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INTRODUCTION 
 

Amyotrophic lateral sclerosis (ALS) is the most 

common adult-onset progressive neurodegenerative 

disease and is characterized by selective degeneration of 

upper and lower motor neurons in the brain and spinal 

cord [1]. The ALS median incidence rate is 

approximately two per 100,000 persons [2]. Median age 

of symptom onset is 55 years, and the average survival 

time is 3-5 years [3]. Approximately 10% of ALS cases 

are patients with familial ALS (fALS), whereas the 
remaining 90% are sporadic ALS (sALS) [4]. 

 

To date, more than 30 genes have been linked to ALS. 

However, only a few, including SOD1, C9ORF72, 

FUS, and TARDBP, have been identified as causative 

ALS genes [5, 6]. The pathogenesis of ALS remains 

unclear; however, one of the possible mechanisms 

underlying ALS is defective RNA metabolism and 

homeostasis [7]. Recent studies have shown that FUS 

and TARDBP RNA-binding proteins may contribute 

to ALS pathogenesis [8], and that most of these 

causative FUS and TARDBP mutations cluster in the 

C-terminus of proteins, called mutation hotspot 

regions [9, 10].  

 

Sanger sequencing and next-generation sequencing for 

mutation screening in large samples are time consuming 

and expensive. In contrast, here we screen the FUS and 

TARDBP mutation hotspot regions in 146 ALS cases 
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ABSTRACT 
 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor 
neurons. More than 30 genes have been linked to ALS to date, including FUS and TARDBP, which exhibit similar 
roles in RNA metabolism. This study explored the use of high-resolution melting (HRM) analysis to screen for 
FUS and TARDBP mutation hotspot regions in 146 Chinese ALS patients, which achieved 100% detection. Two 
FUS mutations were observed in two different familial ALS probands, a missense mutation (p.R521H) and a 
novel splicing mutation (c.1541+1G>A). Five TARDBP mutations were identified in six ALS patients, including a 
novel 3’UTR mutation (c.*731A>G) and four missense mutations (p.G294V, p.M337V, p.G348V, and p.I383V). 
We found that FUS mutations were present in 1.4% of Chinese ALS patients, whereas TARDBP mutations were 
responsible for 4.1% of Chinese ALS cases. Here, we describe the accuracy of using highly sensitive HRM 
analysis to identify two novel FUS and TARDBP mutations in Chinese sporadic and familial ALS cases. Our study 
contributes to the further understanding of the genetic and phenotypic diversity of ALS. 
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using the rapid, highly sensitive screening method, 

high-resolution melting (HRM) analysis. HRM analysis 

is a recently developed genetic analysis method for fast, 

high-throughput post-PCR analysis. During high-

resolution melting analysis, melting curves are 

produced using dyes that fluoresce in the presence of 

double-stranded DNA (dsDNA) and specialized 

instruments designed to monitor fluorescence during 

heating; as the temperature increases, the fluorescence 

decreases, producing a characteristic melting profile. 

The shape differences in melting curves, obtained as 

fluorescence difference plots, are used to distinguish 

between mutations and controls [11, 12]. 

 

In this study, we demonstrated that highly sensitive 

HRM analysis can be used for screening FUS and 

TARDBP mutations and identified two novel mutations 

in Chinese sALS and fALS cases. 

 

RESULTS 
 

Sensitivity and HRM analysis 

 

Excluding synonymous mutations and normal single-

nucleotide polymorphisms, HRM analysis identified 

eight pathogenic mutations in 146 patients (Table 1). 

Similarly, targeted sequencing also detected the eight 

pathogenic mutations, confirming the mutation 

detection sensitivity of HRM analysis was 100% in this 

cohort. These mutations included two different FUS 

pathogenic mutations in two different ALS patients and 

five TARDBP pathogenic mutations in six ALS 

patients, which included two novel mutations. 

