of each
GBM individual and clustered them into low-risk and high-
risk classes according to the median risk score. According to
the log-rank test, the Kaplan–Meier curve revealed that the
prognosis in the high-risk class was worse compared to the low-
risk class in TCGA training cohort (p = 0.012) (Figure 3C).
We employed the time-dependent ROC curves to explore the
estimation accuracy of the model for OS in TCGA training
cohort. The prognostic model area under the ROC values were
0.71 at 1-year, 0.71 at 2-year, and 0.82 at 3-year (Figure 3D).
Suggesting our 7-gene model had a favorable efficiency in
predicting prognosis.

Verification of the Immune-Linked Gene
Biosignature
The prognostic value of the seven IRGs signature was further
evaluated in three validation sets (TCGA internal validation set,
GSE74187, and GSE4412 datasets). The risk score for each patient
was calculated following the same formula. Patients in three
validation sets were classified into high- and low-risk groups

based on the median of the risk score. Survival analysis in the
three validation sets confirmed a lower survival rate in the high-
risk group (Figures 4A–C). The AUC of ROC curves for 1-,
2-, and 3-year survival rate in the validation dataset were 0.79,
0.91, and 0.93 (TCGA internal validation cohort) 0.64, 0.67, and

TABLE 1 | Risk genes in the prognostic risk model.

Gene Coef HR Low. 95%CI Upp. 95%CI p-value

BMPR1A −0.194 0.691 0.556 0.859 8.86E-4

CTSB 0.011 1.280 1.104 1.484 1.06E-3

NFKBIZ 0.050 1.442 1.200 1.731 9.10E-5

TNFSF14 0.081 1.320 1.138 1.532 2.58E-4

CXCL2 0.090 1.350 1.152 1.583 2.11E-4

SEMA4F 0.217 1.490 1.199 1.852 3.25E-3

OSMR 0.250 1.475 1.239 1.757 1.30E-5

7 prognostic immune-related genes screened out by the univariate Cox regression
and LASSO Cox proportional hazards regression.
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FIGURE 4 | Validation of seven-immune-related gene signature prognostic risk model of GBM patients in validation datasets. (A) Kaplan–Meier survival curves for
high-risk and low-risk groups in TCGA internal validation dataset (p < 0.001). (B) Kaplan–Meier survival curves for high-risk and low-risk groups in GSE74187
dataset (p = 0.048). (C) Kaplan–Meier survival curves for high-risk and low-risk groups in GSE4412 dataset (p = 0.07). (D–F) ROC curves to examine the predictive
accuracy of the model for OS at 1-, 2-, and 3- years in validation cohorts.

0.6 (GSE74187); 0.58, 0.77, and 0.99 (GSE4412) (Figures 4D–
F). In summary, the prognosis model created according to the
expression patterns of these seven prognosis-distinct immune-
linked genes had high estimation accuracy and stability in
identifying immune features. These data demonstrated that
our prognostic risk model precisely estimates the prognosis of
GBM individuals.

Relationship Between the Risk Score
and Clinical Factors
The relationship between the seven IRGs signature and clinical
factors, including age, gender, IDH1 mutation, 1p/19q mutation,
and subtype was further investigated using data from the TCGA
dataset. The results showed that a higher risk score was always
associated with IDH1 mutation, 19q mutation, and subtype. No
differences were observed between the risk score and age, gender,
or 1p mutation (Supplementary Figure 2).

Functional Annotations and Signaling
Pathway Enrichment in High- and
Low-Risk Score Groups
Because the monitoring of disease outcome is imperative
for clinical management, we aimed to identify molecular
biosignatures that could be utilized as viable prognostic
indicators. Functional gene annotation and KEGG enrichment
analyses focused on the above mentioned seven prognosis-
distinct immune-linked genes were conducted (Yu et al.,
2012). We demonstrated that these survival-linked IRGs were
most abundant in gene ontology (GO) terms linked to “cell
adhesion mediated by integrin,” “granulocyte migration,”
“platelet degranulation,” “regulation of leukocyte adhesion to
vascular endothelial cell,” “rna capping” and “transcription
preinitiation complex assembly” (Figure 5A). Gene set
enrichment analysis (GSEA) was performed to identify the
prospective cascades that differentiated the high- or low-risk
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FIGURE 5 | Functional gene annotations and KEGG enrichment analysis between high and low risk groups. (A) ClusterProfiler was selected for functional gene
annotations. (B) GSEA analysis was performed to identify the potential pathways differentiate the high and low risk groups.

groups. The following cascades were significantly enriched:
“complement and coagulation cascades,” “cytokine cytokine
receptor interaction,” “hematopoietic cell lineage,” “leukocyte
transendothelial migration,” “rna polymerase,” and “spliceosome”
(Figure 5B). These results suggested that the prognosis-specific
immune-related gene risk score using the seven IRGs may affect
these cascades and estimate the survival of GBM patients.

Correlation Between the Risk Score and
Immune Response
To better comprehend the connection between the risk score and
immune response, we calculated the association between the risk
score and the expression levels of core immune checkpoints in
GBM, such as CD28, TIM-3, B7-H3, PD-1, B7-H4, CD40, LAG3,
and PD-L1. Interestingly, the Circos plot (Gu et al., 2014) showed
that the risk score was strongly linked to expression levels of B7-
H3, CD40, and PD-L1 in TCGA cohorts (Figure 6A).

Distribution of Immune Invasion in
Glioblastoma
We first assessed immune invasion in glioma tissue in 22
subpopulations of immune cells by employing the CIBERSORT
algorithm. In Figure 6B, the percentage of immune cells in
each GBM sample is shown in different colors, and the lengths
of the bars indicate the immune cell population levels. We
then speculated that the divergence in TIIC proportions may
function as a critical feature of individual differences and possess
prognostic significance. Based on the chart, we established
that glioma tissues had comparatively high proportions of M1,
M0, and M2 macrophages as well as monocytes, which were
responsible for approximately 70% of the 22 subpopulations of
immune cells. In contrast, B cell and neutrophil proportions were
comparatively low, and they were responsible for approximately
10% of the immune cell subpopulations (Figure 6B). Proportions
of different types of immune cells subsets were weakly and

then moderately correlated (Figure 6C). Populations with a
negative correlation consisted of monocytes/M2 macrophages
(Pearson’s correlation = −0.41) and resting NK cells/activated
NK cells (Pearson’s correlation = −0.43). Given the important
role of these hub immune genes, the genetic variations of five
of them with a mutation rate ≥ 5% were further explored
(Supplementary Figure 3).

Prognostic Model Associates With
Immune Invasion in GBM
Clinical studies on immunotherapy have verified that tumor-
invading lymphocytes in the tumor microenvironment possess
an estimation significance for prognosis and treatment using
immunotherapy in some solid tumors (Bremnes et al., 2016; Lee
et al., 2016; Badalamenti et al., 2019). Given that our risk score
was centered on seven immune-linked genes, we investigated
whether it was linked to the invading levels of six immune
cell types in the TCGA GBM cohort acquired from TIMER.
We examined the link between the expression levels of seven
immune-linked genes and the invading contents of six immune
cell types. The findings demonstrated that the expression of
these seven genes exhibited remarkably positive correlation
with immune cell invasion. The expressions of CTSB, NFKBIZ,
CXCL2, and OSMR were all correlated with the invading levels of
dendritic cells (Supplementary Figure 4). To better understand
the impact of the seven IRGs signature on the infiltration of
immune cells, the relevance of the risk score and six immune
cells was investigated. Results indicated that the risk score was
positively related to neutrophil cells (r = 0.188), dendritic cells
(r = 0.404), and CD4+ T cells (r = 0.169) (Supplementary
Figure 5). Collectively, these data indicated that our model
system is partially linked to the invading level of immune cells
in the tumor microenvironment of GBM. Particularly, BMPR1A
was significantly correlated with the infiltrating levels of CD4+
T cells, macrophages, and dendritic cells. TNFSF14 and OSMR
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FIGURE 6 | Correlation between the risk score and immune response and the distribution of immune infiltration in GBM. (A) Circos plot shows the relationship
between the risk score and the expression levels of some important immune checkpoints in GBM. (B) The proportions of immune cells in each GBM sample are
indicated with different colors, and the lengths of the bars in the bar chart indicate the levels of the immune cell populations. (C) Correlation matrix for all 22 immune
cell proportions. Some immune cells were negatively related, represented in blue, and others were positively related, represented in red. The darker the color, the
higher the correlation.