Therefore, FUS mutations were present in 1.4% of 

Chinese ALS patients, whereas TARDBP mutations 

were responsible for 4.1% of Chinese ALS cases.  

 

FUS mutations and clinical characteristics 

 

Figure 1A shows the detected novel splicing mutation, 

c.1541+1G>A (Figure 1A), located at the splice donator 

site of the FUS intron 14. The guanine of the wild-type 

donator site is highly conserved across species (Figure 

1B). A functional splicing reporter minigene assay 

confirmed the novel splicing mutation result in a 

frameshift, leading to truncated FUS protein 

p.G466VfsX14 (Figure 1C). 

 

The novel splicing mutation was identified in a 51-year-

old male patient whose daughter previously died from 

ALS. Initially, he presented with neck weakness and 

dysphagia. After 5 months, lower right limb weakness 

emerged and gradually increased without cognitive 

impairment. The patient died 13 months after onset of 

symptoms. A 20-year-old female patient, the daughter 

of the 51-year-old patient, experienced lower right limb 

weakness, which quickly developed in all four 

extremities within 1 year. After 12 months, she died of 

respiratory failure. Figure 1D shows the same mutation 

was detected in the sister of the 51-year-old patient’s 

sister and shared a similar clinical phenotype; the 

disease duration of this patient was only 8 months. 

 

A heterozygous missense substitution, c.1562G>A (p. 

R521H, Figure 2A), was identified in an index fALS 

patient who began suffering from progressive weakness 

in the upper-right limb at 41 years of age. Twelve 

months later, the weakness developed in other limbs. 

Then, he presented with dysarthria and dysphagia after 

13 months and without cognitive impairment. The 

patient died 3 years after onset of symptoms. The 

patient’s brother who shared the same mutation (patient 

III1) also had a similar clinical phenotype and disease 

duration. Patient III2, as well as several family members 

of patients III1 and III3, also share the mutation; 

however, they did not show any clinical characteristics 

of ALS until now (Figure 2B). 

 

TARDBP mutations and clinical characteristics 

 

Five TARDBP mutations were observed in six 

unrelated ALS patients (Figure 3A), which included a 

novel 3′UTR mutation (c. *731A>G) and four known 

causative mutations (p.G294V, p.G348V, p.M337V, 

and p.I383V). According to the UCSC Genome 

Browser, the TARDBP 3′-UTR site c. *731 is highly 

conserved through the evolutionary spectrum from 

human to chicken (Figure 3B), supporting its 

functional importance. MicroRNA (miRNA) binding 

searches of TARDBP through the TargetScanHuman 

database showed binding of miR-376a directly to the 

3′UTR variant region. The novel c. *731A>G 

TARDBP mutation was expected to interfere with the 

normal binding of miR-376, and then disorder the 

expression of TARDBP mRNA. However, we 

sequenced this region of the patient’s parents and 

confirmed this was a de novo mutation. In addition, 

the mutation was not observed in available variation 

databases, including mutation database and SNP 

databases such as the National Center for 

Biotechnology Information (NCBI) Single Nucleotide 

Polymorphism Database (http://www.ncbi.nlm.nih. 

gov/projects/SNP/), Exome Aggregation Consortium 

(ExAC) database (http://exac.broadinstitute.org), and 

ALS Online Genetics Database (http://alsod. 

iop.kcl.ac.uk/) [13]. According to American College 

of Medical Genetics and Genomics guidelines, it 

meets de novo criteria PS2 (in a patient with the 

disease and no family history), PM2 (absent from 
controls or at extremely low frequency if recessive in 

Exome Sequencing Project, 1000 Genomes Project, or 

Exome Aggregation Consortium), and PP4 (patient’s 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Table 1. Clinical data of ALS patients carrying pathogenic mutations in FUS and TARDBP genes. 

Gene 
Nucleotide 

change 

Amino acid 

change 

Type of 

mutation 

Onset; age of 

onset;gender 

Disease 

duration 

ALS family 

history 
References 

FUS c.1541+1G>A - splicing Bulbar; 51; M 1 y Yes This study 

FUS c.1562G>A p. R521H missense Spinal; 41; M 3 y Yes [14] 

TARD

BP 
c.881G>T p. G294V missense 

Bulbar, Spinal; 61; 

M 
0.5 y No 

[15, 16] 

    Bulbar; 53; M 1.5+y No 

TARDBP c.1009A>G p. M337V missense Spinal; 58; M 1+y Yes [17] 

TARDBP c.1043G>T p. G348V missense Spinal; 24; M 10+y No [18] 

TARDBP c.1147A>G p. I383V missense Spinal; 45; F 3 y No [19] 

TARDBP c. *731A>G - 3’UTR -;N/A;M - No This study 

The symbol + indicates disease in progress. 

Key: ALS, amyotrophic lateral sclerosis; F, female; M, male; N/A, information not available 

 

phenotype or family history is highly specific for a 

disease with a single genetic etiology) for classifying 

pathogenic variants. We suggest this mutation is a 

“likely pathogenic” for the previously stated reason. 

 

The TARDBP p.G294V mutation is located in the sixth 

exon of the gene and was present in two unrelated male 

sALS patients. The patient began undergoing dysarthria 

with weakness in the upper right limb. Five months 

later, the weakness developed in the upper left limb, and 

dysphagia occasionally occurred. He died 6 months 

after onset of symptoms. At age 53, the second patient 

experienced symptoms primarily characterized by 

dysarthria. Neither ALS patient carrying the p.G294V 

mutation showed signs of cognitive dysfunction.  

 

The p.G348V mutation was identified in a 24-year-old 

juvenile-onset male patient who reported no family 

history of ALS. During the initial onset of symptoms, 

the patient showed slight fasciculation in the upper right 

limb. During the next 3 years, the fasciculation was 

progressive and developed in the upper left limb. The 

MRI images show that the anisotropy of cortical spinal 

tract scores in the left midbrain was indicative of white 

matter degeneration. 

 

To date, fasciculation and muscle atrophy have been 

observed in all extremities.  

 

A 45-year-old female patient carrying the p.I383V 

mutation presented with progressive weakness in the 

upper limb, and electromyography results suggested 

spinal anterior of the lower cervical was injured. After 3 

years, the patient died of respiratory failure. 

 

DISCUSSION 
 

Following rapid development of molecular genetics, 

many genes have been identified with ALS 

pathogenesis. Although the exact mechanism for ALS 

is still unknown, several hypotheses include defective 

RNA metabolism, glutamate excitotoxicity, disruption 

of membrane trafficking, endoplasmic reticulum 

stress, mitochondrial dysfunction, and protein 

misfolding and aggregation [20]. Some mutations in 

FUS and TARDBP genes, which both play an 

important role in mRNA transport, axonal 

maintenance, and motor neuron development, have 

been reported as causative ALS mutations for 

disturbing RNA homeostasis [4, 9, 21]. Interestingly, 

because the vast majority of these causative mutations 

in FUS and TARDBP cluster in the C-terminus of the 

proteins, also known as mutation hotspot regions, [9, 

10] this suggested we could focus on mutation 

detection at the mutational hotspot regions, instead of 

the whole gene. 

 

Although Sanger sequencing and next-generation 

sequencing are two of most common mutation detection 

methods for large-scale genomics sequencing samples, 

they can be cost prohibitive and slow. In this study, we 

first identified the FUS and TARDBP mutations in 
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Chinese ALS patients by the fast and highly sensitive 

screening method, HRM analysis. 

 

Using HRM analysis, we successfully identified five 

known possible causative mutations, and two novel 

mutations. The mutation frequency was 1.4% for FUS, 

and 4.1% for TARDBP in Chinese ALS patients. 

However, the frequency of our study is inconsistent 

with previously reported results, [22] which may be due 

to small sample size and population difference.  