were significantly correlated with the invading levels of CD4+ T
cells and dendritic cells. CXCL2 was significantly associated with
the invading levels of dendritic cells (Figure 7).

Effects of Prognosis-Specific
Immune-Related Genes on Oncogenic
Pathways
To further elucidate the molecular mechanisms for prognosis-
specific IRGs participating in tumorigenesis, we explored the
link between the expression of individual genes and activation
or repression of 10 core signaling cascades based on a
pathway score computed from the sum of the relative protein
contents for all positive modulatory constituents less that of
all negative modulatory constituents (Akbani et al., 2014). Our
data demonstrated that seven genes were highly correlated to

the activation or suppression of numerous oncogenic cascades
(Supplementary Figure 6). For example, CTSB was highly
correlated with the repression of DNA damage response
and AR hormone, as well as the activation of apoptosis
and EMT signaling pathways. CXCL2 was associated with
the inhibition of cell cycle, DNA damage response, and
AR hormone, as well as activation of apoptosis, EMT, and
RAS/MAPK signaling pathways. These results suggested that
prognosis-specific IRGs are linked to alterations of diverse
oncogenic cascades.

Hub Gene Drug Sensitivity
GSCALite constitutes a web-based analysis portal for gene set
cancer analysis (Liu C. J. et al., 2018), based on which the drug
sensitivity of the hub genes was analyzed to provide support on
drug-targeted therapy (Supplementary Figure 7). Low NFKBIZ
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FIGURE 7 | Correlations of seven immune-related gene copy member with immune infiltration level in GBM. These seven-immune-related gene CNV affects the
infiltrating levels of different immune cells in GBM. *p < 0.05, **p < 0.01, ***p < 0.001.

level is resistant to 11 drugs or small molecules, low BMPR1A
level is resistant to seven drugs or small molecules, low SEMA4F
level is resistant to 16 drugs or small molecules, and low levels of
OSMR, CXCL2, and CTSB are resistant to more than 32 drugs or
small molecules.

DISCUSSION

Glioblastoma is a fatal human cancer. Despite of the years
of research focused on GBM biology and the numerous
clinical trials to evaluate new treatments, the prognosis of
individuals with glioblastoma remains dismal (Thakkar et al.,
2014). Patients diagnosed with GBM undergo treatments,
including neurosurgery, radiotherapy, and chemotherapy, with
unsatisfactory survival.

There has been great advancement in the comprehension
of the genetic and molecular underpinnings of glioblastoma

with the emergence and progression of microarray technology
and sequencing technology. The IDH1 mutant was found in
an integrated genomic analysis in 2008 (Parsons et al., 2008).
Many studies have been performed in recent years and suggest
that mutated IDH1 participates in the pathogenesis of glioma.
According to the WHO categorization of central nervous system
tumors, glioblastoma is divided into IDH-mutant and IDH-
wildtype subtypes (Louis et al., 2016). This categorization is based
entirely on histological features. There are many specific genetic
changes in glioblastoma cases, and the most frequently mutated
or deregulated gene is epidermal growth factor receptor (EGFR),
which is amplified in approximately 60% of glioblastomas
(Huang et al., 2007). Many deregulations with certain pathways,
such as PI3K, P53, and RB, have also been identified. Overall,
these studies show the prospect of the gene signature in tumor
diagnosis and prognosis, and they provide new evidence for
tumor biology. With the progression of bioinformatics and open
access of high-throughput data, researchers have studied multiple
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gene prognostic signatures for GBM, which result in more
accuracy than single gene prognostic signatures (Colman et al.,
2010; Yin et al., 2019).