 

We identified two FUS pathogenic mutations in this 

study. Previous reports identified mutation p.R521H 

as the highest FUS mutation frequency, accounting 

for 30%, and experimental results show that the FUS 

R521H missense mutation could lead to aberrant 

trafficking and retention of the mutant FUS protein in 

the cytoplasm [14, 23, 24]. Interestingly, several 

relatives and a sibling of the proband also have the 

p.R521H mutation; however, they did not present with 

clinically relevant ALS symptoms, which may be 

related to age or the presence of a recessive 

inheritance pattern [14, 25]. 

 

A novel splicing mutation, c.1541+1G>A, the third 

splicing mutation linked to ALS in FUS gene [26, 27], 

produced a truncated FUS protein, p.G466VfsX14, 

eliminating the nuclear localization sequence (NLS), 

where most previously published mutations are 

located [9], and then impair its nuclear import. 

Previous results show that overexpression of 

cytoplasmic FUS with deleted NLS results in 

recapitulation of ALS-like motor neuron 

abnormalities in mice, [28] indicating this mutation is 

significant. Furthermore, mutation of a truncated 

protein lacking the NLS was reported to cause 

 

 
 

Figure 1. A novel splicing mutation, c.1541+1G>A in the FUS gene identified in a Chinese ALS patient. (A) The novel splicing 

mutation was identified by HRM analysis and direct sequencing. (B) The evolutionary conservation of the splicing mutation c.1541+1G>A are 
shown. (C) Minigene splicing analysis of the novel splice mutation. (D) Pedigree of the family. An arrowhead indicates the proband.  
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Figure 2. The pedigree with FUS mutation p. R521H. (A) Results of HRM analysis and direct sequencing of patients. (B) Pedigree of the 

family. An arrowhead indicates the proband. Patients III2, IV3, IV6, and IV7 shared the same mutation, but they did not appear as ALS 
phenotypes until now.  

 

 
 

Figure 3. A novel 3′UTR mutation, c. *731A>G in the TARDBP gene identified in a Chinese ALS patient. (A) The novel 3′UTR 

mutation was identified by HRM analysis and direct sequencing. (B) The evolutionary conservation of the TARDBP 3′UTR mutation c. 
*731A>G. 
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juvenile ALS with rapid disease progression [29, 30], 

which was consistent with the clinical symptoms in 

our study. Subsequent research is still needed to study 

the function of the mutation. The novel splicing 

mutation we found confirms the C-terminal NLS of 

the FUS gene plays a key role in ALS pathology. 

 

We identified five TARDBP mutations in our ALS 

cohort, four of which have previously been reported as 

causative mutations. The p.G294V mutation was 

previously identified in a sALS patient from Italy and in 

a fALS patient from Australia, and was predicted to 

disrupt the glycine-rich domain in the C-terminus, 

which plays a role in RNA binding and is required for 

the exon-skipping activity of TARDBP [15, 31]. 

Previous reports showed the percentages of cells with 

positive nuclear immunostaining were significantly 

lower in patients with TARDBP p.G294V mutations 

than in controls, indicating its importance [16]. In this 

study, we identified p.G294V mutations in two 

unrelated sALS patients, for whom the onset of 

symptoms is characterized by dysarthria. To our 

knowledge, this is the first Asian population study for 

this mutation. The p.G348V mutation, which increases 

the amount of TARDBP protein at the cellular level, 

was detected in ALS patients from various populations 

[18, 32–34]. However, there are some differences for 

the ALS clinical symptoms between the western and 

Chinese populations. The age of onset for Chinese ALS 

cases were much younger than previously published 

western cases. Additionally, the mutation carriers in the 

Chinese population experienced slower disease 

progression and longer survival time [34]. Our study 

confirmed these differences. The third mutation we 

identified, p.I383V, has been detected in fALS patients 

from the United States, Turkey, and Taiwan. However, 

the onset and progression of the disease for the carrier 

p.I383V are different [19, 35–37]. In our study, the 

mutation p.I383V was identified from a sALS woman 

who suffered progressive weakness in the upper limb at 

the age of 45, and died 3 years later. 

 

The final mutation we identified, the novel 3'UTR 

mutation c. *731A>G, was a de novo and was not 

observed in the parents of patients. Additionally, it has 

not be reported in any mutation databases, and the site 

c. *731 is highly conserved. According to the software, 

the mutation may affect the combination of mir-376a 

for TARDBP and then lead to increasing mRNA levels, 

which may accelerate disease progression by inducing 

the formation of cytoplasmic inclusions and/or the 

dysregulation of RNA metabolism [38]. In addition, a 

previous study reported a similar 3'UTR mutation 
linked to ALS [39]. According to the guideline of 

ACMG, we suggested c. *731A>G as a likely 

pathogenic mutation for ALS. Unfortunately, we did not 

have access to detailed medical records and fresh blood 

samples. 

 

In conclusion, to our knowledge, this is the first time 

that HRM analysis was used to identify FUS and 

TARDBP mutations in Chinese patients with ALS, 

demonstrating its high sensitivity and accuracy. Our 

data suggests that HRM analysis is a fast and easy 

method for mutation screening in large samples. Most 

important, however, we identified two novel pathogenic 

ALS mutations, which further expands the ALS-related 

gene mutation spectrum, and provides data for 

subsequent studies. We also investigated the frequency 

of FUS and TARDBP mutations in the Chinese 

population. 

 

MATERIALS AND METHODS 
 

Subjects 

 

The study included 146 patients with sALS and nine 

fALS index cases (male: 62.3%; age at onset: 47.9 ± 11.7 

years). All patients were recruited from the Department 

of Neurology, Southwest Hospital, Third Military 

Medical University, Chongqing between 2012 and 2017. 

All patients were Han Chinese, and the patients met the 

El Escorial criteria for ALS diagnosis [40]. Family 

history was considered positive if the patient had at least 

one affected relative within three generations [41]. All 

participants provided informed consent before blood 

donation. Protocols were in accordance with the ethical 

standards of the responsible committee on human 

experimentation and the Helsinki Declaration of 1964 

and approved by the institutional ethics committee of the 

Hospital (equivalent to an Institutional Review Board). 

This study was carried out in accordance with the 

approved guidelines. Written informed consent was 

obtained from all participants. All patients were tested for 

the C9orf72 GGGGCC expanding mutation with repeat-

primed PCR, together with proper positive control and 

negative control. No C9orf72 GGGGCC expanding 

mutation was detected in this cohort.  

 

Screening TARDBP and FUS gene mutations by 

PCR-HRM 

 

We designed PCR primers for HRM analysis to screen 

all of the mutation hotspot regions containing OMIM 

Allelic Variants mutations related to ALS (from the 

UCSC Genome Browser) of FUS (NM_004960.3) and 

TARDBP (NM_007375.3). Table 2 shows the amplified 

primer sequence and the length of each expected 

fragment. 

 

Genomic DNA was extracted from peripheral blood 

leukocytes using standard methods. 
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Table 2. PCR primer sequences of FUS and TARDBP gene and size of amplified fragment. 