The CNS has been considered as an immune-favored system
based on the initial experimental data documented more than
50 years ago (Medawar, 1948; Billingham et al., 1954), but many
findings have suggested that the immune microenvironment
provides sufficient opportunities to treat brain tumors with
immunotherapy even though the brain is an immunologically
distinct region (Schiffer et al., 2017). Scientists have great
interest in utilizing immunotherapy to treat glioblastoma because
it has shown considerable improvements in the management
of numerous solid tumors, including melanoma, renal cell
carcinoma, and NSCLC. There are many ongoing clinical
trials for immunotherapy, but the results are not satisfactory.
Thus, we need more knowledge about the GBM immune
microenvironment.

Herein, we constructed a robust seven immune-linked gene
biosignature for risk stratification in glioblastoma patients.
In contrast to a previous studies (Liang et al., 2020), we
used univariate Cox regression analysis and LASSO regression
assessment to classify genes as independent prognostic indicators.
Among them, CTSB, NFKBIZ, TNFSF14, CXCL2, SEMA4F, and
OSMR were characterized as high-risk genes, whereas BMPR1A
was identified as low-risk gene.

The protease cathepsin B (CTSB) has been identified to
highly express in cancer (Mijanovic et al., 2019), and associate
with poor prognosis of a variety of cancers, including breast
cancer, pancreatic cancer, and lung squamous cell carcinoma,
which could be used as an independent predictor of these
tumors (Gong et al., 2013; Zhang et al., 2014). It was previously
found that the absence of CTSB delays the growth and
invasion of pancreatic neuroendocrine tumors (Gocheva et al.,
2006). Here, we identified CTSB as a risk pattern based on
our risk model, which is in consistent with previous studies.
NFKBIZ mutation is associated with ulcerative colitis, and the
repeated inflammation and repair are closely related to the
occurrence of colorectal cancer (Kakiuchi et al., 2020). Thus,
chronic inflammation might be related to GBM. TNFSF14 is
also known as LIGHT, which has been studied at preclinical
level for more than 10 years and has shown the prospect
of strengthening cancer immunotherapy (Skeate et al., 2020).
CXCL2 can promote the recruitment of MDSC and is associated
with the prognosis of bladder cancer (Zhang et al., 2017).
SEMA4F is expressed in adults and related to the neural
guidance of embryos. It can induce neurogenesis in prostate
cancer, thus promoting cancer growth and migration (Ding
et al., 2013). The cytokine receptor for oncostatin M (OSMR)
regulates self-renewing brain tumor stem cells and promotes
the resistance of GBM to ionizing radiation (Sharanek et al.,
2020). In breast cancer, BMPR1-knockdown can inhibit RANKL
production through p38 pathway, thereby inhibiting breast
cancer-induced osteolysis (Liu Y. et al., 2018). Above all, the
above mentioned seven genes play important roles in the
occurrence and development of tumors.

We next created a landscape of 22 subtypes of immune cells
and acquired the status of immune infiltration in the GBM

microenvironment. Our results were similar to those of previous
studies (Lu et al., 2019; Liang et al., 2020). Furthermore, we
analyzed the relationship between the expression levels of seven
immune-linked genes and the invading levels of six immune
cells. The data demonstrated that the expression of these seven
genes exhibited positive correlation with immune cell invasion
(Supplementary Figure 4). All these findings indicated that our
prognostic model may aid in understanding the immune status
of glioblastoma patients. We also generated a circo plot to show
the relationship between the risk score and expression levels of
core immune checkpoints in GBM. This study may provide new
targets or effective biomarkers for glioblastoma immunotherapy.

In summary, the immunotherapy of GBM patients should
be individualized to obtain a better curative effect. Our study
provides a prognosis prediction based on IRGs, which may
reflect the immune status of GBM patients. However, our
study had limitations as our study was based on databases and
bioinformatics analyses. Immunohistochemistry, flow cytometry,
and RT-PCR should be used to verify our research results.

CONCLUSION

In our study, IRGs were identified to generate a prediction
model of glioblastoma patient prognosis. We also explored
the connection between these genes and the immune
cells and immune checkpoints. Further research on these
genes may provide new insights in GBM biology and
promote immunotherapy.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LH and ZH performed all experiments, prepared figures, and
drafted the manuscript. LH, ZH, XC, SW, and YF participated
in data analysis and interpretation of results. LH and ZL designed
the study and participated in data analysis. All authors have read
and approved the manuscript.

FUNDING

This work was supported by National Natural Science
Foundation of China (Grant Nos. 81772678, 81802755, and
U20A20383), the China Postdoctoral Science Foundation (Grant
No. 2018M630372), and Heilongjiang Postdoctoral Fund (Grant
No. LBH-Z17166).

Frontiers in Genetics | www.frontiersin.org 10 February 2021 | Volume 12 | Article 638458

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638458 February 17, 2021 Time: 20:20 # 11

Hu et al. Immune-Related Gene Signature for Glioblastoma

ACKNOWLEDGMENTS

We thank TopEdit (https://topeditsci.com/) for its
linguistic assistance during the preparation of
this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.638458/full#supplementary-material

REFERENCES
Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., et al.

(2014). A pan-cancer proteomic perspective on the cancer genome Atlas. Nat.
Commun. 5:3887.

Akoglu, H. (2018). User’s guide to correlation coefficients. Turk. J. Emerg. Med. 18,
91–93. doi: 10.1016/j.tjem.2018.08.001

Aldape, K., Zadeh, G., Mansouri, S., Reifenberger, G., and von Deimling, A.
(2015). Glioblastoma: pathology, molecular mechanisms and markers. Acta
Neuropathol. 129, 829–848.

Badalamenti, G., Fanale, D., Incorvaia, L., Barraco, N., Listi, A., Maragliano, R.,
et al. (2019). Role of tumor-infiltrating lymphocytes in patients with solid
tumors: can a drop dig a stone? Cell. Immunol. 343:103753.

Billingham, R. E., Brent, L., Medawar, P. B., and Sparrow, E. M. (1954).
Quantitative studies on tissue transplantation immunity. I. The survival times
of skin homografts exchanged between members of different inbred strains of
mice. Proc. R. Soc. Lond. B Biol. Sci. 143, 43–58. doi: 10.1098/rspb.1954.0053

Bremnes, R. M., Busund, L. T., Kilvaer, T. L., Andersen, S., Richardsen, E., Paulsen,
E. E., et al. (2016). The role of tumor-infiltrating lymphocytes in development,
progression, and prognosis of non-small cell lung cancer. J. Thorac Oncol. 11,
789–800. doi: 10.1016/j.jtho.2016.01.015

Campbell, M. J., Baehner, F., O’Meara, T., Ojukwu, E., Han, B., Mukhtar, R.,
et al. (2017). Characterizing the immune microenvironment in high-risk ductal
carcinoma in situ of the breast. Breast Cancer Res. Treat. 161, 17–28. doi:
10.1007/s10549-016-4036-0

Cao, M., Cai, J., Yuan, Y., Shi, Y., Wu, H., Liu, Q., et al. (2019). A four-gene
signature-derived risk score for glioblastoma: prospects for prognostic and
response predictive analyses. Cancer Biol. Med. 16, 595–605. doi: 10.20892/j.
issn.2095-3941.2018.0277

Christofi, T., Baritaki, S., Falzone, L., Libra, M., and Zaravinos, A. (2019).
Current perspectives in cancer immunotherapy. Cancers 11:1472. doi: 10.3390/
cancers11101472

Colman, H., Zhang, L., Sulman, E. P., McDonald, J. M., Shooshtari, N. L., Rivera, A.,
et al. (2010). A multigene predictor of outcome in glioblastoma. Neuro Oncol.
12, 49–57. doi: 10.1093/neuonc/nop007

Ding, Y., He, D., Florentin, D., Frolov, A., Hilsenbeck, S., Ittmann, M., et al.
(2013). Semaphorin 4F as a critical regulator of neuroepithelial interactions and
a biomarker of aggressive prostate cancer. Clin. Cancer Res. 19, 6101–6111.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.

Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., et al. (2006).
Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes
Dev. 20, 543–556.

Gong, F., Peng, X., Luo, C., Shen, G., Zhao, C., Zou, L., et al. (2013). Cathepsin B
as a potential prognostic and therapeutic marker for human lung squamous cell
carcinoma. Mol. Cancer 12:125.

Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize Implements
and enhances circular visualization in R. Bioinformatics 30, 2811–2812. doi:
10.1093/bioinformatics/btu393

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation.
Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013

Huang, P. H., Mukasa, A., Bonavia, R., Flynn, R. A., Brewer, Z. E., Cavenee, W. K.,
et al. (2007). Quantitative analysis of EGFRvIII cellular signaling networks
reveals a combinatorial therapeutic strategy for glioblastoma. Proc. Natl. Acad.
Sci. U.S.A. 104, 12867–12872. doi: 10.1073/pnas.0705158104

Kakiuchi, N., Yoshida, K., Uchino, M., Kihara, T., Akaki, K., Inoue, Y., et al. (2020).
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis.
Nature 577, 260–265.

Lee, N., Zakka, L. R., Mihm, M. C. Jr., and Schatton, T. (2016). Tumour-infiltrating
lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 48,
177–187. doi: 10.1016/j.pathol.2015.12.006

Li, B., Cui, Y., Diehn, M., and Li, R. (2017). Development and validation of an
individualized immune prognostic signature in early-stage nonsquamous non-
small cell lung cancer. JAMA Oncol. 3, 1529–1537. doi: 10.1001/jamaoncol.
2017.1609

Li, B., Severson, E., Pignon, J. C., Zhao, H., Li, T., Novak, J., et al.
(2016). Comprehensive analyses of tumor immunity: implications for cancer
immunotherapy. Genome Biol. 17, 174. doi: 10.1186/s13059-016-1028-7

Liang, P., Chai, Y., Zhao, H., and Wang, G. (2020). Predictive analyses of
prognostic-related immune genes and immune infiltrates for glioblastoma.
Diagnostics (Basel) 10:177. doi: 10.3390/diagnostics10030177

Lim, M., Xia, Y., Bettegowda, C., and Weller, M. (2018). Current state of
immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422–442. doi: 10.
1038/s41571-018-0003-5

Liu, C. J., Hu, F. F., Xia, M. X., Han, L., Zhang, Q., and Guo, A. Y. (2018). GSCALite:
a web server for gene set cancer analysis. Bioinformatics 34, 3771–3772. doi:
10.1093/bioinformatics/bty411

Liu, M.-F., Hu, Y.-Y., Jin, T., Xu, K., Wang, S.-H., Du, G.-Z., et al. (2015).
Matrix Metalloproteinase-9/Neutrophil gelatinase-associated lipocalin complex
activity in human glioma samples predicts tumor presence and clinical
prognosis. Dis. Markers 2015:138974. doi: 10.1155/2015/138974

Liu, Y., Zhang, R. X., Yuan, W., Chen, H. Q., Tian, D. D., Li, H., et al. (2018).
Knockdown of bone morphogenetic proteins Type 1a receptor (BMPR1a) in
breast cancer cells protects bone from breast cancer-induced osteolysis by
suppressing RANKL expression. Cell. Physiol. Biochem. 45, 1759–1771.

Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D.,
Cavenee, W. K., et al. (2016). The 2016 world health organization classification
of tumors of the central nervous system: a summary. Acta Neuropathol. 131,
803–820. doi: 10.1007/s00401-016-1545-1

Lu, J., Li, H., Chen, Z., Fan, L., Feng, S., Cai, X., et al. (2019). Identification
of 3 subpopulations of tumor-infiltrating immune cells for malignant
transformation of low-grade glioma. Cancer Cell Int. 19:265. doi: 10.1186/
s12935-019-0972-1

Medawar, P. B. (1948). Immunity to homologous grafted skin; the fate of skin
homografts transplanted to the brain, to subcutaneous tissue, and to the
anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69.