Gene Primer Primer sequence Fragment size 

FUS 

1 
5′-GAGGGTAACACTGGGTACAGGAC-3′ 

5′-GGCTTGGAGAGGCTGGTAAC-3′ 
160 

2 
5′-GGTTATGGCAATCAAGACCAGA-3′ 

5′-CTGGGTTCATAGCCACCACT-3′ 
149 

3 
5′- GCTATGATCGAGGCGGCTA -3′ 

5′-TGGCCTCTGTTCAACTGCTC -3′ 
158 

TARDBP 

1 
5′-CGGAATATGAAACACAAGTGAAAG-3′ 

5′-GAATTAGGAAGTTTGCAGTCACAC-3′ 
82 

2 
5′-CCGAACCTAAGCACAATAGCA-3′ 

5′-TCATCCCACCACCCATATTACT-3′ 
156 

3 
5′-AATATGGGTGGTGGGATGAAC -3′ 

5′-TGTTGCCTTGGTTTTGGTTATT-3′ 
160 

4 
5′-AATAACCAAAACCAAGGCAACAT-3′ 

5′-TTGAGCCAAAGCCTCCATTA- 3′ 
157 

5 
5′-GGGTTGTGGTTGGTTGGTATAG-3′ 

5′-CTGCTGAATATACTCCACACTGAAC-3′ 
130 

6 
5′-GCCATAGGAATACTGTCTACATGCT-3′ 

5′-CCATATCACAGCCTTGCGTT-3′ 
152 

 

PCR-HRM was performed with Eco Real-Time PCR 

System (Illumina) in 10-µL reaction mixtures comprising 

20 ng of DNA, 1×PCR buffer, 0.2 mM dNTP, Eva Green 

(Biotium),1U of Taq polymerase, and 0.25 µM each 

forward and reverse primers. Initial denaturation was 

performed at 95°C for 5 min, followed by 50 cycles of 

95°C for 20 sec, 60°C for 20 sec, and 72°C for 20 sec. 

The melting curves were obtained under the following 

conditions: 95°C for 15 sec, 55°C for 15 sec, and with a 

ramping rate of +0.2°C/sec to 95°C.  

 

Direct DNA sequencing and bioinformatics 

 

To confirmed the genotype of mutations and the 

specificity of HRM analysis, All PCR products showing 

an HRM aberrant pattern were analyzed with direct 

DNA sequencing on a PRISM 377 full-automatic 

sequencing analyzer (ABI). 

 

When the DNA sequencing result was determined, we 

first confirmed whether there was a mutation aimed to 

detect the specificity of HRM analysis. Then, we 

ensured it was a novel mutation using the HGMD 

database (http://www.hgmd.cf.ac.uk/ac) and the dbSNP 

database (http://www.ncbi.nlm.nih.gov/snp). Finally, to 

evaluate the potential functional effect of the novel 

splicing mutation and 3'UTR site mutation, we used the 

UCSC Genome Browser (http://genome.ucsc.edu/),  

Target (http://www.targetscan.org/vert_71), Human 

Splicing Finder (http://www.umd.be/HSF3/). To 

identify known variations, we used ALS Online 

Genetics Database (http://alsod.iop.kcl.ac.uk/) (13), the 

NCBI Database (http://www.ncbi.nlm.nih.gov), and 

Exome Aggregation Consortium (ExAC) database 

(http://exac.broadinstitute.org). 

 

Targeted sequencing 

 

To verify the sensitivity of HRM analysis, we 

sequenced all exons of the FUS and TARDBP gene in 

146 patients by Illumina Hiseq 3000 system. The target 

coverage is 98% with an average depth of 100X. All 

nonsynonymous variants detected were filtered. 

 

Functional splicing reporter minigene assay 

 

Because of the lack of simple RNA, we used splicing 

reporter minigene assay to confirm the functional 

effect of the novel splicing mutation. The minigene 

was constructed by PCR amplification of mutant 

genomic DNA sequences as previously described 

[42]. The amplified sequences included exons 13 

through 3’UTR of the FUS gene. FUS minigene 

products were digested with BamH I and Xho I 

(Thermo) and cloned into the pCDNA3.1(+) reporter 

vector. The resulting constructs were transfected into 

http://www.hgmd.cf.ac.uk/ac
http://www.ncbi.nlm.nih.gov/snp
http://genome.ucsc.edu/
http://www.targetscan.org/vert_71
http://www.umd.be/HSF3/
http://alsod.iop.kcl.ac.uk/
http://www.ncbi.nlm.nih.gov/
http://exac.broadinstitute.org/
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U87 cells. Total cellular RNA was extracted after 24 

hours, followed by RT-PCR analysis. 
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