Mijanovic, O., Brankovic, A., Panin, A. N., Savchuk, S., Timashev, P., Ulasov, I.,
et al. (2019). Cathepsin B: a sellsword of cancer progression. Cancer Lett. 449,
207–214. doi: 10.1016/j.canlet.2019.02.035

Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S.,
Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nat.
Genet. 34, 267–273.

Morrison, A. H., Byrne, K. T., and Vonderheide, R. H. (2018). Immunotherapy
and prevention of pancreatic cancer. Trends Cancer 4, 418–428. doi: 10.1016/j.
trecan.2018.04.001

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12, 453–457.

Odunsi, K. (2017). Immunotherapy in ovarian cancer. Ann. Oncol. 28(Suppl. 8),
viii1–viii7.

Öjlert, Å. K., Halvorsen, A. R., Nebdal, D., Lund-Iversen, M., Solberg, S.,
Brustugun, O. T., et al. (2019). The immune microenvironment in non-small
cell lung cancer is predictive of prognosis after surgery. Mol. Oncol. 13, 1166–
1179.

Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al.
(2008). An integrated genomic analysis of human glioblastoma multiforme.
Science 321, 1807–1812.

Pombo Antunes, A. R., Scheyltjens, I., Duerinck, J., Neyns, B., Movahedi, K.,
and Van Ginderachter, J. A. (2020). Understanding the glioblastoma immune
microenvironment as basis for the development of new immunotherapeutic
strategies. Elife 9:e52176.

Frontiers in Genetics | www.frontiersin.org 11 February 2021 | Volume 12 | Article 638458

https://topeditsci.com/
https://www.frontiersin.org/articles/10.3389/fgene.2021.638458/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.638458/full#supplementary-material
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1098/rspb.1954.0053
https://doi.org/10.1016/j.jtho.2016.01.015
https://doi.org/10.1007/s10549-016-4036-0
https://doi.org/10.1007/s10549-016-4036-0
https://doi.org/10.20892/j.issn.2095-3941.2018.0277
https://doi.org/10.20892/j.issn.2095-3941.2018.0277
https://doi.org/10.3390/cancers11101472
https://doi.org/10.3390/cancers11101472
https://doi.org/10.1093/neuonc/nop007
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1073/pnas.0705158104
https://doi.org/10.1016/j.pathol.2015.12.006
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.3390/diagnostics10030177
https://doi.org/10.1038/s41571-018-0003-5
https://doi.org/10.1038/s41571-018-0003-5
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.1093/bioinformatics/bty411
https://doi.org/10.1155/2015/138974
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1186/s12935-019-0972-1
https://doi.org/10.1186/s12935-019-0972-1
https://doi.org/10.1016/j.canlet.2019.02.035
https://doi.org/10.1016/j.trecan.2018.04.001
https://doi.org/10.1016/j.trecan.2018.04.001
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638458 February 17, 2021 Time: 20:20 # 12

Hu et al. Immune-Related Gene Signature for Glioblastoma

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47.

Schiffer, D., Mellai, M., Bovio, E., and Annovazzi, L. (2017). The neuropathological
basis to the functional role of microglia/macrophages in gliomas. Neurol. Sci.
38, 1571–1577.

Schumacher, T. N., and Schreiber, R. D. (2015). Neoantigens in cancer
immunotherapy. Science 348, 69–74.

Sharanek, A., Burban, A., Laaper, M., Heckel, E., Joyal, J. S., Soleimani, V. D., et al.
(2020). OSMR controls glioma stem cell respiration and confers resistance of
glioblastoma to ionizing radiation. Nat. Commun. 11:4116.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths
for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39,
1–13.

Skeate, J. G., Otsmaa, M. E., Prins, R., Fernandez, D. J., Da Silva, D. M.,
and Kast, W. M. (2020). TNFSF14: LIGHTing the way for effective cancer
immunotherapy. Front. Immun. 11:922. doi: 10.3389/fimmu.2020.00922

Steven, A., Fisher, S. A., and Robinson, B. W. (2016). Immunotherapy for lung
cancer. Respirology 21, 821–833.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550.

Thakkar, J. P., Dolecek, T. A., Horbinski, C., Ostrom, Q. T., Lightner, D. D.,
Barnholtz-Sloan, J. S., et al. (2014). Epidemiologic and molecular prognostic
review of glioblastoma. Cancer Epidemiol. Biomarkers Prev. 23, 1985–1996.

Yan, W., Zhang, W., You, G., Zhang, J., Han, L., Bao, Z., et al. (2012). Molecular
classification of gliomas based on whole genome gene expression: a systematic
report of 225 samples from the Chinese Glioma cooperative group. Neuro
Oncol. 14, 1432–1440.

Yang, L.-J., Zhou, C.-F., and Lin, Z.-X. (2014). Temozolomide and radiotherapy for
newly diagnosed glioblastoma multiforme: a systematic review. Cancer Invest.
32, 31–36.

Yang, X., Deng, Y., He, R. Q., Li, X. J., Ma, J., Chen, G., et al. (2018). Upregulation of
HOXA11 during the progression of lung adenocarcinoma detected via multiple
approaches. Int. J. Mol. Med. 42, 2650–2664.

Yang, X., Shi, Y., Li, M., Lu, T., Xi, J., Lin, Z., et al. (2019). Identification and
validation of an immune cell infiltrating score predicting survival in patients
with lung adenocarcinoma. J. Transl. Med. 17:217.

Yin, W., Tang, G., Zhou, Q., Cao, Y., Li, H., Fu, X., et al. (2019). Expression profile
analysis identifies a novel five-gene signature to improve prognosis prediction
of glioblastoma. Front. Genet. 10:419. doi: 10.3389/fgene.2019.00419

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287.
doi: 10.1089/omi.2011.0118

Zhang, H., Ye, Y. L., Li, M. X., Ye, S. B., Huang, W. R., Cai, T. T., et al. (2017).
CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived
suppressor cells and is correlated with prognosis in bladder cancer. Oncogene
36, 2095–2104.

Zhang, W., Wang, S., Wang, Q., Yang, Z., Pan, Z., and Li, L. (2014). Overexpression
of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer.
Oncol. Rep. 31, 1334–1342.

Zhong, S., Chen, H., Yang, S., Feng, J., and Zhou, S. (2020). Identification and
validation of prognostic signature for breast cancer based on genes potentially
involved in autophagy. PeerJ 8:e9621. doi: 10.7717/peerj.9621

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hu, Han, Cheng, Wang, Feng and Lin. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 February 2021 | Volume 12 | Article 638458

https://doi.org/10.3389/fimmu.2020.00922
https://doi.org/10.3389/fgene.2019.00419
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.7717/peerj.9621
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Expression Profile Analysis Identifies a Novel Seven Immune-Related Gene Signature to Improve Prognosis Prediction of Glioblastoma
	Introduction
	Materials and Methods
	Data Sources and Preliminary Processing
	Differential Gene and Functional Enrichment Analysis
	Establishment of the Immune-Associated Gene Biosignature
	CIBERSORT and Assessment of Tumor-Infiltrating Immune Cells
	Analysis of Immune Infiltration
	Statistical Analysis

	Results
	Identification of Differentially Expressed IRGs in GBM
	Functional Characterization of DEIRGs
	Identification of Prognostic Genes
	Construction of a Seven-Gene Prognostic Biosignature
	Verification of the Immune-Linked Gene Biosignature
	Relationship Between the Risk Score and Clinical Factors
	Functional Annotations and Signaling Pathway Enrichment in High- and Low-Risk Score Groups
	Correlation Between the Risk Score and Immune Response
	Distribution of Immune Invasion in Glioblastoma
	Prognostic Model Associates With Immune Invasion in GBM
	Effects of Prognosis-Specific Immune-Related Genes on Oncogenic Pathways
	Hub Gene Drug Sensitivity

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


